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First-order probabilistic models
of human cognition

Josh Tenenbaum
MIT

Why logic + probability?

• Two complementary formalisms:
– Logic: a framework for knowledge representation.
– Probability: a framework for inductive inference.

• Why do we need to integrate them?
– To account for our knowledge about the structure of the

world
• its form and content.
• how it is used and acquired.

– To capture linguistic meaning and use.

Why logic + probability?

• To capture deep inductive biases

F: form

S: structure

D: data

mouse

squirrel

chimp

gorilla

mouse
squirrel

chimp
gorilla

F1
 

F2 F3 F4

Tree with species
at leaf nodes

Outline
• The traditional debate in cognitive science: logic

versus probability
– The case of connectionism
– Examples: knowledge about biology, social relations,

language, visual objects

• Models of human reasoning that integrate
probabilistic inference and logical representations
– Ecological reasoning
– Causal reasoning

• Other directions
– Social reasoning, physical reasoning

Movitations for connectionism

• Build models with more neural plausibility.
• Overcome the problems of symbolic

representations.
– Inference is too rigid and brittle.
– No general way to learn new representations.

Semantic networks
(Quillian, 1968)

• Useful for compression (memory)
• Useful for predicting properties of new objects.
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Reaction time tests of hierarchy Problems

• Typicality effects.
– “canary is a bird” faster than “chicken is a bird”.

• Violations of hierarchy for atypical items.
– “chicken is an animal” faster than “chicken is a

bird.”
• How could this knowledge representation be

learned in an unsupervised way?

(Rogers and McClelland, 2004)

An alternative architecture
Training set

Learned distributed
representation

Problems
• Does not actually capture generalization

behavior very well.
– Correlations: r < 0.7 on basic property tasks.
– Inductive bias is too weak

• Missing crucial abstract knowledge about
the domain.
– e.g., ISA(x,y) <= ISA(x,z) & ISA(z,y)

• Can we combine the best of logical
representation and statistical learning and
inference?
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• A family tree structure:

Learning family relationships
(Hinton, 1986)

father(Christopher, Arthur)
father(Christopher, Victoria)
father(Andrew, James)
father(Andrew, Jennifer)
father(James, Colin)
father(James, Charlotte)

mother(Penelope, Arthur)
mother(Penelope, Victoria)
mother(Christine, James)
mother(Christine, Jennifer)
mother(Victoria, Colin)
mother(Victoria, Charlotte)

husband(Christopher, Penelope)
husband(Andrew, Christine)
husband(Arthur, Margaret)
husband(James, Victoria)
husband(Charles, Jennifer)

wife(Penelope, Christopher)
wife(Christine, Andrew)
wife(Margaret, Arthur)
wife(Victoria, James)
wife(Jennifer, Charles)

son(Arthur, Christopher)
son(Arthur, Penelope)
son(James, Andrew)
son(James, Christine)
son(Colin, Victoria)
son(Colin, James)

daughter(Victoria, Christopher)
daughter(Victoria, Penelope)
daughter(Jennifer, Andrew)
daughter(Jennifer, Christine)
daughter(Charlotte, Victoria)
daughter(Charlotte, James)

brother(Arthur, Victoria)
brother(James, Jennifer)
brother(Colin, Charlotte)

sister(Victoria, Arthur)
sister(Jennifer, James)
sister(Charlotte, Colin)

uncle(Arthur, Colin)
uncle(Charles, Colin)
uncle(Arthur, Charlotte)
uncle(Charles, Charlotte)

aunt(Jennifer, Colin)
aunt(Margaret, Colin)
aunt(Jennifer, Charlotte)
aunt(Margaret, Charlotte)

nephew(Colin, Arthur)
nephew(Colin, Jennifer)
nephew(Colin, Margaret)
nephew(Colin, Charles)

niece(Charlotte, Arthur)
niece(Charlotte, Jennifer)
niece(Charlotte, Margaret)
niece(Charlotte, Charles)

The family relations dataset

• Network architecture:

Learning family relationships
(Hinton, 1986)

Learning family relationships
(Hinton, 1986)

• 112 possible facts of the form: 
<person1, relation, person2>
<Christopher, father-of, Victoria>,
<Colin, son-of, Victoria>,
<Jennifer, aunt-of, Colin> . . .

   

• Trained on 108 examples, network usually
generalizes well to the other 4.
– Doesn’t work well with less training.

Linear Relational Embedding
(Paccanaro and Hinton, 2002)

• Relatively minor improvement, from 4 to 8
or 12 generalization trials….

A more intuitive representation

• Relations: spouse (“=“), parent (solid line)
• Attribute: male or female (type of name)
• Define other relations in terms of basic relations

spouse, parent, and the attributes male, female.
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spouse(Christopher,Penelope)
spouse(Andrew,Christine)
spouse(Arthur,Margaret)
spouse(James,Victoria)
spouse(Charles,Jennifer)

female(Penelope)
female(Christine)
female(Margaret)
female(Victoria)
female(Jennifer)
female(Charlotte)
NOT female(Colin)

parent(Penelope, Arthur)
parent(Penelope, Victoria)
parent(Christine, James)
parent(Christine, Jennifer)
parent(Victoria, Colin)
parent(Victoria, Charlotte)

spouse(x,y) <=> spouse(y,x)
NOT female(x) <= spouse(x,y) AND female(y)
parent(x,y) <= spouse(x,z) AND parent(z,y)

father(x,y) <=> parent(x,y) AND NOT female(x)
mother(x,y) <=> parent(x,y) AND female(x)
husband(x,y) <=> spouse(x,y) AND NOT female(x)
wife(x,y) <=> spouse(x,y) AND female(x)
son(x,y) <=> parent(y,x) AND NOT female(x)
daughter(x,y) <=> parent(y,x) AND female(x)
sibling(x,y) <=> parent(z,x) AND parent(z,y) AND ~(x=y)
brother(x,y) <=> sibling(x,y) AND NOT female(x)
sister(x,y) <=>sibling(x,y) AND female(x)
uncle(x,y) <=> (parent(z,y) AND brother(x,z))
                            OR (aunt(z,y) AND spouse(x,z))
aunt(x,y) <=> (parent(z,y) AND sister(x,z)) OR
                            OR (uncle(z,y) AND spouse(x,z))
nephew(x,y) <=> (parent(z,x) AND sibling(y,z) AND NOT female(x))
                            OR (nephew(x,z) AND spouse(y,z))
niece(x,y) <=> (parent(z,x) AND sibling(y,z) AND female(x))
                            OR (niece(x,z) AND spouse(y,z))

Abstract theory of kinship

Minimal family description

Properties of this representation

• Useful for compression (memory)

spouse(Christopher,Penelope)
spouse(Andrew,Christine)
spouse(Arthur,Margaret)
spouse(James,Victoria)
spouse(Charles,Jennifer)

female(Penelope)
female(Christine)
female(Margaret)
female(Victoria)
female(Jennifer)
female(Charlotte)
NOT female(Colin)

parent(Penelope, Arthur)
parent(Penelope, Victoria)
parent(Christine, James)
parent(Christine, Jennifer)
parent(Victoria, Colin)
parent(Victoria, Charlotte)

spouse(x,y) <=> spouse(y,x)
NOT female(x) <= spouse(x,y) AND female(y)
parent(x,y) <= spouse(x,z) AND parent(z,y)

father(x,y) <=> parent(x,y) AND NOT female(x)
mother(x,y) <=> parent(x,y) AND female(x)
husband(x,y) <=> spouse(x,y) AND NOT female(x)
wife(x,y) <=> spouse(x,y) AND female(x)
son(x,y) <=> parent(y,x) AND NOT female(x)
daughter(x,y) <=> parent(y,x) AND female(x)
sibling(x,y) <=> parent(z,x) AND parent(z,y) AND ~(x=y)
brother(x,y) <=> sibling(x,y) AND NOT female(x)
sister(x,y) <=>sibling(x,y) AND female(x)
uncle(x,y) <=> (parent(z,y) AND brother(x,z))
                            OR (aunt(z,y) AND spouse(x,z))
aunt(x,y) <=> (parent(z,y) AND sister(x,z)) OR
                            OR (uncle(z,y) AND spouse(x,z))
nephew(x,y) <=> (parent(z,x) AND sibling(y,z) AND NOT female(x))
                            OR (nephew(x,z) AND spouse(y,z))
niece(x,y) <=> (parent(z,x) AND sibling(y,z) AND female(x))
                            OR (niece(x,z) AND spouse(y,z))

Abstract theory of kinship

Minimal family description

Properties of this representation

• Useful for compression (memory)
• Useful for predicting unknown relations

– Margaret is Arthur’s wife.  What else do we
know about her?

• Problem: Consider a new person, Boris.
– Is the mother of Boris’s father his grandmother?
– Is the mother of Boris’s sister his mother?
– Is the daughter of Boris’s sister his grandfather?
– Is the son of Boris’s sister his son?

Reasoning about kinship
• Problem: Consider a new person, Boris.

– Is the mother of Boris’s father his grandmother?
– Is the mother of Boris’s sister his mother?
– Is the daughter of Boris’s sister his grandfather?
– Is the son of Boris’s sister his son? (Note: Boris and his

family were stranded on a desert island when he was a
young boy.)

• What this tells us about human knowledge
– Depends on abstract knowledge about relations.
– Abstractions must be probabilistic.
– Knowledge representation and efficient inference on the

scale of common-sense reasoning is not going to be easy.

Reasoning about kinship
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Elman (1990): Simple
recurrent network (SRN)
trained to predict the next
word in a sentence.

Language

Hierarchical clustering on hidden
layer activation vectors.

Language

Elman (1990): Simple
recurrent network (SRN)
trained to predict the next
word in a sentence.

Semantics with predicate logic
• Bill loves Mary.

– loves(Bill,Mary)

• Bill thinks that John loves Mary.
– thinks(Bill,loves(John,Mary)

• Bill thinks that all guys love Mary.
– thinks(Bill,f.a. x guy(x) loves(x,Mary))

• Mary knows that Bill thinks all guys love her.
– knows(Mary,thinks(Bill,f.a. x guy(x) loves(x,Mary)))

• Bill is afraid that Mary knows that he thinks all guys love
her.
– afraid(Bill,knows(Mary,thinks(Bill, f.a.x guy(x) loves(x, Mary))))

• Mary wonders if Bill realizes that she knows he thinks all
guys love her….

If a burkle tumps that one of its gazzers will
glip one of its rupples, then the burkle will
prin that gazzer.

Semantics with predicate logic

Outline

• The traditional debate in cognitive science: logic
versus probability
– The case of connectionism
– Examples: knowledge about biology, social relations,

language, visual objects

• Models of human reasoning that integrate
probabilistic inference and logical representations
– Ecological reasoning (Shafto, Kemp, et al.)
– Causal reasoning

• Other directions
– Social reasoning, physical reasoning

“Similarity”, “Typicality”,
“Diversity”

Gorillas have T9 hormones.
Seals have T9 hormones.
Squirrels have T9 hormones. 

Horses have T9 hormones.

Gorillas have T9 hormones.
Chimps have T9 hormones.
Monkeys have T9 hormones.
Baboons have T9 hormones. 

Horses have T9 hormones.

Gorillas have T9 hormones.
Seals have T9 hormones.
Squirrels have T9 hormones.

Flies have T9 hormones.

Property induction
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Beyond similarity-based induction
• Reasoning

based on
dimensional
thresholds:
(Smith et al., 1993)

• Reasoning
based on causal
relations:
(Medin et al., 2004;
Coley & Shafto,
2003)

Poodles can bite through wire. 

German shepherds can bite through wire.

Dobermans can bite through wire. 

German shepherds can bite through wire.

Salmon carry E. Spirus bacteria. 

Grizzly bears carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Salmon carry E. Spirus bacteria.

Different sources for priors

Chimps have T9 hormones.

Gorillas have T9 hormones.

Poodles can bite through wire.

Dobermans can bite through wire.

Salmon carry E. Spirus bacteria.

Grizzly bears carry E. Spirus bacteria.

Taxonomic similarity

Strength ordering

Food web relations

Property type
   “has T9 hormones”      “can bite through wire”      “carry E. Spirus bacteria”

Theory Structure  
    taxonomic tree              directed chain                directed network
 + diffusion process       + drift process                + noisy transmission

Class C

Class A
Class D

Class E

Class G

Class F

Class BClass C

Class A

Class D

Class E

Class G

Class F

Class B

Class A
Class B
Class C
Class D
Class E
Class F
Class G

. . . . . . . . .

Class C

Class G
Class F
Class E
Class D

Class B
Class A

Properties
Hyena

Lion
Giraffe

Gazelle

Monkey

Gorilla

Cheetah

Gazelles carry E. Spirus bacteria.

Lions carry E. Spirus bacteria.

Hyena

Lion
Giraffe

Gazelle

Monkey

Gorilla

Cheetah

Gazelles carry E. Spirus bacteria.

Lions carry E. Spirus bacteria.

0.5

0.5

0.5

Nois
y-O

R

0.1

Background

“noisy
 transmission
 process”

Hyena

Lion
Giraffe

Gazelle

Monkey

Gorilla

Cheetah

Monkeys carry Gripp’s parasite.

Hyenas carry Gripp’s parasite.

0.5
0.5

0.5

N
oi

sy
-O

R

0.1

Background

0.5

0.50.5

“noisy
 transmission
 process”
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Herring carry E. Spirus bacteria.

Sand sharks carry E. Spirus bacteria.

Human Kelp

Dolphin

Sand shark

HerringTunaMako shark

Tuna carry E. Spirus bacteria.

Mako sharks carry E. Spirus bacteria.

Human Kelp

Dolphin

Sand shark

HerringTunaMako shark

“noisy
 transmission
 process”

0.5

0.1

Background

0.5

Theory as an RPM
(BLOG syntax)

Types: Species, Disease
Predicates:

Eats(species, species)              non-random
Has(species, disease) random

Dependency statements:
 Has(s, d)  ~  NoisyORAggCPD[0.5 0.1]
                          ({Has(s’, d) for species s’: Eats(s, s’)});

Types: Species, Disease
Predicates:

Eats(species, species)             non-random
Has(species, disease) random

Dependency statements:
 Has(s, d)  ~  NoisyORAggCPD[0.5 0.1]
                          ({Has(s’, d) for species s’: Eats(s, s’)});

Giraffe
Gazelle
Monkey
Gorilla
Cheetah
Lion
Hyena

. . .

D
1

D
2

D
3

D
4

D
5

D
’

Theory
 (RPM)

Structure

Data ?
 
?
?
?
?
?

Eats(Lion, Giraffe),
Eats(Lion, Gazelle),
Eats(Cheetah, Gazelle),
Eats(Cheetah, Monkey)
…

Relational 
skeleton

Reasoning with blank food webs
“Given that animal X has disease P, how likely is it that
ainimal Y does?”

Fitting parameters of the theory

0.1

 0.5

x
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Reasoning with real species and two
property types

Bi
ol
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Tree Web

Reasoning with real species and two
property types

Bi
ol

og
ic

al
pr

op
er

ty
D

is
ea

se
pr

op
er

ty

Tree Web

Fitting parameters of the theory

Experiment 1 Experiment 2

Summary: ecological reasoning

• We can write down simple intuitive theories of ecology as
first-order probabilistic models (RPMs).

• Human property induction appears consistent with the use
of these theories.

• Theories which fit human inference best are also most
appropriate for the structure of the natural environment,
both in qualitative structure and quantitative parameter
values.

• No natural way of capturing this behavior with traditional
with modeling approaches based purely on logic or
statistical learning.

Outline

• The traditional debate in cognitive science: logic
versus probability
– The case of connectionism
– Examples: knowledge about biology, social relations,

language, visual objects

• Models of human reasoning that integrate
probabilistic inference and logical representations
– Ecological reasoning
– Causal reasoning (Griffiths, Kemp, Goodman et al.)

• Other directions
– Social reasoning, physical reasoning

– Two objects: A and B
– Trial 1: A B on detector – detector active
– Trial 2: A on detector – detector active
– 4-year-olds judge whether each object is a blicket

• A: a blicket (100% say yes)
• B: probably not a blicket (34% say yes)

“Backwards blocking”
(Sobel, Tenenbaum & Gopnik, 2004)

AB Trial A TrialA B
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All logically hypotheses

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

E

BA

A = 1 if Contact(block A, detector), else 0
B = 1 if Contact(block B, detector), else 0
E = 1 if Active(detector), else 0 “A is a blicket”

∑
∈

→=→
Hjh

jj dhPhEAPdEAP )|()|()|(

Theory-based hypothesis space

P(E=1 | A=0, B=0):     0                      0                              0                              0 
P(E=1 | A=1, B=0):     0                      0                              1                              1
P(E=1 | A=0, B=1):     0                      1                              0                              1
P(E=1 | A=1, B=1):     0                      1                              1                              1

E

BA

E

BA

E

BA

E

BA

P(h00) = (1 – q)2 P(h10) = q(1 – q)P(h01) = (1 – q) q P(h11) = q2

A = 1 if Contact(block A, detector), else 0
B = 1 if Contact(block B, detector), else 0
E = 1 if Active(detector), else 0 “A is a blicket”

Theory as an RPM
(BLOG syntax)

Types: Block, Detector, Trial
Predicates:

Contact(block, detector, trial) non-random
Activates(block, detector) random
Active(detector, trial) random

Dependency statements:
 Activates(b, d)  ~  TabularCPD[[(1-q) q]];
 Active(d, t)  ~  NoisyORAggCPD[1 0]
                         ({Contact(b, d, t) for block b: Activates(b, d)});
   OR:
 Active(d, t)  ~  Exists Block b: Contact(b, d, t) and Activates(b, d);

Types: Block, Detector, Trial
Predicates:

Contact(block, detector, trial) non-random
Activates(block, detector) random
Active(detector, trial) random

Dependency statements:
 Activates(b, d)  ~  TabularCPD[[q (1-q)]];
 Active(d, t)  ~  NoisyORAggCPD[1 0]
                         ({Contact(b, d, t) for block b: Activates(b, d)});

Theory
 (RPM)

Structure

Data

Activates(A, detector)?
Activates(B, detector)?

Relational 
Skeleton
(unknown)

E

BA

E

BA

E

BA

Contact(A, detector, t1)
Contact(B, detector, t1)
Active(detector, t1) Contact(A, detector, t2)

~Contact(B, detector, t2)
Active(detector, t2)

E

BA

Manipulating plausibility
(n = 12 per condition)

AB Trial A TrialInitial
After each trial, adults judge the probability that each

object is a blicket.

Trial 1 Trial 2BA

I. Pre-training phase: Blickets are rare . . . . 

II. Two trials: A B       detector,   B C      detector 

Inferences from ambiguous data

C
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• Hypotheses:          h000 =                          h100 =

          h010 =                          h001 =

          h110 =                          h011 =

          h101 =                          h111 =

• Likelihoods:

E

A B C

E

A B C

E

A B C

E

A B C

E

A B C

E

A B C

E

A B C

E

A B C

if A = 1 and A      E exists,
or B = 1 and B      E exists,
or C = 1 and C      E exists,
else 0.

P(E=1| A, B, C; h) = 1

Same domain theory generates hypothesis
space for 3 objects:

• “Rare” condition: First observe 12 objects
on detector, of which 2 set it off.

Trial 1 Trial 2BA

II. Backwards blocking phase: 

Manipulating the priors of 4-year-olds
(Sobel, Tenenbaum & Gopnik, 2004)

I. Pre-training phase: Blickets are rare.

Rare condition:
A: 100% say “a blicket”
B: 25% say “a blicket”

Common condition:
A: 100% say “a blicket”
B: 81% say “a blicket”

Trial 1 Trial 2BA

I. Pre-training phase: Blickets are rare.

II. Two trials: A B       detector,   B C      detector 

Ambiguous data with 4-year-olds

C

   Final judgments:
        A: 87% say “a blicket”
B or C: 56% say “a blicket”

Outline

• The traditional debate in cognitive science: logic
versus probability
– The case of connectionism
– Examples: knowledge about biology, social relations,

language, visual objects

• Models of human reasoning that integrate
probabilistic inference and logical representations
– Ecological reasoning
– Causal reasoning (Griffiths, Kemp, Goodman et al.)

• Other directions
– Social reasoning, physical reasoning

Propositional Theory
(Deterministic)

• Scenario with students, courses, profs

• Propositional theory

Dr. Pavlov teaches CS1 and CS120
Matt takes CS1
Judy takes CS1 and CS120

PavlovDemanding → CS1Hard PavlovDemanding → CS120Hard

MattSmart ∧ CS1Hard → MattGetsAInCS1

¬CS1Hard → MattGetsAInCS1

JudySmart ∧ CS1Hard → JudyGetsAInCS1

¬CS1Hard → JudyGetsAInCS1

JudySmart ∧ CS120Hard → JudyGetsAInCS120

¬CS120Hard → JudyGetsAInCS120

CS1Hard → MattTired

CS1Hard → JudyTired
CS120Hard → JudyTired
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Social Reasoning

CourseHard

StudentGetsA

StudentSmart

Social Reasoning

ProfDemanding

CourseHard

StudentGetsA

StudentSmart

StudentTired

Probabilistic Theory
(Propositional)

PavlovDemanding

CS1Hard CS120Hard

MattGetsA
InCS1 JudyGetsA

InCS1
JudyGetsA
InCS120

MattSmart JudySmart

• Specific to particular scenario (who takes what, etc.)

• No generalization of knowledge across objects

JudyTired
MattTired

First-Order Theory

• General theory:

• Relational skeleton:

∀ p ∀ c [Teaches(p, c) ∧ Demanding(p) → Hard(c)]

∀ s ∀ c [Takes(s, c) ∧ Easy(c) → GetsA(s, c)]

∀ s ∀ c [Takes(s, c) ∧ Hard(c) ∧ Smart(s) → GetsA(s, c)]

Teaches(Pavlov, CS1) Teaches(Pavlov, CS120)
Takes(Matt, CS1)
Takes(Judy, CS1) Takes(Judy, CS120)

• Compact, generalizes across scenarios and objects

• But deterministic

∀ s ∀ c [Takes(s, c) ∧ Hard(c) → Tired(s)]

First-Order Probabilistic Model

Model

D(P)

H(C120)H(C1)

T(M)

S(M)

A(M, C1)

T(J)

S(J)

A(J, C1) A(J, C120)

Prof: Pavlov
Course: CS1, CS120
Student: Matt, Judy

Teaches: (P, C1), (P, C120)
Takes: (M, C1), (J, C1), (J, C120)

Prof: Peterson, Quirk
Course: Bio1, Bio120
Student: Mary, John

Teaches: (P, B1), (Q, B160)
Takes: (M, B1), (J, B160)

Relational skeleton Relational skeleton

D(P)

H(B160)H(B1)

T(M)

S(M)

A(M, B1)

T(J)

S(J)

A(J, B160)

D(Q)

RPM (BLOG syntax)
Types: Professor, Course, Student
Predicates:

TaughtBy(course)       professor non-random
Takes(student, course) non-random
Demanding(professor) random
Smart(student) random
Hard(course) random
Tired(student) random
GetsA(student, course) random
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RPM (BLOG syntax)
Dependency statements:

Demanding(p)  ~  TabularCPD[[0.8 0.2]];
Smart(s)  ~ TabularCPD[[0.3 0.7]];
Hard(c)  ~  TabularCPD[[0.6 0.4],
                                       [0.1 0.9]]
                                       (Demanding(TaughtBy(c)));
Tired(s)  ~  CumGeomCPD[0.5]
                      (#TRUE({Hard(c) for course c: Takes(s, c)}));
GetsA(s, c)  ~  TabularCPD[[0.5 0.5],
                                             [0.1 0.9],
                                             [0.9 0.1],
                                             [0.7 0.3]]
                                            (Hard(c), Smart(s));

Generative Process for
Aircraft Tracking

Sky Radar

BLOG Model for Aircraft Tracking

…
#Aircraft ~ NumAircraftDistrib();

State(a, t)
if t = 0 then ~ InitState()
else ~ StateTransition(State(a, Pred(t)));

#Blip: (Source, Time) -> (a, t)
~ NumDetectionsDistrib(State(a, t));

#Blip: (Time) -> (t)
~ NumFalseAlarmsDistrib();

ApparentPos(r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsDistrib(State(Source(r), Time(r)));

World

Observations

Apparent motion

• Visual system parses ambiguous experience
into objects under several assumptions:
– Objects typically do not disappear and appear

spontaneously.
– Objects typically follow “simple” space-time

trajectories.



13



14

Not so simple

• Parsing depends on
– inferences about occlusion and visibility.
– dynamic interactions among (potentially

invisible) objects.
– inferences about object shape, color, and other

static properties.
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Not so simple

• Parsing depends on
– inferences about occlusion and visibility.
– dynamic interactions among (potentially

invisible) objects.
– inferences about object shape, color, and other

static properties.
• Theory of objects must allow uncertainty in

how many objects are in the scene.
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(10 second pause)
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Looking time
studies of 
infants’ theory
of objects
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12
months

Looking time
studies of 
infants’ theory
of objects

10
months

Looking time
studies of 
infants’ theory
of objects

Big open problems

• Use RPMs, BLOG, etc. to…
– Formalize intuitive social or physical

reasoning.
– Explain human inferences in social or physical

domains.
– Explain the differences between children’s

theories at different ages.
– Explain how children learn these theories.
– Elucidate core representational capacities of

human cognition.


