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Graphical models and
human causal learning

Tom Griffiths
UC Berkeley

Causal induction

Dr. James Currie

Currie (1798)
 Medical Reports on, the Effects of Water, Cold and 
Warm, as a Remedy in Fevers and Febrile Diseases

“The contagion spread rapidly and before its progress
could be arrested, sixteen persons were affected of which
two died. Of these sixteen, eight were under my care. On
this occasion I used for the first time the affusion of cold
water in the manner described by Dr. Wright. It was first
tried in two cases ... The effects corresponded exactly
with those mentioned by him to have occurred in his own
case and thus encouraged the remedy was employed in
five other cases. It was repeated daily, and of these seven
patients, the whole recovered.”

“Does the treatment cause recovery?”
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(Currie, 1798)

Causation from contingencies

“Does C cause E?”
(rate on a scale from 0 to 100)

E present (e+)

E absent (e-)

C present
(c+)

C absent
(c-)

a

b

c

d

Two models of causal judgment

• Delta-P (Jenkins & Ward, 1965):

• Power PC (Cheng, 1997):

Power
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= 1.00-0.78 = 0.22

Power = 0.22/0.22 = 1.00

P(e+|c+) = 7/7 = 1.00
P(e+|c-) = 7/9 = 0.78

Buehner and Cheng (1997)

People

ΔP

Power
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Buehner and Cheng (1997)

People

ΔP

Power

Constant ΔP, changing judgments 

Buehner and Cheng (1997)

People

ΔP

Power

Constant causal power, changing judgments

Buehner and Cheng (1997)

People

ΔP

Power

ΔP = 0, changing judgments

What is the computational problem?

• ΔP and causal power both seem to capture
some part of causal induction, and miss
something else…

• How can we formulate the problem of causal
induction that people are trying to solve?
– perhaps this way we can discover what’s missing

• A first step: a language for talking about
causal relationships…
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Bayesian networks
Four random variables:

X1 coin toss produces heads
X2 pencil levitates
X3 friend has psychic powers
X4 friend has two-headed coin

X1 X2

X3X4P(x4) P(x3)

P(x2|x3)P(x1|x3, x4)

Nodes: variables
Links: dependency
Each node has a conditional
probability distribution

Data: observations of x1, ..., x4

Causal Bayesian networks
Four random variables:

X1 coin toss produces heads
X2 pencil levitates
X3 friend has psychic powers
X4 friend has two-headed coin

X1 X2

X3X4P(x4) P(x3)

P(x2|x3)P(x1|x3, x4)

Nodes: variables
Links: causality
Each node has a conditional
probability distribution

Data: observations of and
interventions on  x1, ..., x4

Interventions
Four random variables:

X1 coin toss produces heads
X2 pencil levitates
X3 friend has psychic powers
X4 friend has two-headed coin

X1 X2

X3X4P(x4) P(x3)

P(x2|x3)P(x1|x3, x4)

hold down pencil

X

Cut all incoming links for the
node that we intervene on

Compute probabilities with
“mutilated” Bayes net

• Strength: how strong is a relationship?
• Structure: does a relationship exist?

E

B C

E

B CB B

What is the computational problem?

• Strength: how strong is a relationship?

E

B C

E

B CB B

What is the computational problem?

• Strength: how strong is a relationship?
– requires defining nature of relationship

E

B C

E

B CB B

What is the computational problem?
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Parameterization
• Structures:  h1 =                          h0 =

• Parameterization:

E

B C

E

B C

C B
0     0
1     0
0     1
1     1

h1: P(E = 1 | C, B) h0: P(E = 1| C, B)

p00
p10
p01 
p11

p0
p0
p1
p1

Generic (Bernoulli)

Parameterization
• Structures:  h1 =                          h0 =

• Parameterization:

E

B C

E

B C

w0 w1 w0

w0, w1: strength parameters for B, C

C B
0     0
1     0
0     1
1     1

h1: P(E = 1 | C, B) h0: P(E = 1| C, B)

0
w1
w0

w1+ w0

0
0
w0
w0

Linear

Parameterization
• Structures:  h1 =                          h0 =

• Parameterization:

E

B C

E

B C

w0 w1 w0

w0, w1: strength parameters for B, C

C B
0     0
1     0
0     1
1     1

h1: P(E = 1 | C, B) h0: P(E = 1| C, B)

0
w1
w0

w1+ w0 – w1 w0

0
0
w0
w0

“Noisy-OR”

Parameter estimation

• Maximum likelihood estimation:

maximize

• Bayesian methods: as for the coinflipping
examples we discussed earlier…

• Structure: does a relationship exist?

E

B C

E

B CB B

What is the computational problem? Approaches to structure learning

• Constraint-based
– dependency from statistical tests
– deduce structure from dependencies E

B CB

(Pearl, 2000; Spirtes et al., 1993)
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Approaches to structure learning

E

B CB• Constraint-based:
– dependency from statistical tests
– deduce structure from dependencies

(Pearl, 2000; Spirtes et al., 1993)

Approaches to structure learning

E

B CB• Constraint-based:
– dependency from statistical tests
– deduce structure from dependencies

(Pearl, 2000; Spirtes et al., 1993)

Approaches to structure learning

E

B CB

Attempts to reduce inductive problem to deductive problem

• Constraint-based:
– dependency from statistical tests
– deduce structure from dependencies

(Pearl, 2000; Spirtes et al., 1993)

Observationally equivalent

a b a b

P(a)P(b|a) P(b)P(a|b)=

Common
Cause

Common
Effect

Two distinguishable networks

a b

c

a b

c

P(a)P(b|a)P(c|a) P(a|b,c)P(c)P(b)=

Indistinguishable from observation

a b

c

a b

c

a b

c
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Effect of intervention

a b

c

a b

c

a b

c

x x x

a b

c

a b

c

a b

c

x x x

…networks become distinguishable

Effect of intervention
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Common
Effect

Common
Cause Chain
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One Link

18 causal structures
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Effect
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Cause Chain
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Equivalence classes
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Consequences of intervention
(on a well-chosen node)

Approaches to structure learning

E

B CB

• Bayesian:
– compute posterior
   probability of structures,
   given observed data

E

B C

E

B C

P(h|d) ∝ P(d|h) P(h)
P(h1|data) P(h0|data)

• Constraint-based:
– dependency from statistical tests
– deduce structure from dependencies

(Pearl, 2000; Spirtes et al., 1993)

(Heckerman, 1998; Friedman, 1999)
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Bayesian Occam’s Razor

All possible data sets d

P(
d 

| h
 )

h0 (no relationship)

h1 (relationship)

For any model h,

Bayesian structure learning

• Option 1: Search for the structure with the
highest marginal likelihood
– Structural EM algorithm        (Friedman, 1997)

• Option 2: MCMC over causal structures
– propose changes to links (implemented in BNT)
– propose changes to order of variables

(Friedman & Koller, 2003)

Bayesian structure learning

• Strength: how strong is a relationship?
• Structure: does a relationship exist?

E

B C

w0 w1

E

B C

w0

B B

Causal structure vs. causal strength

Causal strength

• Assume structure:

• ΔP and causal power are maximum likelihood
estimates of the strength parameter w1, under
different parameterizations for P(E|B,C):
–  linear → ΔP,  Noisy-OR → causal power

E

B C

w0 w1

B

• Hypotheses: h1 =                          h0 =

• Bayesian causal inference:

       support =

E

B C

E

B CB B

Causal structure

P(d|h1)
P(d|h0)

likelihood ratio (Bayes factor)
gives evidence in favor of h1
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Induction as structure learning

         Support         
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People 

ΔP  (r = 0.89) 

Power (r = 0.88)

Support (r = 0.97) 

Buehner and Cheng (1997)
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Generativity is essential

• Predictions result from “ceiling effect”
– ceiling effects only matter if you believe a cause

increases the probability of an effect
– follows from use of Noisy-OR (after Cheng, 1997)

P(e+|c+)
P(e+|c-)

8/8
8/8

6/8
6/8

4/8
4/8

2/8
2/8

0/8
0/8

               Bayesian100
50
0

Noisy-AND-NOT
• causes

decrease
probability of
their effects

Noisy-OR
• causes

increase
probability of
their effects

Generic
• probability

differs
across
conditions

Generativity is essential Generativity is essential

Humans

Noisy-OR

Generic

Noisy AND-NOT
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Manipulating functional form

Noisy-AND-NOT
• causes decrease

probability of
their effects

• appropriate for
preventive
causes

Noisy-OR
• causes

increase
probability of
their effects

• appropriate for
generative
causes

Generic
• probability

differs across
conditions

• appropriate
for assessing
differences

Manipulating functional form

Noisy AND-NOTGenericNoisy-OR

Generative Difference Preventive

Causal induction from contingencies

• The simplest case of causal learning: a single
cause-effect relationship and plentiful data

• Distinction between structure and strength yields
different rational models of human causal learning

• Despite simplicity, exhibits complex effects of prior
knowledge (in the assumed functional form)

(Griffiths & Tenenbaum, 2005)

Causal induction with rates

• Causal Bayesian networks can be learned
from data other than contingencies

• We can define structure learning and
parameter estimation methods for rates

Does the electric field cause
 the mineral to emit particles?

Causal induction with rates

People 

Δ R 

Support

More complex
structures

c

a b
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Effect

Common
Cause Chain
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One Link

(Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003)
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Sir Edmond Halley

(Halley, 1752)

76
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May 14, July 8, August 21, December 25

vs.

August 3, August 3, August 3, August 3

Detecting coincidences

Michotte (1963) Michotte (1963)
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Summary

• Causal induction from contingency data is a well-
studied problem, and one where learning structure
and strength can provide insights

• Approaching causal induction as learning causal
graphical models has the potential to explain many
other phenomena:
– learning from rates
– learning complex causal structures
– detecting coincidences
– perceptual causality
– inferences about physical causal systems
– learning and reasoning about dynamic causal systems


