An introduction to grammars and parsing

Mark Johnson

Microsoft Research / Brown University

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars

What is computational linguistics?

Computational linguistics studies the *computational processes* involved in language production, comprehension and acquisition.

- assumption that language is *inherently computational*
- scientific side:
 - modeling human performance (computational psycholinguistics)
 - understanding how it can be done at all
- technological applications:
 - speech recognition
 - information extraction (who did what to whom) and question answering
 - machine translation (translation by computer)

(Some of the) problems in modeling language

- + Language is a product of the human mind

 ⇒ any structure we observe is a product of the mind
- Language involves a *transduction between form and meaning*, but we don't know much about the way meanings are represented
- +/- We have (reasonable?) guesses about some of the computational processes involved in language
 - We don't know very much about the cognitive processes that language interacts with
 - We know little about the anatomical layout of language in the brain
 - We know little about neural networks that might support linguistic computations

Aspects of linguistic structure

- Phonetics: the (production and perception) of speech sounds
- Phonology: the organization and regularities of speech sounds
- Morphology: the structure and organization of words
- Syntax: the way words combine to form phrases and sentences
- Semantics: the way meaning is associated with sentences
- Pragmatics: how language can be used to do things

In general the further we get from speech, the less well we understand what's going on!

Aspects of syntactic and semantic structure

- Predicate-argument structure: the students is agent of eat
- Discourse structure: second clause is *contrasted* with first

These all refer to *phrase structure* entities! Parsing is the process of recovering these entities.

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars

Context free grammars

A context-free grammar $G = (\mathcal{V}, \mathcal{S}, s, \mathcal{R})$ consists of:

- V, a finite set of terminals ($V_0 = \{Sam, Sasha, thinks, snores\}$)
- S, a finite set of *non-terminals* disjoint from V ($S_0 = \{S, NP, VP, V\}$)
- \mathcal{R} , a finite set of *productions* of the form $A \to X_1 \dots X_n$, where $A \in \mathcal{S}$ and each $X_i \in \mathcal{S} \cup \mathcal{V}$
- $s \in \mathcal{S}$ is called the *start symbol* $(s_0 = \mathsf{S})$

G generates a tree ψ iff

- The label of ψ 's root node is s
- For all *local trees* with parent A and children $X_1 \dots X_n$ in ψ $A \to X_1 \dots X_n \in \mathcal{R}$

G generates a string $w \in \mathcal{V}^*$ iff w is the $terminal\ yield$ of a tree generated by G

CFGs as "plugging" systems

"Pluggings"

- Resulting tree
- Goal: no unconnected "sockets" or "plugs"
- The *productions* specify available types of components
- In a *probabilistic* CFG each type of component has a "price"

Structural Ambiguity

$$\mathcal{R}_1 = \{\mathsf{VP} \to \mathsf{V} \; \mathsf{NP}, \mathsf{VP} \to \mathsf{VP} \; \mathsf{PP}, \mathsf{NP} \to \mathsf{D} \; \mathsf{N}, \mathsf{N} \to \mathsf{N} \; \mathsf{PP}, \ldots\}$$

- CFGs can capture *structural ambiguity* in language.
- Ambiguity generally grows *exponentially* in the length of the string.
 - The number of ways of parenthesizing a string of length n is Catalan(n)
- Broad-coverage statistical grammars are astronomically ambiguous.

Derivations

A CFG $G = (\mathcal{V}, \mathcal{S}, s, \mathcal{R})$ induces a rewriting relation \Rightarrow_G , where $\gamma A \delta \Rightarrow_G \gamma \beta \delta$ iff $A \to \beta \in \mathcal{R}$ and $\gamma, \delta \in (\mathcal{S} \cup \mathcal{V})^*$.

A derivation of a string $w \in \mathcal{V}^*$ is a finite sequence of rewritings $s \Rightarrow_G \ldots \Rightarrow_G w$. \Rightarrow_G^* is the reflexive and transitive closure of \Rightarrow_G .

The language generated by G is $\{w: s \Rightarrow^{\star} w, w \in \mathcal{V}^{\star}\}.$

$$G_0 = (\mathcal{V}_0, \mathcal{S}_0, \mathsf{S}, \mathcal{R}_0), \ \mathcal{V}_0 = \{\mathsf{Sam}, \mathsf{Sasha}, \mathsf{likes}, \mathsf{hates}\}, \ \mathcal{S}_0 = \{\mathsf{S}, \mathsf{NP}, \mathsf{VP}, \mathsf{V}\}, \\ \mathcal{R}_0 = \{\mathsf{S} \to \mathsf{NP}\,\mathsf{VP}, \mathsf{VP} \to \mathsf{V}\,\mathsf{NP}, \mathsf{NP} \to \mathsf{Sam}, \mathsf{NP} \to \mathsf{Sasha}, \mathsf{V} \to \mathsf{likes}, \mathsf{V} \to \mathsf{hates}\}$$

S

 \Rightarrow NP VP Steps in a terminating

 \Rightarrow NP V NP $\begin{array}{c} derivation \text{ are always } cuts \ in \\ a \ parse \ tree \end{array}$

 \Rightarrow Sam V NP

 \Rightarrow Sam V Sasha Left-most and right-most

 \Rightarrow Sam likes Sasha derivations are *normal forms*

Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) G consists of

- a CFG $(\mathcal{V}, \mathcal{S}, S, \mathcal{R})$ with no useless productions, and
- production probabilities $p(A \to \beta) = P(\beta|A)$ for each $A \to \beta \in \mathcal{R}$, the conditional probability of an A expanding to β

A production $A \to \beta$ is *useless* iff it is not used in any terminating derivation, i.e., there are no derivations of the form $S \Rightarrow^* \gamma A \delta \Rightarrow \gamma \beta \delta \Rightarrow^* w$ for any $\gamma, \delta \in (\mathcal{V} \cup \mathcal{S})^*$ and $w \in \mathcal{V}^*$.

If $r_1 ldots r_n$ is a sequence of productions used to generate a tree ψ , then

$$P_G(\psi) = p(r_1) \dots p(r_n)$$
$$= \prod_{r \in \mathcal{R}} p(r)^{f_r(\psi)}$$

where $f_r(\psi)$ is the number of times r is used in deriving ψ $\sum_{\psi} P_G(\psi) = 1 \text{ if } p \text{ satisfies suitable constraints}$

Example PCFG

1.0 S
$$\rightarrow$$
 NP VP 1.0 VP \rightarrow V

 $0.75 \quad \mathsf{NP} \to \mathsf{George} \qquad \qquad 0.25 \quad \mathsf{NP} \to \mathsf{AI}$

 $0.6 \hspace{0.5cm} \text{V} \rightarrow \text{barks} \hspace{0.5cm} 0.4 \hspace{0.5cm} \text{V} \rightarrow \text{snores}$

$$P\left(\begin{array}{c|c} S \\ \hline NP & VP \\ \hline George & V \\ \hline barks \end{array} \right) = 0.45 \qquad P\left(\begin{array}{c|c} S \\ \hline NP & VP \\ \hline -1 & -1 \\ \hline AI & V \\ \hline & snores \end{array} \right) = 0.1$$

(Mealy) finite-state automata

A (Mealy) automaton $M = (\mathcal{V}, \mathcal{S}, s_0, \mathcal{F}, \mathcal{M})$ consists of:

- V, a set of *terminals*, $(V_3 = \{a, b\})$
- S, a finite set of *states*, $(S_3 = \{0, 1\})$
- $s_0 \in \mathcal{S}$, the *start state*, $(s_{0_3} = 0)$
- $\mathcal{F} \subseteq \mathcal{S}$, the set of *final states* $(\mathcal{F}_3 = \{1\})$ and
- $\mathcal{M} \subseteq \mathcal{S} \times \mathcal{V} \times \mathcal{S}$, the state transition relation. $(\mathcal{M}_3 = \{(0, \mathsf{a}, 0), (0, \mathsf{a}, 1), (1, \mathsf{b}, 0)\})$

A accepting derivation of a string $v_1 \dots v_n \in \mathcal{V}^*$ is a sequence of states $s_0 \dots s_n \in \mathcal{S}^*$ where:

- s_0 is the start state
- $s_n \in \mathcal{F}$, and
- for each $i = 1 \dots n$, $(s_{i-1}, v_i, s_i) \in \mathcal{M}$.

00101 is an accepting derivation of aaba.

What's interesting about finite-state automata?

- Finite state automata are probably the simplest devices that generate an infinite number of strings
- They are conceptually and computationally simpler than context-free grammars
- They are expressive enough for many useful tasks:
 - Speech recognition
 - Phonology and morphology
 - Lexical processing
- Very large FSA can be built and used very efficiently
- Good software tools exist for using and manipulating FSA

Probabilistic Mealy automata

A probabilistic Mealy automaton $M = (\mathcal{V}, \mathcal{S}, s_0, p_f, p_m)$ consists of:

- terminals \mathcal{V} , states \mathcal{S} and start state $s_0 \in \mathcal{S}$ as before,
- $p_f(s)$, the probability of halting at state $s \in \mathcal{S}$, and
- $p_m(v, s'|s)$, the probability of moving from $s \in \mathcal{S}$ to $s' \in \mathcal{S}$ and emitting $a \ v \in \mathcal{V}$.

where $p_f(s) + \sum_{v \in \mathcal{V}, s' \in \mathcal{S}} p_m(v, s'|s) = 1$ for all $s \in \mathcal{S}$ (halt or move on)

The probability of a derivation with states $s_0 \dots s_n$ and outputs $v_1 \dots v_n$ is:

$$P_M(s_0 \dots s_n; v_1 \dots v_n) = \left(\prod_{i=1}^n p_m(v_i, s_i | s_{i-1})\right) p_f(s_n)$$

Example: $p_f(0) = 0, p_f(1) = 0.1,$ $p_m(\mathsf{a}, 0|0) = 0.2, p_m(\mathsf{a}, 1|0) = 0.8, p_m(\mathsf{b}, 0|1) = 0.9$ $P_M(00101, \mathsf{aaba}) = 0.2 \times 0.8 \times 0.9 \times 0.8 \times 0.1$

Probabilistic FSA as PCFGs

Given a Mealy PFSA $M = (\mathcal{V}, \mathcal{S}, s_0, p_f, p_m)$, let G_M have the same terminals, states and start state as M, and have productions

- $s \to \epsilon$ with probability $p_f(s)$ for all $s \in \mathcal{S}$
- $s \to v s'$ with probability $p_m(v, s'|s)$ for all $s, s' \in \mathcal{S}$ and $v \in \mathcal{V}$

$$p(\textbf{0} \rightarrow \textbf{a} \ \textbf{0}) = 0.2, p(\textbf{0} \rightarrow \textbf{a} \ \textbf{1}) = 0.8, p(\textbf{1} \rightarrow \epsilon) = 0.1, p(\textbf{1} \rightarrow \textbf{b} \ \textbf{0}) = 0.9$$

Mealy FSA

PCFG parse of aaba

The FSA graph depicts the machine (i.e., all strings it generates), while the CFG tree depicts the analysis of a single string.

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars

Computing the probability of a tree

1.0 S
$$\rightarrow$$
 NP VP 1.0 VP \rightarrow V

 $0.75 \quad \mathsf{NP} \to \mathsf{George} \qquad \qquad 0.25 \quad \mathsf{NP} \to \mathsf{AI}$

1.0
$$VP \rightarrow V$$

 $0.6 \hspace{0.5cm} \text{V} \rightarrow \text{barks} \hspace{0.5cm} 0.4 \hspace{0.5cm} \text{V} \rightarrow \text{snores}$

$$P\left(\begin{array}{c|c} S \\ \hline NP & VP \\ | & | \\ George & V \\ barks \end{array}\right) = 0.45 \qquad P\left(\begin{array}{c|c} S \\ NP & VP \\ | & | \\ AI & V \\ snores \end{array}\right) = 0.1$$

Things we want to compute

1. What is the probability $P_G(w)$ of the string w? (language modeling)

$$P_G(w) = P_G(s \Rightarrow^* w) = \sum_{\psi \in \Psi_G(w)} P_G(\psi)$$

2. What is the most probable parse $\hat{\psi}(w)$ of a string w? (parsing)

$$\hat{\psi}(w) = \underset{\psi \in \Psi_G(w)}{\operatorname{argmax}} P_G(\psi)$$

where:

 $\Psi_G(w)$ is the set of parse trees for w generated by G, and $P_G(\psi)$ is the probability of tree ψ wrt grammar G.

Naive algorithm:

- 1. Compute set of parse trees $\Psi_G(w)$ for w
- 2. Take max/sum as appropriate

String positions

String positions are a systematic way of representing substrings in a string.

A string position of a string $w = x_0 \dots x_{n-1}$ is an integer $0 \le i \le n$.

A substring of w is represented by a pair (i, j) of string positions, where $0 \le i \le j \le n$.

 $w_{i,j}$ represents the substring $w_i \dots w_{j-1}$

$$\bullet \xrightarrow{\text{Howard}} \bullet \xrightarrow{\text{likes}} \bullet \xrightarrow{\text{mangoes}} \bullet \\
0 \quad w_0 \quad 1 \quad w_1 \quad 2 \quad w_2 \quad 3$$

Example:

 $w_{0,1} = \mathsf{Howard}, w_{1,3} = \mathsf{likes} \, \mathsf{mangoes}, w_{0,0} = w_{1,1} = w_{2,2} = w_{3,3} = \epsilon$

- Nothing depends on string positions being numbers, so
- this all generalizes to speech recognizer *lattices*, which are graphs where vertices correspond to word boundaries

PCFG "Inside" algorithm

The *inside algorithm* for computing the probability of a string is a generalization of the backward algorithm.

Assume $G = (\mathcal{V}, \mathcal{S}, s, \mathcal{R}, p)$ is in *Chomsky Normal Form*, i.e., all productions are of the form $A \to B$ C or $A \to x$, where $A, B, C \in \mathcal{S}, x \in \mathcal{V}$.

Goal: To compute
$$P(w) = \sum_{\psi \in \Psi_G(w)} P(\psi) = P(s \Rightarrow^* w)$$

Data structure: A table $P(A \Rightarrow^* w_{i,j})$ for $A \in \mathcal{S}$ and $0 \le i < j \le n$

Base case: $P(A \Rightarrow^* w_{i,i+1}) = p(A \rightarrow w_i)$ for i = 0, ..., n-1

Recursion: $P(A \Rightarrow^* w_{i,k})$

$$= \sum_{j=i+1}^{k-1} \sum_{A\to B} \sum_{C\in\mathcal{R}(A)} p(A\to BC) P(B\Rightarrow^* w_{i,j}) P(C\Rightarrow^* w_{j,k})$$

Return: $P(s \Rightarrow^{\star} w_{0,n})$

Dynamic programming recursion

$$P_G(A \Rightarrow^* w_{i,k}) = \sum_{j=i+1}^{k-1} \sum_{A \to B} \sum_{C \in \mathcal{R}(A)} p(A \to BC) P_G(B \Rightarrow^* w_{i,j}) P_G(C \Rightarrow^* w_{j,k})$$

 $P_G(A \Rightarrow^* w_{i,k})$ is called an "inside probability".

Example PCFG parse

$$1.0 \quad \mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$$

- $0.7 \quad \mathsf{NP} \to George \qquad \qquad 0.3 \quad \mathsf{NP} \to John$
- $0.5 \quad V \rightarrow likes$

1.0	V/P	$\rightarrow \lambda$	NP
T.U	VI	_ V	1 71 1

- $0.5 \quad V \rightarrow hates$

Right string position

	_	1	2	3
S 0.105	position	NP 0.7		S 0.105
VP 0.15	string po		V 0.5	VP 0.15
NP 0.7 V 0.5 NP 0.3 • O George 1 hates 2 John 3	Left s			NP 0.3

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars

Two approaches to computational linguistics

- "Rationalist": Linguist formulates generalizations and expresses them in a grammar
- "Empiricist": Collect a corpus of examples, linguists annotate them with relevant information, a machine learning algorithm extracts generalizations
 - I don't think there's a deep philosophical difference here, but many people do
 - Continuous models do much better than categorical models (statistical inference uses more information than categorical inference)
 - Humans are lousy at estimating numerical probabilities, but luckily parameter estimation is the one kind of machine learning that (sort of) works

Treebanks, prop-banks and discourse banks

- A treebank is a corpus of phrase structure trees
 - The *Penn treebank* consists of about a million words from the Wall Street Journal, or about 40,000 trees.
 - The *Switchboard corpus* consists of about a million words of treebanked spontaneous conversations, linked up with the acoustic signal.
 - Treebanks are being constructed for other languages also
- The Penn treebank is being annotated with *predicate argument* structure (PropBank) and discourse relations.

Estimating PCFGs from visible data

(The relative frequency estimator is also the MLE for PFSA, of course).

Properties of MLE

The relative frequency estimator is the MLE for PCFGS, so it has the following properties:

- Consistency: As the sample size grows, the estimates of the parameters converge on the true parameters
- Asymptotic optimality: For large samples, there is no other consistent estimator whose estimates have lower variance
- Sparse data is the big problem with the MLE.
 - Rules that do not occur in the training data get zero probability
- Aside from this, MLEs for statistical grammars work well in practice.
 - The Penn Treebank has ≈ 1.2 million words of Wall Street Journal text annotated with syntactic trees
 - The PCFG estimated from the Penn Treebank has $\approx 15{,}000$ rules

Unsupervised training and EM

Expectation Maximization (EM) is a general technique for approximating the MLE when estimating parameters θ from the *visible data* x is difficult, but estimating θ from augmented data z = (x, y) is easier (y is the *hidden data*).

The EM algorithm given visible data x:

- 1. guess initial value θ_0 of parameters (e.g., rule probabilities)
- 2. repeat for $i = 0, 1, \ldots$ until convergence:

Expectation step: For all $y_1, \ldots, y_n \in \mathcal{Y}$, generate pseudo-data $(x, y_1), \ldots, (x, y_n)$, where (x, y) has "frequency" $P_{\theta_i}(y|x)$

Maximization step: Set θ_{i+1} to the MLE from the pseudo-data

The EM algorithm finds the MLE $\hat{\theta} = \operatorname{argmax}_{\theta} P_{\theta}(x)$ of the *visible data* x.

Sometimes it is not necessary to explicitly generate the pseudo-data (x, y); often it is possible to perform the maximization step directly from sufficient statistics (for PCFGs, the expected production frequencies)

Dynamic programming for $E_G[n_{A\to B\,C}|w]$

$$E_G[n_{A \to BC}|w] = \sum_{0 \le i < j < k \le n} E_G[A_{i,k} \to B_{i,j}C_{j,k}|w]$$

The expected fraction of parses of w in which $A_{i,k}$ rewrites as $B_{i,j}C_{j,k}$ is:

$$E_{G}[A_{i,k} \to B_{i,j}C_{j,k}|w]$$

$$= \frac{P(S \Rightarrow^{\star} w_{1,i} A w_{k,n}) p(A \to B C) P(B \Rightarrow^{\star} w_{i,j}) P(C \Rightarrow^{\star} w_{j,k})}{P_{G}(w)}$$

Calculating $P_G(S \Rightarrow^* w_{0,i} A w_{k,n})$

Known as "outside probabilities" (but if G contains unary productions, they can be greater than 1).

Recursion from larger to smaller substrings in w.

Base case:
$$P(S \Rightarrow^* w_{0,0} S w_{n,n}) = 1$$

Recursion:
$$P(S \Rightarrow^* w_{0,j} C w_{k,n}) =$$

$$\sum_{i=0}^{j-1} \sum_{\substack{A,B \in \mathcal{S} \\ A \to B \ C \in \mathcal{R}}} P(S \Rightarrow^* w_{0,i} \ A \ w_{k,n}) p(A \to B \ C) P(B \Rightarrow^* w_{i,j})$$

$$+ \sum_{l=k+1}^{n} \sum_{\substack{A,D \in \mathcal{S} \\ A \to C \ D \in \mathcal{R}}} P(S \Rightarrow^{\star} w_{0,j} \ A \ w_{l,n}) p(A \to C \ D) P(D \Rightarrow^{\star} w_{k,l})$$

Recursion in $P_G(S \Rightarrow^* w_{0,i} A w_{k,n})$

$$P(S \Rightarrow^{\star} w_{0,j} C w_{k,n}) = \sum_{j=1}^{j-1} \sum_{\substack{A,B \in S \\ A \to B \ C \in \mathcal{R}}} P(S \Rightarrow^{\star} w_{0,i} A w_{k,n}) p(A \to B C) P(B \Rightarrow^{\star} w_{i,j})$$

$$+ \sum_{l=k+1}^{n} \sum_{\substack{A,D \in S \\ A \to C \ D \in \mathcal{R}}} P(S \Rightarrow^{\star} w_{0,j} A w_{l,n}) p(A \to C D) P(D \Rightarrow^{\star} w_{k,l})$$

$$S \qquad \qquad S$$

$$S \qquad \qquad S$$

$$w_{0,i} \qquad w_{i,j} \qquad w_{j,k} \qquad w_{k,n} \qquad w_{0,j} \qquad w_{j,k} \qquad w_{k,l} \qquad w_{l,n}$$

The EM algorithm for PCFGs

Infer hidden structure by maximizing likelihood of visible data:

- 1. guess initial rule probabilities
- 2. repeat until convergence
 - (a) parse a sample of sentences
 - (b) weight each parse by its conditional probability
 - (c) count rules used in each weighted parse, and estimate rule frequencies from these counts as before

EM optimizes the marginal likelihood of the strings $D = (w_1, \ldots, w_n)$

Each iteration is guaranteed not to decrease the likelihood of D, but EM can get trapped in local minima.

The Inside-Outside algorithm can produce the expected counts without enumerating all parses of D.

When used with PFSA, the Inside-Outside algorithm is called the Forward-Backward algorithm (Inside=Backward, Outside=Forward)

Example: The EM algorithm with a toy PCFG

Initial rule probs		"English" input
rule	prob	the dog bites
• • •	• • •	the dog bites a man
$VP \rightarrow V$	0.2	a man gives the dog a bone
$VP \to V \; NP$	0.2	
$VP \to NP\;V$	0.2	
$VP \rightarrow V NP NP$	0.2	
$VP \to NP \; NP \; V$	0.2	"pseudo-Japanese" input
• • •		the dog bites
$Det \to the$	0.1	the dog a man bites
$N \rightarrow the$	0.1	a man the dog a bone gives
V o the	0.1	• • •

Probability of "English"

Rule probabilities from "English"

Probability of "Japanese"

Rule probabilities from "Japanese"

Learning in statistical paradigm

- The likelihood is a differentiable function of rule probabilities
 - ⇒ learning can involve small, incremental updates
- Learning new structure (rules) is hard, but ...
- Parameter estimation can approximate rule learning
 - start with "superset" grammar
 - estimate rule probabilities
 - discard low probability rules

Applying EM to real data

- ATIS treebank consists of 1,300 hand-constructed parse trees
- ignore the words (in this experiment)
- about 1,000 PCFG rules are needed to build these trees

Experiments with EM

- 1. Extract productions from trees and estimate probabilities probabilities from trees to produce PCFG.
- 2. Initialize EM with the treebank grammar and MLE probabilities
- 3. Apply EM (to strings alone) to re-estimate production probabilities.
- 4. At each iteration:
 - Measure the likelihood of the training data and the quality of the parses produced by each grammar.
 - Test on training data (so poor performance is not due to overlearning).

Likelihood of training strings

Quality of ML parses

Why does EM do so poorly?

- EM assigns trees to strings to maximize the marginal probability of the strings, but the trees weren't designed with that in mind
- We have an "intended interpretation" of categories like NP, VP, etc., which EM has no way of knowing
- Our grammars are defective
 - real language has dependencies that these PCFGs can't capture
- How can information about the marginal distribution of strings P(w) provide information about the conditional distribution of parses given strings $P(\psi|w)$?
 - need additional *linking assumptions* about the relationship between parses and strings
- ... but no one really knows.

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars

Subcategorization

Grammars that merely relate categories miss a lot of important linguistic relationships.

$$R_3 = \{\mathsf{VP} \to \mathsf{V}, \mathsf{VP} \to \mathsf{V} \, \mathsf{NP}, \mathsf{V} \to \mathsf{sleeps}, \mathsf{V} \to \mathsf{likes}, \ldots\}$$

Verbs and other *heads of phrases* subcategorize for the number and kind of *complement phrases* they can appear with.

CFG account of subcategorization

General idea: Split the preterminal states to encode subcategorization.

$$R_4 = \{\mathsf{VP} \to \bigvee_{[_]}, \mathsf{VP} \to \bigvee_{[_\mathsf{NP}]} \mathsf{NP}, \bigvee_{[_]} \to \mathsf{sleeps}, \bigvee_{[_\mathsf{NP}]} \to \mathsf{likes}, \ldots\}$$

The "split preterminal states" restrict which contexts verbs can appear in.

As the non-terminal states are split, *sparse data* becomes a big problem (essential to *generalize* beyond the cases seen in training data)

Head to head dependencies and bilexical rules

Number of possible rules grows rapidly; with a $\approx 10^4$ word vocabulary there are $\approx 10^8$ possible bilexical rules.

Sparse data is biggest problem with such grammars; must generalize beyond training data (smoothing and regularization)

Summary and Conclusion

- Computational linguistics is great fun!
- ... and maybe will help us understand deep things about language and the mind
- Language possesses a rich compositional structure
- ... and *grammars* are a way of describing that structure
- *Probabilistic grammars* give us a systematic way of distinguishing more likely structures from less likely structures
- The number of parses (structures) can grow *exponentially* with sentence length
- ... but there are *polynomial-time dynamic programming algorithms* for most of the important problems
- Sparse data is a big problem for realistic grammars
 - little is known about combining unsupervised learning and smoothing

Talk outline

- What is computational linguistics?
- Probabilistic grammars
- Identifying phrase structure (parsing)
- Learning phrase structure
- More realistic grammars (part 2)

Estimating PCFGs from visible data

Count	Rel Freq
3	1
2	2/3
1	1/3
3	1
	3 2 1

$$P \begin{pmatrix} S \\ NP & VP \\ | & | \\ rice & grows \end{pmatrix} = 2/3$$

$$P\begin{pmatrix} S \\ NP & VP \\ | & | \\ corn & grows \end{pmatrix} = 1/3$$

Non-local constraints and PCFG MLE

Dividing by partition function Z

Other values do better!

Summary so far

- Maximum likelihood is a good way of estimating a grammar
- Maximum likelihood estimation of a PCFG from a treebank is easy if the trees are accurate
- But real language has many more dependencies than treebank grammar describes
- \Rightarrow relative frequency estimator not MLE
 - Make non-local dependencies local by splitting categories
 - \Rightarrow Astronomical number of possible categories
 - Or find some way of dealing with non-local dependencies . . .

Exponential models

- Rules are not independent \Rightarrow in general $Z \neq 1$
- Models with dependencies between features are called *exponential* models
 - Universe \mathcal{T} (set of all possible parse trees)
 - Features $f = (f_1, \ldots, f_m)$ $(f_j(t) = \text{value of } j \text{ feature on } t \in \mathcal{T})$
 - Feature weights $w = (w_1, \dots, w_m)$

$$P(t) = \frac{1}{Z} \exp w \cdot f(t)$$

$$Z = \sum_{t' \in \mathcal{T}} \exp w \cdot f(t')$$

Hint: Think of $\exp w \cdot f(t)$ as unnormalized probability of t

PCFGs are exponential models

 $\mathcal{T} = \text{set of all trees generated by PCFG } G$

 $f_j(t)$ = number of times the jth rule is used in $t \in \mathcal{T}$

 $p(r_j)$ = probability of jth rule in G

Set weight $w_j = \log p(r_j)$

$$f\left(\begin{array}{c|c} S \\ \hline NP & VP \\ \hline \mid & \mid \\ \text{rice grows} \end{array}\right) = \underbrace{\left[\begin{array}{c} 1 \\ S \rightarrow NP \ VP \ NP \rightarrow rice \ NP \rightarrow bananas \ VP \rightarrow grows \ VP \rightarrow grow \end{array}\right]}_{S \rightarrow NP \ VP \ NP \rightarrow rice \ NP \rightarrow bananas \ VP \rightarrow grows \ VP \rightarrow grow}$$

$$P_w(t) = \prod_{j=1}^m p(r_j)^{f_j(t)} = \prod_{j=1}^m (\exp w_j)^{f_j(t)} = \exp(w \cdot f(t))$$

So a PCFG is just a special kind of exponential model with Z = 1.

Advantages of exponential models

- Exponential models are very flexible
- \bullet Features f can be any function of parses . . .
 - whether a particular structure occurs in a parse
 - conjunctions of prosodic and syntactic structure
- Parses t need not be trees, but can be anything at all
 - Feature structures (LFG, HPSG)
- Exponential models are related to other popular models
 - Harmony theory and optimality theory
 - Maxent models

Modeling dependencies

- It's usually difficult to design a PCFG model that captures a particular set of dependencies
 - probability of the tree must be broken down into a product of conditional probability distributions
 - non-local dependencies must be expressed in terms of GPSG-style feature passing
- It's easy to make exponential models sensitive to new dependencies
 - add a new feature functions to existing feature functions
 - figuring out what the right dependencies are is hard, but incorporating them into an exponential model is easy

MLE of exponential models is hard

• An exponential model associates features $f(t) = (f_1(t), \dots, f_m(t))$ with weights $w = (w_1, \dots, w_m)$

$$P(t) = \frac{1}{Z} \exp w \cdot f(t)$$

$$Z = \sum_{t' \in \mathcal{T}} \exp w \cdot f(t')$$

- Given treebank (t_1, \ldots, t_n) , MLE chooses w to maximize $P(t_1) \times \ldots \times P(t_n)$, i.e., make the treebank as likely as possible
- \bullet Computing P(t) requires the partition function Z
- Computing Z requires a sum over all parses \mathcal{T} for all sentences
- \Rightarrow computing MLE of an exponential parsing model seems very hard

Conditional ML estimation

- Conditional ML estimation chooses feature weights to maximize $P(t_1|s_1) \times ... \times P(t_n|s_n)$, where s_i is string for t_i
 - choose feature weights to make t_i most likely relative to parses $\mathcal{T}(s_i)$ for s_i
 - \Rightarrow CMLE doesn't involve other sentences

$$P(t|s) = \frac{1}{Z(s)} \exp w \cdot f(t)$$

$$Z(s) = \sum_{t' \in \mathcal{T}(s)} \exp w \cdot f(t')$$

- CMLE "only" involves repeatedly parsing training data
- With "wrong" models, CMLE often produces a more accurate parser than joint MLE

Conditional vs joint MLE

Rule	count	rel freq	rel freq
$\mathrm{VP} \to \mathrm{V}$	100	100/105	4/7
$\mathrm{VP} \to \mathrm{V} \; \mathrm{NP}$	3	3/105	1/7
$VP \to VP PP$	2	2/105	2/7
$\mathrm{NP} \to \mathrm{N}$	6	6/7	6/7
$\mathrm{NP} \to \mathrm{NP}\;\mathrm{PP}$	1	1/7	1/7

Conditional ML estimation

s	$f(ar{t})$	$\{f(t): t \in \mathcal{T}(s), t \neq \bar{t}(s)\}$
sentence 1	(1, 3, 2)	(2,2,3) (3,1,5) (2,6,3)
sentence 2	(7,2,1)	(2,2,3) (3,1,5) (2,6,3) (2,5,5)
sentence 3	(2,4,2)	(1,1,7) $(7,2,1)$
		•••

- Parser designer specifies feature functions $f = (f_1, \ldots, f_m)$
- A parser produces trees $\mathcal{T}(s)$ for each sentence $s \in (s_1, \ldots, s_n)$
- Treebank tells us correct tree $\bar{t_i} \in \mathcal{T}(s_i)$ for sentence s_i
- Feature functions f apply to each tree $t \in \mathcal{T}(s)$, producing feature values $f(t) = (f_1(t), \dots, f_m(t))$
- MCLE estimates feature weights $\widehat{w} = (\widehat{w}_1, \dots, \widehat{w}_m)$

Regularization

- With a large number of features, exponential models can over-fit
- Regularization: add *bias* term to ensure \widehat{w} is finite and small
- In following experiments, regularizer is a polynomial penalty term

$$\widehat{w} = \underset{w}{\operatorname{argmax}} \log \sum_{i=1}^{n} P_{w}(t_{i}|s_{i}) - c \sum_{j=1}^{m} |w_{j}|^{p}$$

$$= \underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} w_{j} f_{j}(t_{i}) - \log Z_{w}(s) \right) - c \sum_{j=1}^{m} |w_{j}|^{p}$$

- p = 2 gives a Gaussian prior.
- We maximize this expression using numerical optimization (Limited Memory Variable Metric)

Coarse-to-fine parsing

- Z(s) is still hard to compute \Rightarrow make T(s) even smaller!
- Restrict attention to 50-best parses produced by Charniak parser (a good PCFG-based parser)
- Exponential model is trained using CMLE to pick out best parse from Charniak's 50-best parses

Parser evaluation

- A node's *edge* is its label and beginning and ending *string positions*
- E(t) is the set of edges associated with a tree t
- If t is a parse tree and \bar{t} is the correct tree, then

precision
$$P_{\bar{t}}(t) = |E(t)|/|E(t) \cap E(\bar{t})|$$

recall $R_{\bar{t}}(t) = |E(\bar{t})|/|E(t) \cap E(\bar{t})|$
 f -score $F_{\bar{t}}(t) = 2/(P_{\bar{t}}(t)^{-1} + R_{\bar{y}}(t)^{-1})$ (geometric mean of P and R)

Performance of Charniak parser

- F-score of Charniak's most probable parse = 0.896 (cross-validated on PTB sections 2-19)
- Oracle f-score of Charniak's 50-best parses = 0.965 (66% redn)

Expt 1: Only "old" features

- Features: 1 log Charniak probability, 10, 124 Rule features
- Charniak's parser already conditions on local trees!
- Feature selection: features must vary on 5 or more sentences
- Results: f-score = 0.894; baseline = 0.890; $\approx 4\%$ error reduction
- \Rightarrow discriminative training alone can improve accuracy

Lexicalized and parent-annotated rules

- Lexicalization associates each constituent with its head
- Ancestor annotation provides a little "vertical context"
- Context annotation indicates constructions that only occur in main clause (c.f., Emonds)

Experimental results with all features

- Features must vary on parses of at least 5 sentences in training data
- In this experiment, 724,550 features
- Gaussian regularization, adjusted via cross-validation on section 23
- f-score on section 23 = 0.912 (15% error reduction over Charniak parser)

Conclusion

- It's possible to build (moderately) accurate, broad-coverage parsers
- Generative parsing models are easy to estimate, but make questionable independence assumptions
- Exponential models don't assume independence, so it's easy to add new features, but are difficult to estimate
- Coarse-to-fine conditional MLE for exponential models is a compromise
 - flexibility of exponential models
 - possible to estimate from treebank data
- Gives the currently best-reported parsing accuracy results

Sample parser errors

