
Non-parametric Bayesian Methods

Zoubin Ghahramani

Department of Engineering
University of Cambridge, UK

Machine Learning Department
Carnegie Mellon University, USA

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

IPAM Probabilistic Models of Cognition
Lectures July 2007



Model Comparison: two examples

e.g. selecting m, the number of Gaussians in

a mixture model
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e.g. selecting m the order of a polynomial in

a nonlinear regression model

P (m|D) =
P (D|m)P (m)

P (D)
, P (D|m) =

∫
P (D|θ, m)P (θ|m) dθ

A possible procedure:

1. place a prior on m, P (m)
2. given data, use Bayes rule to infer P (m|D)

What is the problem with this procedure?



Real data are complicated

Example 1:
You are trying to model people’s patterns of movie preferences. You believe there
are “clusters” of people, so you use a mixture model...

• How should you pick P (m), your prior over how many clusters there are? teenagers,

people who like action movies, people who like romantic comedies, people who like horror movies,

people who like movies with Marlon Brando, people who like action movies but not science

fiction, etc etc...

• Even if there are a few well defined clusters, they are unlikely to be Gaussian in
the variables you measure. To model complicated distributions you might need
many Gaussians for each cluster.

• Conclusion: any small finite number seems unreasonable



Real data are complicated

Example 2:
You are trying to model crop yield as a function of rainfall, amount of sunshine,
amount of fertilizer, etc. You believe this relationship is nonlinear, so you decide to
model it with a polynomial.

• How should you pick P (m), your prior over the order of the polynomial?

• Do you believe the relationship could be linear? quadratic? cubic? What about
the interactions between input variabes?

• Conclusion: any order polynomial seems unreasonable.

How do we adequately capture our beliefs?



Non-parametric Bayesian Models

• Bayesian methods are most powerful when your prior adequately captures your
beliefs.

• Inflexible models (e.g. mixture of 5 Gaussians, 4th order polynomial) yield
unreasonable inferences.

• Non-parametric models are a way of getting very flexible models.

• Many can be derived by starting with a finite parametric model and taking the
limit as number of parameters →∞

• Non-parametric models can automatically infer an adequate model
size/complexity from the data, without needing to explicitly do Bayesian model
comparison.1

1Even if you believe there are infinitely many possible clusters, you can still infer how many clusters are represented
in a finite set of n data points.



Outline

• Introduction

• Dirichlet Processes (DP), different representations:

– Chinese Restaurant Process (CRP)
– Urn Model
– Stick Breaking Representation
– Infinite limit of mixture models and Dirichlet process mixtures (DPM)



Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex.

Let p be a K-dimensional vector s.t. ∀j : pj ≥ 0 and
∑K

j=1 pj = 1

P (p|α) = Dir(α1, . . . , αK) def=
Γ(
∑

j αj)∏
j Γ(αj)

K∏
j=1

p
αj−1

j

where the first term is a normalization constant2 and E(pj) = αj/(
∑

k αk)

The Dirichlet is conjugate to the multinomial distribution. Let

c|p ∼ Multinomial(·|p)

That is, P (c = j|p) = pj. Then the posterior is also Dirichlet:

P (p|c = j, α) =
P (c = j|p)P (p|α)

P (c = j|α)
= Dir(α′)

where α′j = αj + 1, and ∀` 6= j : α′` = α`

2Γ(x) = (x− 1)Γ(x− 1) =
R ∞
0 tx−1e−tdt. For integer n, Γ(n) = (n− 1)!



Dirichlet Distributions

Examples of Dirichlet distributions over p = (p1, p2, p3) which can be plotted in 2D
since p3 = 1− p1 − p2:



Dirichlet Processes

• Gaussian processes define a distribution over functions

f ∼ GP(·|µ, c)

where µ is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution over distributions (a measure on measures)

G ∼ DP(·|G0, α)

where α > 0 is a scaling parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Dirichlet Process

Let Θ be a measurable space, G0 be a probability measure on Θ, and α a positive
real number.

For all (A1, . . . AK) finite partitions of Θ,

G ∼ DP(·|G0, α)

means that

(G(A1), . . . , G(AK)) ∼ Dir(αG0(A1), . . . , αG0(AK))

(Ferguson, 1973)



Dirichlet Process

G ∼ DP(·|G0, α) OK, but what does it look like?

Samples from a DP are discrete with probability one:

G(θ) =
∞∑

k=1

πkδθk
(θ)

where δθk
(·) is a Dirac delta at θk, and θk ∼ G0(·).

Note: E(G) = G0

As α→∞, G looks more like G0.



Dirichlet Process: Conjugacy

G ∼ DP(·|G0, α)

If the prior on G is a DP:
P (G) = DP(G|G0, α)

...and you observe θ...
P (θ|G) = G(θ)

...then the posterior is also a DP:

P (G|θ) = DP

(
α

α + 1
G0 +

1
α + 1

δθ, α + 1
)

Generalization for n observations:

P (G|θ1, . . . , θn) = DP

(
α

α + n
G0 +

1
α + n

n∑
i=1

δθi
, α + n

)

Analogous to Dirichlet being conjugate to multinomial observations.



Dirichlet Process
Blackwell and MacQueen’s (1973) urn representation

G ∼ DP(·|G0, α) and θ|G ∼ G(·)
Then

θn|θ1, . . . θn−1, G0, α ∼ α

n− 1 + α
G0(·) +

1
n− 1 + α

n−1∑
j=1

δθj
(·)

P (θn|θ1, . . . θn−1, G0, α) ∝
∫

dG

n∏
j=1

P (θj|G)P (G|G0, α)

The model exhibits a “clustering effect”.



Chinese Restaurant Process (CRP)

This shows the clustering effect explicitly.

Restaurant has infinitely many tables k = 1, . . ..

Customers are indexed by i = 1, . . ., with values φi

Tables have values θk drawn from G0

K = total number of occupied tables so far.

n = total number of customers so far.

nk = number of customers seated at table k

Generating from a CRP:
customer 1 enters the restaurant and sits at table 1.
φ1 = θ1 where θ1 ∼ G0, K = 1, n = 1, n1 = 1
for n = 2, . . .,

customer n sits at table

{
k with prob nk

n−1+α for k = 1 . . .K

K + 1 with prob α
n−1+α (new table)

if new table was chosen then K ← K + 1, θK+1 ∼ G0 endif
set φn to θk of the table k that customer n sat at; set nk ← nk + 1

endfor

Clustering effect: New students entering a school join clubs in proportion to how
popular those clubs already are (∝ nk). With some probability (proportional to α),
a new student starts a new club.

(Aldous, 1985)



Chinese Restaurant Process

θ1

φ1 φ3φ5 θ2 θ3 θ4

φ2 φ6φ4
. . .

Generating from a CRP:
customer 1 enters the restaurant and sits at table 1.
φ1 = θ1 where θ1 ∼ G0, K = 1, n = 1, n1 = 1
for n = 2, . . .,

customer n sits at table

{
k with prob nk

n−1+α for k = 1 . . .K

K + 1 with prob α
n−1+α (new table)

if new table was chosen then K ← K + 1, θK+1 ∼ G0 endif
set φn to θk of the table k that customer n sat at; set nk ← nk + 1

endfor

The resulting conditional distribution over φn:

φn|φ1, . . . , φn−1, G0, α ∼
α

n− 1 + α
G0(·) +

K∑
k=1

nk

n− 1 + α
δθk

(·)



Relationship between CRPs and DPs

• DP is a distribution over distributions

• DP results in discrete distributions, so if you draw n points you are likely to get
repeated values

• A DP induces a partitioning of the n points
e.g. (1 3 4) (2 5)⇔ φ1 = φ3 = φ4 6= φ2 = φ5

• CRP is the corresponding distribution over partitions



Dirichlet Processes: Stick Breaking Representation

G ∼ DP(·|G0, α)

Samples G from a DP can be

represented as follows:

G(·) =

∞X
k=1

πkδθk
(·)

where θk ∼ G0(·),
P∞

k=1 πk = 1,

πk = βk

k−1Y
j=1

(1− βj)

and βk ∼ Beta(·|1, α)
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Dirichlet Processes: Stick Breaking Representation

G ∼ DP(·|G0, α)

Samples G from a DP can be

represented as follows:

G(·) =

∞X
k=1

πkδθk
(·)

where θk ∼ G0(·),
P∞

k=1 πk = 1,

πk = βk

k−1Y
j=1

(1− βj)

and βk ∼ Beta(·|1, α)



Other Stick Breaking Processes

• Dirichlet Process (Sethuraman, 1994):

βk ∼ Beta(1, α)

• Beta Two-parameter Process (Ishwaran and Zarepour, 2000):

βk ∼ Beta(a, b)

• Pitman-Yor Process (aka two-parameter Poisson-Dirichlet Process; Pitman & Yor
(1997)):

βk ∼ Beta(1− a, b + ka)

Note: mean of a Beta(a, b) is a/(a + b)



Dirichlet Processes: Big Picture

There are many ways to derive the Dirichlet Process:

• Dirichlet distribution

• Urn model

• Chinese restaurant process

• Stick breaking

• Gamma process3

3I didn’t talk about this one



Dirichlet Process Mixtures

DPs are discrete with probability one, so they are not suitable for use as a prior on
continuous densities.

In a Dirichlet Process Mixture, we draw the parameters
of a mixture model from a draw from a DP:

G ∼ DP(·|G0, α)

θi ∼ G(·)
xi ∼ p(·|θi)

G

xi

θi

G0α

n

For example, if p(·|θ) is a Gaussian density with parameters θ, then we have a
Dirichlet Process Mixture of Gaussians

Of course, p(·|θ) could be any density.

We can derive DPMs from finite mixture models (Neal)...



Samples from a Dirichlet Process Mixture of Gaussians
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Notice that more structure (clusters) appear as you draw more points.
(figure inspired by Neal)



Dirichlet Process Mixtures (Infinite Mixtures)

Consider using a finite mixture of K components to model a data set
D = {x(1), . . . ,x(n)}

p(x(i)|θ) =
K∑

j=1

πj pj(x(i)|θj)

=
K∑

j=1

P (s(i) = j|π) pj(x(i)|θj, s
(i) = j)

Distribution of indicators s = (s(1), . . . , s(n)) given π is multinomial

P (s(1), . . . , s(n)|π) =
K∏

j=1

π
nj

j , nj
def=

n∑
i=1

δ(s(i), j) .

Assume mixing proportions π have a given symmetric conjugate Dirichlet prior

p(π|α) =
Γ(α)

Γ(α/K)K

K∏
j=1

π
α/K−1
j



Dirichlet Process Mixtures (Infinite Mixtures) - II

Distribution of indicators s = (s(1), . . . , s(n)) given π is multinomial

P (s(1), . . . , s(n)|π) =
K∏

j=1

π
nj

j , nj
def=

n∑
i=1

δ(s(i), j) .

Mixing proportions π have a symmetric conjugate Dirichlet prior

p(π|α) =
Γ(α)

Γ(α/K)K

K∏
j=1

π
α/K−1
j

Integrating out the mixing proportions, π, we obtain

P (s(1), . . . , s(n)|α) =
∫

dπ P (s|π)P (π|α) =
Γ(α)

Γ(n + α)

K∏
j=1

Γ(nj + α/K)
Γ(α/K)



Dirichlet Process Mixtures (Infinite Mixtures) - III

Starting from P (s|α) =
Γ(α)

Γ(n + α)

K∏
j=1

Γ(nj + α/K)
Γ(α/K)

Conditional Probabilities: Finite K

P (s(i) = j|s−i, α) =
n−i,j + α/K

n− 1 + α

where s−i denotes all indices except i, and n−i,j
def=
∑

` 6=i δ(s
(`), j)

DP: more populous classes are more more likely to be joined

Conditional Probabilities: Infinite K
Taking the limit as K →∞ yields the conditionals

P (s(i) = j|s−i, α) =


n−i,j

n−1+α j represented

α
n−1+α all j not represented

Left over mass, α, ⇒ countably infinite number of indicator settings.
Gibbs sampling from posterior of indicators is often easy!



Approximate Inference in DPMs

• Gibbs sampling (e.g. Escobar and West, 1995; Neal, 2000; Rasmussen, 2000)

• Variational approximation (Blei and Jordan, 2005)

• Expectation propagation (Minka and Ghahramani, 2003)

• Hierarchical clustering (Heller and Ghahramani, 2005)



Conclusions

• We need flexible priors so that our Bayesian models are not based on unreasonable
assumptions. Non-parametric models provide a way of defining flexible models.
• Many non-parametric models can be derived by starting from finite parametric

models and taking the limit as the number of parameters goes to infinity.
• We’ve reviewed Dirichlet processes which can be used as a basis for defining

non-parametric models.
• There are many open questions:

– theoretical issues (e.g. consistency)
– new models
– applications
– efficient samplers
– approximate inference methods

• More information in my UAI 2005 tutorial.

http://learning.eng.cam.ac.uk/zoubin

Thanks for your patience!



Appendix



Hierarchical Dirichlet Processes (HDP)

Assume you have data which is divided into J groups.

You assume there are clusters within each group, but you also believe these clusters
are shared between groups (i.e. data points in different groups can belong to the
same cluster).

In an HDP there is a common DP:

G0|H, γ ∼ DP(·|H, γ)

Which forms the base measure for a draw from a
DP within each group

Gj|G0, α ∼ DP(·|G0, α)

G0

xji

H

nj

α

γ

Gj

φji

J



Infinite Hidden Markov Models (skip)

Can be derived from the HDP framework

In an HMM with K states, the transition
matrix has K ×K elements.

We want to let K →∞

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

st

st-1

1 K
1

K

k

πk(.) 

β|γ ∼ Stick(·|γ) (base distribution over states)
πk|α, β ∼ DP(·|α, β) (transition parameters for state k = 1, . . . )
θk|H ∼ H(·) (emission parameters for state k = 1, . . . )

st|st−1, (πk)∞k=1 ∼ πst−1(·) (transition)
yt|st, (θk)∞k=1 ∼ p(·|θst) (emission)

(Beal, Ghahramani, and Rasmussen, 2002) (Teh et al. 2004)



Infinite HMM: Trajectories under the prior (skip)

(modified to treat self-transitions specially)

explorative: a = 0.1, b = 1000, c = 100 repetitive: a = 0, b = 0.1, c = 100

self-transitioning: a = 2, b = 2, c = 20 ramping: a = 1, b = 1, c = 10000

Just 3 hyperparameters provide:

• slow/fast dynamics (a)
• sparse/dense transition matrices (b)
• many/few states (c)
• left→right structure, with multiple interacting cycles



Dirichlet Diffusion Trees (DFT)

(Neal, 2001)

In a DPM, parameters of one mixture component are independent of another
components – this lack of structure is potentially undesirable.

A DFT is a generalization of DPMs with hierarchical structure between components.

To generate from a DFT, we will consider θ taking a random walk according to a
Brownian motion Gaussian diffusion process.

• θ1(t) ∼ Gaussian diffusion process starting at origin (θ1(0) = 0) for unit time.
• θ2(t), also starts at the origin and follows θ1 but diverges at some time τd, at

which point the path followed by θ2 becomes independent of θ1’s path.
• a(t) is a divergence or hazard function, e.g. a(t) = 1/(1− t). For small dt:

P (θ diverges ∈ (t, t + dt)) =
a(t)dt

m

where m is the number of previous points that have followed this path.
• If θi reaches a branch point between two paths, it picks a branch in proportion

to the number of points that have followed that path.



Dirichlet Diffusion Trees (DFT)

Generating from a DFT:

Figures from Neal, 2001.



Dirichlet Diffusion Trees (DFT)

Some samples from DFT priors:

Figures from Neal, 2001.



Indian Buffet Processes (IBP) (skip?)

(Griffiths and Ghahramani, 2005)



Priors on Binary Matrices

• Rows are data points

• Columns are clusters

• We can think of CRPs as priors on infinite binary matrices...

• ...since each data point is assigned to one and only one cluster (class)...

• ...the rows sum to one.



More General Priors on Binary Matrices

• Rows are data points

• Columns are features

• We can think of IBPs as priors on infinite binary matrices...

• ...where each data point can now have multiple features, so...

• ...the rows can sum to more than one.



Why?

• Many unsupervised learning algorithms can be thought of as modelling data in
terms of hidden variables.

• Clustering algorithms represent data in terms of which cluster each data point
belongs to.

• But clustering models are restrictive, they do not have distributed representations.

• Consider describing a person as “male”, “married”, “Democrat”, “Red Sox fan”...
these features may be unobserved (latent).

• The number of potential latent features for describing a person (or news story,
gene, image, speech waveform, etc) is unlimited.



From finite to infinite binary matrices

zik ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (zik = 1|α) = E(θk) = α/K
α/K+1, so

as K grows larger the matrix gets sparser.

• So if Z is N × K, the expected number of
nonzero entries is Nα/(1 + α/K) < Nα.

• Even in the K → ∞ limit, the matrix is
expected to have a finite number of non-zero
entries.



From finite to infinite binary matrices

Just as with CRPs we can integrate out θ, leaving:

P (Z|α) =
∫

P (Z|θ)P (θ|α)dθ

=
∏
k

Γ(mk + α
K)Γ(N −mk + 1)

Γ( α
K)

Γ(1 + α
K)

Γ(N + 1 + α
K)

The conditional assignments are:

P (zik = 1|z−i,k) =
∫ 1

0

P (zik|θk)p(θk|z−i,k) dθk

=
m−i,k + α

K

N + α
K

,

where z−i,k is the set of assignments of all objects, not including i, for feature k,
and m−i,k is the number of objects having feature k, not including i.



From finite to infinite binary matrices

A technical difficulty: the probability for any particular matrix goes
to zero as K →∞:

lim
K→∞

P (Z|α) = 0

However, if we consider equivalence classes of matrices in left-ordered form obtained
by reordering the columns: [Z] = lof(Z) we get:

lim
K→∞

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0 Kh!

∏
k≤K+

(N −mk)!(mk − 1)!
N !

.

• K+ is the number of features assigned (i.e. non-zero column sum).

• HN =
∑N

i=1
1
i is the N th harmonic number.

• Kh are the number of features with history h (a technicality).

• This distribution is exchangeable, i.e. it is not affected by the ordering on
objects. This is important for its use as a prior in settings where the objects have
no natural ordering.



Binary matrices in left-ordered form

lof

(a) (b)

(a) The class matrix on the left is transformed into the class matrix on the right
by the function lof(). The resulting left-ordered matrix was generated from a
Chinese restaurant process (CRP) with α = 10.

(b) A left-ordered feature matrix. This matrix was generated by the Indian buffet
process (IBP) with α = 10.



Indian buffet processBinarymatricesinleft-orderedform

lof

(a) (b)

(a) Theclassmatrixontheleftistransformedintotheclassmatrixontheright
bythefunction .Theresultingleft-orderedmatrixwasgeneratedfrom
aChineserestaurantprocess(CRP)with .

(b) Aleft-orderedfeaturematrix.ThismatrixwasgeneratedbytheIndianbuffet
process(IBP)with .

“Many Indian restaurants in London
offer lunchtime buffets with an
apparently infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as her plate becomes overburdened.

• The ith customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself with probability mk/i, and trying a Poisson(α/i)
number of new dishes.

• The customer-dish matrix is our feature matrix, Z.
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