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Why logic + probability?

* Two complementary formalisms:
— Logic: a framework for knowledge representation.

— Probability: a framework for inductive inference.

* Why do we need to integrate them?
— To account for our knowledge about the structure of the
world
« its form and content.
« how it is used and acquired.

— To capture linguistic meaning and use.

Why logic + probability?

* To capture deep inductive biases

. Tree with species
£ form at leaf nodes
i mouse
squirrel
S: structure
chimp
l gorilla
oo
Lo wow
. mouse O O O O
D: data squirel O O O O
chimp O O O O
gorila O O O O

Outline

+ The traditional debate in cognitive science: logic
versus probability
— The case of connectionism
— Examples: knowledge about biology, social relations,
language, visual objects
* Models of human reasoning that integrate
probabilistic inference and logical representations
— Ecological reasoning
— Causal reasoning
+ Other directions

— Social reasoning, physical reasoning

Movitations for connectionism

* Build models with more neural plausibility.
* Overcome the problems of symbolic
representations.
— Inference is too rigid and brittle.
— No general way to learn new representations.

Semantic networks
(Quillian, 1968)
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+ Useful for compression (memory)

+ Useful for predicting properties of new objects.




Reaction time tests of hierarchy
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Problems

* Typicality effects.
— “canary is a bird” faster than “chicken is a bird”.

* Violations of hierarchy for atypical items.
— “chicken is an animal” faster than “chicken is a
bird.”
* How could this knowledge representation be
learned in an unsupervised way?

An alternative architecture
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Problems

* Does not actually capture generalization
behavior very well.
— Correlations: » < 0.7 on basic property tasks.
— Inductive bias is too weak
» Missing crucial abstract knowledge about
the domain.
— e.g., ISA(xy) <= ISA(x,2) & ISA(zy)
» Can we combine the best of logical
representation and statistical learning and
inference?




Learning family relationships
(Hinton, 1986)

* A family tree structure:

Christopher = Penclope Andrew = Christine

Margaret = Arthur Victoria = James

Jennifer = Charles

Colin Charlotte
Aurelio = Maria Bortolo = Emma
Grazia = Pierino G!mmum = Pl:‘(nlv Doralice = Marcello
Alberto Mariemma

father(Christopher, Arthur)
father(Christopher, Victoria)
father(Andrew, James)
father(Andrew, Jennifer)
father(James, Colin)
father(James, Charlotte)

mother(Penclope, Arthur)
mother(Penelope, Victoria)
mother(Christine, James)
mother(Christine, Jennifer)
mother(Victoria, Colin)
mother(Victoria, Charlotte)

husband(Christopher, Penclope)
husband(Andrew, Christine)
husband(Arthur, Margaret)
husband(James, Victoria)
husband(Charles, Jennifer)

wife(Penclope, Christopher)
wife(Christine, Andrew)
wife(Margaret, Arthur)
wife(Victoria, James)
wife(Jennifer, Charles)

son(Arthur, Christopher)
son(Arthur, Penclope)
son(James, Andrew)
son(James, Christine)
son(Colin, Victoria)
son(Colin, James)

daughter(Victoria, Christopher)
daughter(Victoria, Penclope)
daughter(Jennifer, Andrew)
daughter(Jennifer, Christine)
daughter(Charlotte, Victoria)
daughter(Charlotte, James)

brother(Arthur, Victoria)
brother(James, Jennifer)
brother(Colin, Charlotte)

sister(Victoria, Arthur)
sister(Jennifer, James)
sister(Charlotte, Colin)

The family relations dataset

uncle(Arthur, Colin)
uncle(Charles, Colin)
uncle(Arthur, Charlottc)
uncle(Charles, Charlotte)

aunt(Jennifer, Colin)
aunt(Margaret, Colin)
aunt(Jennifer, Charlotte)
aunt(Margaret, Charlotte)

nephew(Colin, Arthur)
nephew(Colin, Jennifer)
nephew(Colin, Margaret)
nephew(Colin, Charles)

niece(Charlotte, Arthur)
niece(Charlotte, Jennifer)
nicce(Charlotte, Margaret)
nicce(Charlotte, Charles)

Learning family relationships
(Hinton, 1986)
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Learning family relationships

(Hinton, 1986)

* 112 possible facts of the form:

<personl, relation, person2>

<Christopher, father-of, Victoria>,

<Colin, son-of, Victoria>,

<Jennifer, aunt-of, Colin>. ..

* Trained on 108 examples, network usually
generalizes well to the other 4.

— Doesn’t work well with less training.

Linear Relational Embedding

(Paccanaro and Hinton, 2002)
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+ Relatively minor improvement, from 4 to 8
or 12 generalization trials....

A more intuitive representation

Christopher = Penelope

Margaret = Arthur

Victoria = James

Colin Charlotte

Andrew = Christine

Jennifer = Charles

+ Relations: spouse (“=*), parent (solid line)

+ Attribute: male or female (type of name)

* Define other relations in terms of basic relations
spouse, parent, and the attributes male, female.




Minimal family description

spouse(Christopher,Penclope)

spouse(Andrew,Christine)
spouse(Arthur,Margaret)
spouse(James, Victoria)
spouse(Charles,Jennifer)

female(Penclope)
female(Christine)
female(Margaret)
female(Victoria)
female(Jennifer)
female(Charlottc)
NOT female(Colin)

parent(Penelope, Arthur)
parent(Penelope, Victoria)
parent(Christine, James)
parent(Christine, Jennifer)
parent(Victoria, Colin)
parent(Victoria, Charlotte)

Abstract theory of kinship
spouse(x,y) <=> spouse(y,x)

NOT female(x) <= spouse(x,y) AND female(y)
parent(x,y) <= spouse(x,z) AND parent(z.y)

father(x,y) <=> parent(x,y) AND NOT female(x)
mother(x,y) <=> parent(x,y) AND female(x)
husband(x,y) <=> spouse(x,y) AND NOT female(x)
wife(x,y) <=> spouse(x,y) AND female(x)
son(x,y) <=> parent(y,x) AND NOT female(x)
daughter(x,y) <=> parent(y,x) AND female(x)
sibling(x,y) <=> parent(z,x) AND parent(z,y) AND ~(x=y)
brother(x,y) <=> sibling(x,y) AND NOT female(x)
sister(x,y) <=>sibling(x,y) AND female(x)
uncle(x,y) <=> (parent(z,y) AND brother(x,z))
OR (aunt(z,y) AND spousc(x,z))
aunt(x,y) <=> (parent(z,y) AND sister(x,z)) OR
OR (uncle(z,y) AND spouse(x,z))
nephew(x,y) <=> (parent(z,x) AND sibling(y,z) AND NOT female(x))
OR (nephew(x,z) AND spouse(y;2))
niece(x,y) <=> (parent(z,x) AND sibling(y,z) AND female(x))
OR (nicce(x,z) AND spouse(y.z))

Properties of this representation

+ Useful for compression (memory)

Minimal family description

spouse(Christopher,Penclope)

spouse(Andrew,Christine)
spouse(Arthur,Margaret)
spouse(James, Victoria)
spouse(Charles,Jennifer)

female(Penclope)
female(Christine)
female(Margaret)
female(Victoria)
female(Jennifer)
female(Charlottc)
NOT female(Colin)

parent(Penelope, Arthur)
parent(Penelope, Victoria)
parent(Christine, James)
parent(Christine, Jennifer)
parent(Victoria, Colin)
parent(Victoria, Charlotte)

Abstract theory of kinship
spouse(x,y) <=> spouse(y,x)

NOT female(x) <= spouse(x,y) AND female(y)
parent(x,y) <= spouse(x,z) AND parent(z.y)

P

father(x,y) <=> parent(x,y) AND NOT female(x)
mother(x,y) <=> parent(x,y) AND female(x)
husband(x,y) <=> spouse(x,y) AND NOT female(x)
wife(x,y) <=> spouse(x,y) AND female(x)
son(x,y) <=> parent(y,x) AND NOT female(x)
daughter(x,y) <=> parent(y,x) AND female(x)
sibling(x,y) <=> parent(z,x) AND parent(z,y) AND ~(x=y)
brother(x,y) <=> sibling(x,y) AND NOT female(x)
sister(x,y) <=>sibling(x,y) AND female(x)
uncle(x,y) <=> (parent(z,y) AND brother(x,z))
OR (aunt(z,y) AND spousc(x,z))
aunt(x,y) <=> (parent(z,y) AND sister(x,z)) OR
OR (uncle(z,y) AND spouse(x,z))
nephew(x,y) <=> (parent(z,x) AND sibling(y,z) AND NOT female(x))
OR (nephew(x,z) AND spouse(y;2))
niece(x,y) <=> (parent(z,x) AND sibling(y,z) AND female(x))
OR (nicce(x,z) AND spouse(y.z))

Properties of this representation

+ Useful for compression (memory)

» Useful for predicting unknown relations

— Margaret is Arthur’s wife. What else do we
know about her?

Christopher = Penclope Andrew = Christine
Margaret = Arthur Victoria = James Jennifer = Charles
Colin Charlotte

Reasoning about kinship

* Problem: Consider a new person, Boris.
— Is the mother of Boris’s father his grandmother?
— Is the mother of Boris’s sister his mother?
— Is the daughter of Boris’s sister his grandfather?

— Is the son of Boris’s sister his son?

Reasoning about kinship

* Problem: Consider a new person, Boris.
— Is the mother of Boris’s father his grandmother?
— Is the mother of Boris’s sister his mother?
— Is the daughter of Boris’s sister his grandfather?

— Is the son of Boris’s sister his son? (Note: Boris and his
family were stranded on a desert island when he was a
young boy.)

* What this tells us about human knowledge
— Depends on abstract knowledge about relations.
— Abstractions must be probabilistic.

— Knowledge representation and efficient inference on the
scale of common-sense reasoning is not going to be easy.




Language
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Hierarchical clustering on hidden
layer activation vectors.

Semantics with predicate logic

Bill loves Mary.

— loves(Bill,Mary)
Bill thinks that John loves Mary.

— thinks(Bill,loves(John,Mary)
Bill thinks that all guys love Mary.

— thinks(Bill,f.a. x guy(x) loves(x,Mary))
Mary knows that Bill thinks all guys love her.

— knows(Mary,thinks(Bill,f.a. x guy(x) loves(x,Mary)))
Bill is afraid that Mary knows that he thinks all guys love
her.

— afraid(Bill,knows(Mary,thinks(Bill, f.a.x guy(x) loves(x, Mary))))
Mary wonders if Bill realizes that she knows he thinks all
guys love her....

Semantics with predicate logic

If a burkle tumps that one of its gazzers will
glip one of its rupples, then the burkle will
prin that gazzer.

Outline

+ The traditional debate in cognitive science: logic

versus probability
— The case of connectionism

— Examples: knowledge about biology, social relations,
language, visual objects

* Models of human reasoning that integrate

probabilistic inference and logical representations
— Ecological reasoning (Shafto, Kemp, et al.)

— Causal reasoning

Other directions

— Social reasoning, physical reasoning

Property induction

Gorillas have T9 hormones.
Seals have T9 hormones.
Squirrels have T9 hormones.

Gorillas have T9 hormones.
Seals have T9 hormones.

NOUNS

Squirrels have T9 hormones.
Flies have T9 hormones.

Horses have T9 hormones.

“Similarity”, “Typicality”, Gorillas have T9 hormones.
Chimps have T9 hormones.
Monkeys have T9 hormones.

Baboons have T9 hormones.

“Diversity”

Horses have T9 hormones.




Beyond similarity-based induction

* Reasoning
based on
dimensional
thresholds:

(Smith et al., 1993)

* Reasoning

based on causal

relations:

(Medin et al., 2004;

Coley & Shafto,
2003)

Poodles can bite through wire.

German shepherds can bite through wire.

Dobermans can bite through wire.

German shepherds can bite through wire.

Different sources for priors

Chimps have T9 hormones.

Gorillas have T9 hormones.

Poodles can bite through wire.

Salmon carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Salmon carry E. Spirus bacteria.

Dobermans can bite through wire.

Salmon carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Taxonomic similarity

Strength ordering

Food web relations

Property type

“has T9 hormones”

Theory Structure
taxonomic tree

+ diffusion process

“can bite through wire”

directed chain
+ drift process

directed network
+ noisy transmission

“carry E. Spirus bacteria”

Gazelles carry E. Spirus bacteria.

Lions carry E. Spirus bacteria.

Giraffe
Lion

Gazelle
Monkey

Gorilla

Class A Class D Class D
Class B Clags A Class A
Class C Cla:s F Class E
Class D Class C Class C Class B
Class E
o . Class E Class G
ass Class B
Class G c
. lass F
Properties Class G
ClaasshA O O O OO 00000 00000
ClassB O O O O O 00000 00000
ClassC O O O OO 00000 00000
Claasb O OO OO -- 00000 - 00000
Classe O O O O O 00000 [eNeNeNeNe)
ClassF O O O O O 00000 00000
ClassG O O O OO 00000 OO0 000
Gazelles carry E. Spirus bacteria.
Lions carry E. Spirus bacteria. .
“noisy
transmission
process”

Gorilla

Monkeys carry Gripp’s parasite.

Hyenas carry Gripp’s parasite.

Giraffe

“noisy
transmission
process”




Herring carry E. Spirus bacteria.

Sand sharks carry E. Spirus bacteria.

Sand shark

Human «— Mako shark «— Tuna «— Herring «— Kelp

Dolphin

Tuna carry E. Spirus bacteria.

Mako sharks carry E. Spirus bacteria.

“noisy
transmission
process”

Sand shark

Human «— Mako shark una «— Herring «<— Kelp
A

S
olphin

Theory as an RPM
(BLOG syntax)

Types: Species, Disease

Predicates:
Eats(species, species) non-random
Has(species, disease) random

Dependency statements:
Has(s, d) ~ NoisyORAggCPDI[0.5 0.1]
({Has(s’, d) for species s’: Eats(s, s')});

Types: Species, Disease
Predicates:
Theory Eats(species, species) non-random
Has(species, disease) random
(RPM) Dependency statements:
Has(s, d) ~ NoisyORAggCPD[0.5 0.1]
l ({Has(s', d) for species s: Eats(s, s')});
L Giraffe
Structure e Eats(Lion, Giraffe),
Gazelle Eats(Lion, Gazelle),
Hyena Cheetah <4— | Eats(Cheetah, Gazelle),
\O Monkey Eats(Cheetah, Monkey)
l Gorilla
Relational
8838 o skeleton

Data Graffe 00000 2
Gazele OOOOO O
Monkey OOOOO 2
Gorla  OOOQOQQ -+ 7
Cheetah OO OOO ?
Lion 00000 ?
Hyena Q0000 ?

Reasoning with blank food webs

“Given that animal X has disease P, how likely is it that

ainimal Y does?”
r=0.74 r=0.92
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Reasoning with real species and two
property types

Reasoning with real species and two
property types
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Summary: ecological reasoning

* We can write down simple intuitive theories of ecology as
first-order probabilistic models (RPMs).

* Human property induction appears consistent with the use
of these theories.

* Theories which fit human inference best are also most
appropriate for the structure of the natural environment,
both in qualitative structure and quantitative parameter
values.

* No natural way of capturing this behavior with traditional
with modeling approaches based purely on logic or
statistical learning.

Outline

+ The traditional debate in cognitive science: logic
versus probability
— The case of connectionism

— Examples: knowledge about biology, social relations,
language, visual objects

* Models of human reasoning that integrate
probabilistic inference and logical representations
— Ecological reasoning
— Causal reasoning (Griffiths, Kemp, Goodman et al.)

+ Other directions

— Social reasoning, physical reasoning

“Backwards blocking”
(Sobel, Tenenbaum & Gopnik, 2004)
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A B AB Trial A Trial

— Two objects: A and B

— Trial 1: A B on detector — detector active

— Trial 2: A on detector — detector active

— 4-year-olds judge whether each object is a blicket
* A: ablicket (100% say yes)
* B: probably not a blicket (34% say yes)




A =1 if Contact(block A, detector), else 0 ‘m

All logically hypotheses

Id)= 2 P(4~ E|h))P(hy |d)

B =1 if Contact(block B, detector), else 0 h EH

E = 1 if Active(detector), else 0

“A is a blicket” !
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Theory-based hypothesis space

A = 1if Contact(block A, detector), else 0 Elll - i — |, N

B =1 if Contact(block B, detector), else 0
E = 1 if Active(detector), else 0

“A is a blicket”

P(ho) =(1 =g P(hy)=(1-q)q P(hy)=q(1-q) P(hy))=¢?

®® @ OIORENOIO

Theory as an RPM
(BLOG syntax)

Types: Block, Detector, Trial

Predicates:
Contact(block, detector, trial) non-random
Activates(block, detector) random
Active(detector, trial) random

Dependency statements:
Activates(b, d) ~ TabularCPDI[[(1-q) q]];
Active(d, t) ~ NoisyORAggCPDI[1 0]
({Contact(b, d, t) for block b: Activates(b, d)});
OR:
Active(d, t) ~ Exists Block b: Contact(b, d, t) and Activates(b, d);

P(E=1|4=0,B=0): 0 0 0 0
P(E=1|4=1,B=0): 0 0 1 1
P(E=1|4=0,B=1): 0 1 0 1
P(E=1|4=1,B=1): 0 1 1 1
Types: Block, Detector, Trial
Predicates:
Contact(block, detector, trial) non-random
Activates(block, detector) random
Active(detector, trial) random
ThCOI‘y Dependency statements:
(RPM) Activates(b, d) ~ TabularCPD[[q (1-q)]];
Active(d, t) ~ NoisyORAGgCPD[1 0]
l ({Contact(b, d, t) for block b: Activates(b, d)});

1 Activates(A, detector)?
! Activates(B, detector)? |

Structure ®® @ @ @ 4_' : ::
® b & & P

Skeleton
(unknown)
Contact(A, detector, t1)
Contact(B, detector, t1)
Data Active(detector, t1) Contact(A, detector, t2)

~Contact(B, detector, t2)
Active(detector, t2)

Manipulating plausibility
(n =12 per condition)

Model predictons (1/6) Model predictons (113) 1) Model

E—y ] 1 n 1 ] 1 a 1 a
P e e a

Intal After AB Atter A Iitial After AB After A Initial After AB Atter A it After AB After A nitial After AB Atter A
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Initial AB Trial A Trial

Inferences from ambiguous data
1. Pre-training phase: Blickets are rare . . . .

Ve
P - e e s = = =

P 24 Aoy Aoy aAov aow

II. Two trials: A B — detector, B C — detector

Y Y
N N
1071 i —tn
4 4 4 = ~
| |
A B C Trial 1 Trial 2

After each trial, adults judge the probability that each
object is a blicket.




Same domain theory generates hypothesis
space for 3 objects:

® © @ ©
+ Hypotheses: hogo = ® oo :
® © ®
hgo = hoor =

w3 8
wﬁ ®\Iﬁ

* Likelihoods: P(E=1|4, B, C, h) =1if4=1and 4 —E exists,

or B =1 and B— E exists,
or C =1 and C —F exists,

else 0.

» “Rare” condition: First observe 12 objects
on detector, of which 2 set it off.

9

-F'eup\em 20)
. &

s

70

6

5-

4

3

Al

0

Baseline After AB trial After AC trial

Rare condition:

A:
B:

Manipulating the priors of 4-year-olds
(Sobel, Tenenbaum & Gopnik, 2004)

1. Pre-training phase: Blickets are rare.
II. Backwards blocking phase:

) . . -
v
A B Trial 1 Trial 2

Common condition:
A: 100% say “a blicket”
B: 81% say “a blicket”

100% say “a blicket”
25% say “a blicket”

Ambiguous data with 4-year-olds

1. Pre-training phase: Blickets are rare.

II. Two trials: A B — detector, B C — detector

e la e la
1 1 1 ot el m
v v f ]
4 B C Trial 1 Trial 2
Final judgments:

A: 87% say “a blicket”
B or C: 56% say “a blicket”

Outline

The traditional debate in cognitive science: logic
versus probability

— The case of connectionism

— Examples: knowledge about biology, social relations,

language, visual objects

Models of human reasoning that integrate
probabilistic inference and logical representations
— Ecological reasoning

— Causal reasoning (Griffiths, Kemp, Goodman et al.)
Other directions

— Social reasoning, physical reasoning

Propositional Theory
(Deterministic)

+ Scenario with students, courses, profs

Dr. Pavlov teaches CS1 and CS120
Matt takes CS1
Judy takes CS1 and CS120

* Propositional theory

PavlovDemanding — CS1Hard PavlovDemanding — CS120Hard

CS1Hard — MattTired

CS1Hard — JudyTired
CS120Hard — JudyTired

-CS1Hard — MattGetsAInCS1
-CS1Hard — JudyGetsAInCS1
-CS120Hard — JudyGetsAInCS120

MattSmart A CS1Hard — MattGetsAInCS1
JudySmart A CS1Hard — JudyGetsAInCS1
JudySmart A CS120Hard — JudyGetsAInCS120

10



Social Reasoning

StudentGetsA

Social Reasoning

ProfDemanding

StudentGetsA

StudentTired

Probabilistic Theory
(Propositional)

PavlovDemanding

MT;fSe;SA JudyGetsA JudyGetsA
InCS1 InCS120

« Specific to particular scenario (who takes what, etc.)

* No generalization of knowledge across objects

First-Order Theory

* General theory:
V p V c[Teaches(p, c) A Demanding(p) — Hard(c)]
V sV c[Takes(s, c) » Hard(c) — Tired(s)]
V sV c[Takes(s, c) » Easy(c) — GetsA(s, c)]
V sV c[Takes(s, c) » Hard(c) A Smart(s) — GetsA(s, c)]

» Relational skeleton:

Teaches(Pavlov, CS1) Teaches(Pavlov, CS120)
Takes(Matt, CS1)
Takes(Judy, CS1) Takes(Judy, CS120)

» Compact, generalizes across scenarios and objects

* But deterministic

First-Order Probabilistic Model

Relational skeleton Relational skeleton
Prof: Paviov Model Prof: Peterson, Quirk
Course: CS$1, CS120 Course: Bio1, Bio120
Student: Matt, Judy Student: Mary, John

Teaches: (P, C1), (P, C120)

Teaches: (P, B1), (Q, B160)
Takes: (M, C1), (J, C1), (J, C120)

Takes: (M, B1), (J, B160)

N
€

@@@

RPM (BLOG syntax)

Types: Professor, Course, Student

Predicates:
TaughtBy(course) > professor  non-random
Takes(student, course) non-random
Demanding(professor) random
Smart(student) random
Hard(course) random
Tired(student) random
GetsA(student, course) random
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RPM (BLOG syntax)

Dependency statements:
Demanding(p) ~ TabularCPD[[0.8 0.2]];
Smart(s) ~ TabularCPD[[0.3 0.7]];
Hard(c) ~ TabularCPD[[0.6 0.4],
[0.10.9]]
(Demanding(TaughtBy(c)));
Tired(s) ~ CumGeomCPD[0.5]
(#TRUE({Hard(c) for course c: Takes(s, c)}));
GetsA(s, c) ~ TabularCPD[[0.5 0.5],
[0.10.9],
[0.90.1],
[0.70.3]]
(Hard(c), Smart(s));

Generative Process for
Aircraft Tracking

Sky Radar

BLOG Model for Aircraft Tracking

World -
#Aircraft ~ NumAircraftDistrib();
State(a, t)
if t = 0 then ~ InitState()
else ~ StateTransition(State(a, Pred(t)));

Observations
#Blip: (Source, Time) -> (a, t)
~ NumDetectionsDistrib (State(a, t));
#Blip: (Time) -> (t)
~ NumFalseAlarmsDistrib() ;
ApparentPos (r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsDistrib(State(Source(r), Time(r)));

Apparent motion

* Visual system parses ambiguous experience
into objects under several assumptions:
— Objects typically do not disappear and appear
spontaneously.
— Objects typically follow “simple” space-time
trajectories.
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Not so simple

* Parsing depends on
— inferences about occlusion and visibility.
— dynamic interactions among (potentially
invisible) objects.
— inferences about object shape, color, and other
static properties.
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Not so simple

* Parsing depends on
— inferences about occlusion and visibility.
— dynamic interactions among (potentially
invisible) objects.
— inferences about object shape, color, and other
static properties.
* Theory of objects must allow uncertainty in
how many objects are in the scene.
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(10 second pause)
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Looking time
studies of
infants’ theory
of objects

Steps 2:5 repeated

Screen introduced

Object 1 brought out

Object 1 returned

Object 2 brought out

Object 2 returned

ad

Expected outcome

Unexpected outcome
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Looking time

Screen introduced

studies of
infants’ theory = Obiect 1 brought out
of objects \

. Object 1 returned

4. Object 2 brought out

5. Object 2 returned

Steps 2-5 repeated

12 &
months @‘ g Expected outcome

E 5 Unexpected outcome

Looking time
studies of
infants’ theory
of objects

10
months

Screen introduced

Object 1 brought out

Object 1 returned

Object 2 brought out

Object 2 returned

Screen removed revealing:

Expected outcome

Unexpected outcome

Big open problems

¢ Use RPMs, BLOG, etc. to...

— Formalize intuitive social or physical
reasoning.

— Explain human inferences in social or physical
domains.

— Explain the differences between children’s
theories at different ages.

— Explain how children learn these theories.

— Elucidate core representational capacities of
human cognition.
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