The development of causal theories

Tom Griffiths UC Berkeley

The puzzle

• How do children learn so much (rich causal structure) from so little (limited data)?

Blicket detector (Dave Sobel, Alison Gopnik, and colleagues) See this? It's a blicket machine. Blickets make it go. Cooh, it's a blicket!

Theory

- Ontology
 - Types: Block, Detector, Trial
 - Predicates:

Contact(Block, Detector, Trial) Active(Detector, Trial)

- · Plausible relations
 - For any Block b and Detector d, with prior probability q:
 For all trials t, Contact(b,d,t) → Active(d,t)
- · Functional form of causal relations
 - Causes of Active(d,t) are independent mechanisms, with causal strengths w_i . A background cause has strength w_0 . Assume a deterministic mechanism: $w_b = 1$, $w_0 = 0$.

Bayesian inference

• Evaluating causal models in light of data:

$$P(h_i \mid d) = \frac{P(d \mid h_i)P(h_i)}{\sum_{i} P(d \mid h_i)P(h_i)}$$

• Inferring a particular causal relation:

$$P(A \to E \mid d) = \sum_{\substack{h_j \in H}} P(A \to E \mid h_j) P(h_j \mid d)$$

The new puzzle

• How do people learn so much (causal theories) from so little (limited data)?

Pushing the grammar analogy

- The ways of learning the parts of causal theories will be similar to methods for learning grammars
 - learning ontologies and nonterminals
 - learning plausible relations and production rules
 - learning plausibilities and parameters

Theory

- Ontology
 - Types: Block, Detector, Trial
 - Predicates:

Contact(Block, Detector, Trial) Active(Detector, Trial)

- · Plausible relations
 - For any Block *b* and Detector *d*, with prior probability *q*: For all trials *t*, Contact(b,d,t) → Active(d,t)
- · Functional form of causal relations
 - Causes of Active(d,t) are independent mechanisms, with causal strengths w_i . A background cause has strength w_0 . Assume a deterministic mechanism: $w_i = 1$, $w_0 = 0$.

After each trial, adults judge the probability that each object is a blicket.

Results with children

- Tested 32 four-year-olds (mean age 53 months)
- Instead of rating, yes or no response
- · Two conditions
 - blickets are rare, 2/12 in familiarization phase
 - blickets are common, 10/12 in familiarization phase
- Significant difference in one cause *B* responses
 - rare: 25% say yes
 - common: 81% say yes

(Sobel, Tenenbaum, & Gopnik, 2004)

Theory

- Ontology
 - Types: Block, Detector, Trial
 - Predicates:

Contact(Block, Detector, Trial) Active(Detector, Trial)

- Plausible relations
 - For any Block *b* and Detector *d*, with prior probability *q*: For all trials *t*, Contact(b,d,t) → Active(d,t)
- · Functional form of causal relations
 - Causes of Active(d,t) are independent mechanisms, with causal strengths w_i . A background cause has strength w_0 . Assume a deterministic mechanism: $w_b = 1$, $w_0 = 0$.

"One cause"

(Gopnik, Sobel, Schulz, & Glymour, 2001)

- Two objects: A and B
- Trial 1: A B on detector detector active
- Trial 2: B on detector detector inactive
- 4-year-olds judge whether each object is a blicket
 - A: a blicket (100% say yes)
 - B: almost certainly not a blicket (16% say yes)

A probabilistic mechanism?

- Children in Gopnik et al. (2001) who said that *B* was a blicket had seen evidence that the detector was probabilistic
 - one block activated detector 5/6 times
- Replace the deterministic "activation law"...
 - activate with $p = 1-\varepsilon$ if a blicket is on the detector
 - never activate otherwise

Deterministic vs. probabilistic

Manipulating functional form

I. Familiarization phase: Establish nature of mechanism

II. Test phase: one cause

At end of the test phase, adults judge the probability that each object is a blicket

Manipulating functional form

- Expose to different kinds of functional form
 - deterministic: detector always activates
 - probabilistic: detector activates with $p=1-\varepsilon$
- Test with "one cause" trials
- Model makes two qualitative predictions:
 - people will infer functional form
 - evaluation of B as a blicket will increase with the probabilistic mechanism

(Griffiths, Tenenbaum, Sobel, & Gopnik, submitted)

Learning causal theories

• Apply Bayes' rule as before:

$$P(T_i \mid d) = \frac{P(d \mid T_i)P(T_i)}{\sum_{j} P(d \mid T_j)P(T_j)}$$

• Sum over causal structures (h_j) to get P(d|T)

Results with children

- Tested 24 four-year-olds (mean age 54 months)
- Instead of rating, yes or no response
- Significant difference in one cause *B* responses
 - deterministic: 8% say yesprobabilistic: 79% say yes
- No significant difference in one control trials
 - deterministic: 4% say yes
 - probabilistic: 21% say yes

Summary

- Using causal systems like the blicket detector, we can teach people new parts of causal theories
 - plausibility of causal relationships
 - functional form of those relationships
- It is possible for one observation to produce a radical change in the causal theories maintained

Summary

- Using causal systems like the blicket detector, we can teach people new parts of causal theories
 - plausibility of causal relationships
 - functional form of those relationships
- It is possible for one observation to produce a radical change in the causal theories maintained
- But what about more complex causal systems?
 - form of forces?
 - parameters of forces?
 - new forces?

Parameter estimation with Nitro X

For known causal forces, how do we estimate the constants that are relevant to the force?

Theory

- Ontology
 - Types: Can, HiddenCause
 - Predicates:

 $ExplosionTime (Can),\ ActivationTime (Hidden Cause)$

- · Plausible relations
 - For any Can y and Can x, with prior probability 1: ExplosionTime(y) → ExplosionTime(x)
 - For some HiddenCause c and Can x, with prior probability 1:
 ActivationTime(c) → ExplosionTime(x)
- Functional form of causal relations
 - Explosion at ActivationTime(c), and after appropriate delay from ExplosionTime(y) with probability set by \(\omega\$.
 Otherwise explosions occur with probability 0.
 - Low probability of hidden causes activating.

New forces

How do people discover new kinds of causal relationships?

(A great deal of what we do in science)

Learning causal theories

- T_1 : bacteria die at random
- T_2 : bacteria die at random, or in waves

 $P(wave|T_2) > P(wave|T_1)$

• Having inferred the existence of a new force, need to find a mechanism...

Shallow theories

- · To learn and reason about causality, we need
 - functional form of causal relationship
 - knowledge that mechanisms exist
- We can figure out the mechanisms once we know that we need them...
- So we can get away with shallow theories
 - illusion of explanatory depth (Rozenblit & Keil. 2002)

Conclusion

- From a formal perspective, learning causal theories is just a matter of pushing Bayes up the hierarchy
- But... understanding the development of causal theories requires understanding the kinds of knowledge that constitute those theories
 - minimally: ontology, plausibility, functional form
- Sensitivity to "coincidences" is key, as the clue to search for a plausible mechanism...

Challenges

- What are hypothesis spaces of causal theories?
- Can we define theory generators, in the same ay that theories act as hypothesis generators?
- Constraints on learning are still going to be important, but...
 - hopefully less strong ("blessing of abstraction")
 - more plausibly innate