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What is computational linguistics?

Computational linguistics studies the computational processes involved in

language production, comprehension and acquisition.

• assumption that language is inherently computational

• scientific side:

– modeling human performance (computational psycholinguistics)

– understanding how it can be done at all

• technological applications:

– speech recognition

– information extraction (who did what to whom) and question

answering

– machine translation (translation by computer)
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(Some of the) problems in modeling language

+ Language is a product of the human mind

⇒ any structure we observe is a product of the mind

− Language involves a transduction between form and meaning, but we

don’t know much about the way meanings are represented

+/− We have (reasonable?) guesses about some of the computational

processes involved in language

− We don’t know very much about the cognitive processes that language

interacts with

− We know little about the anatomical layout of language in the brain

− We know little about neural networks that might support linguistic

computations
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Aspects of linguistic structure

• Phonetics: the (production and perception) of speech sounds

• Phonology: the organization and regularities of speech sounds

• Morphology: the structure and organization of words

• Syntax: the way words combine to form phrases and sentences

• Semantics: the way meaning is associated with sentences

• Pragmatics: how language can be used to do things

In general the further we get from speech, the less well we understand

what’s going on!
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Aspects of syntactic and semantic structure
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• Anaphora: it refers to baked beans

• Predicate-argument structure: the students is agent of eat

• Discourse structure: second clause is contrasted with first

These all refer to phrase structure entities! Parsing is the process of

recovering these entities.
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Context free grammars

A context-free grammar G = (V ,S, s,R) consists of:

• V , a finite set of terminals (V0 = {Sam, Sasha, thinks, snores})

• S, a finite set of non-terminals disjoint from V (S0 = {S,NP,VP,V})

• R, a finite set of productions of the form A→ X1 . . .Xn, where A ∈ S

and each Xi ∈ S ∪ V

• s ∈ S is called the start symbol (s0 = S)

G generates a tree ψ iff

• The label of ψ’s root node is s

• For all local trees with parent A

and children X1 . . .Xn in ψ

A→ X1 . . . Xn ∈ R

G generates a string w ∈ V⋆ iff w is

the terminal yield of a tree generated

by G

NP VP

S

Sam V S

NP VP

Sasha V

snores

thinks

Productions

S→ NP VP

NP→ Sam

V→ thinks

V→ snores

VP→ V S

VP→ V

NP→ Sasha
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CFGs as “plugging” systems

Sam+ hates+ George+

V+ NP+

V− NP−

VP−NP−

NP+ VP+

Sam− hates− George−

S+

Sam hates George

V NP

VPNP

S

“Pluggings” Resulting tree

S→ NP VP

VP→ V NP

NP→ Sam

NP→ George

V→ hates

V→ likes

Productions

S−

• Goal: no unconnected “sockets” or “plugs”

• The productions specify available types of components

• In a probabilistic CFG each type of component has a “price”
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Structural Ambiguity

R1 = {VP → V NP,VP → VP PP,NP → D N,N → N PP, . . .}
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• CFGs can capture structural ambiguity in language.

• Ambiguity generally grows exponentially in the length of the string.

– The number of ways of parenthesizing a string of length n is

Catalan(n)

• Broad-coverage statistical grammars are astronomically ambiguous.
10



Derivations

A CFG G = (V ,S, s,R) induces a rewriting relation ⇒G, where

γAδ ⇒G γβδ iff A→ β ∈ R and γ, δ ∈ (S ∪ V)⋆.

A derivation of a string w ∈ V⋆ is a finite sequence of rewritings

s⇒G . . .⇒G w. ⇒⋆
G is the reflexive and transitive closure of ⇒G.

The language generated by G is {w : s⇒⋆ w,w ∈ V⋆}.

G0 = (V0,S0, S,R0), V0 = {Sam, Sasha, likes, hates}, S0 = {S,NP,VP,V},

R0 = {S → NP VP,VP → V NP,NP → Sam,NP → Sasha,V → likes,V → hates}

S

⇒ NP VP

⇒ NP V NP

⇒ Sam V NP

⇒ Sam V Sasha

⇒ Sam likes Sasha

Steps in a terminating

derivation are always cuts in

a parse tree

Left-most and right-most

derivations are normal forms

S

NP VP

V NPSam

likes Sasha
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Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) G consists of

• a CFG (V ,S, S,R) with no useless productions, and

• production probabilities p(A→ β) = P(β|A) for each A→ β ∈ R,

the conditional probability of an A expanding to β

A production A→ β is useless iff it is not used in any terminating

derivation, i.e., there are no derivations of the form

S ⇒⋆ γAδ ⇒ γβδ ⇒∗ w for any γ, δ ∈ (V ∪ S)⋆ and w ∈ V⋆.

If r1 . . . rn is a sequence of productions used to generate a tree ψ, then

PG(ψ) = p(r1) . . . p(rn)

=
∏

r∈R

p(r)fr(ψ)

where fr(ψ) is the number of times r is used in deriving ψ
∑
ψ PG(ψ) = 1 if p satisfies suitable constraints
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Example PCFG

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores

P





S

NP VP

George V

barks





= 0.45 P





S

NP VP

Al V

snores





= 0.1
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(Mealy) finite-state automata

A (Mealy) automaton M = (V ,S, s0,F ,M) consists of:

• V , a set of terminals, (V3 = {a, b})

10

a

b

a

• S, a finite set of states, (S3 = {0, 1})

• s0 ∈ S, the start state, (s03
= 0)

• F ⊆ S, the set of final states (F3 = {1}) and

• M ⊆ S × V × S, the state transition relation.

(M3 = {(0, a, 0), (0, a, 1), (1, b, 0)})

A accepting derivation of a string v1 . . . vn ∈ V⋆ is a sequence of states

s0 . . . sn ∈ S⋆ where:

• s0 is the start state

• sn ∈ F , and

• for each i = 1 . . . n, (si−1, vi, si) ∈ M.

00101 is an accepting derivation of aaba.

14



What’s interesting about finite-state

automata?

• Finite state automata are probably the simplest devices that generate

an infinite number of strings

• They are conceptually and computationally simpler than context-free

grammars

• They are expressive enough for many useful tasks:

– Speech recognition

– Phonology and morphology

– Lexical processing

• Very large FSA can be built and used very efficiently

• Good software tools exist for using and manipulating FSA
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Probabilistic Mealy automata

A probabilistic Mealy automaton M = (V ,S, s0, pf , pm) consists of:

• terminals V , states S and start state s0 ∈ S as before,

• pf (s), the probability of halting at state s ∈ S, and

• pm(v, s′|s), the probability of moving from s ∈ S to s′ ∈ S and emitting

a v ∈ V .

where pf (s) +
∑
v∈V,s′∈S pm(v, s′|s) = 1 for all s ∈ S (halt or move on)

The probability of a derivation with states s0 . . . sn and outputs v1 . . . vn is:

PM (s0 . . . sn; v1 . . . vn) =

(
n∏

i=1

pm(vi, si|si−1)

)
pf (sn)

Example: pf (0) = 0, pf (1) = 0.1,

pm(a, 0|0) = 0.2, pm(a, 1|0) = 0.8, pm(b, 0|1) = 0.9

PM (00101, aaba) = 0.2 × 0.8 × 0.9 × 0.8 × 0.1
10

a

b

a
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Probabilistic FSA as PCFGs

Given a Mealy PFSA M = (V ,S, s0, pf , pm), let GM have the same

terminals, states and start state as M , and have productions

• s→ ǫ with probability pf (s) for all s ∈ S

• s→ v s′ with probability pm(v, s′|s) for all s, s′ ∈ S and v ∈ V

p(0 → a 0) = 0.2, p(0 → a 1) = 0.8, p(1 → ǫ) = 0.1, p(1 → b 0) = 0.9

10
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Mealy FSA

0

a 1

b 0

a 1

a

0

PCFG parse of aaba

The FSA graph depicts the machine (i.e., all strings it generates), while the

CFG tree depicts the analysis of a single string.
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Computing the probability of a tree

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores
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Things we want to compute

1. What is the probability PG(w) of the string w? (language modeling)

PG(w) = PG(s⇒∗ w) =
∑

ψ∈ΨG(w)

PG(ψ)

2. What is the most probable parse ψ̂(w) of a string w? (parsing)

ψ̂(w) = argmax
ψ∈ΨG(w)

PG(ψ)

where:

ΨG(w) is the set of parse trees for w generated by G, and

PG(ψ) is the probability of tree ψ wrt grammar G.

Naive algorithm:

1. Compute set of parse trees ΨG(w) for w

2. Take max/sum as appropriate
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String positions

String positions are a systematic way of representing substrings in a string.

A string position of a string w = x0 . . . xn−1 is an integer 0 ≤ i ≤ n.

A substring of w is represented by a pair (i, j) of string positions, where

0 ≤ i ≤ j ≤ n.

wi,j represents the substring wi . . . wj−1

likes mangoes

0 1 2 3

Howard

w1 w2w0

Example:

w0,1 = Howard, w1,3 = likes mangoes, w0,0 = w1,1 = w2,2 = w3,3 = ǫ

• Nothing depends on string positions being numbers, so

• this all generalizes to speech recognizer lattices, which are graphs where

vertices correspond to word boundaries

the how us

house

a rose

arose
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PCFG “Inside” algorithm

The inside algorithm for computing the probability of a string is a

generalization of the backward algorithm.

Assume G = (V ,S, s,R, p) is in Chomsky Normal Form, i.e., all

productions are of the form A→ B C or A→ x, where A,B,C ∈ S, x ∈ V .

Goal: To compute P(w) =
∑

ψ∈ΨG(w)

P(ψ) = P(s⇒⋆ w)

Data structure: A table P(A⇒⋆ wi,j) for A ∈ S and 0 ≤ i < j ≤ n

Base case: P(A⇒⋆ wi,i+1) = p(A→ wi) for i = 0, . . . , n− 1

Recursion: P(A⇒⋆ wi,k)

=
k−1∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)P(B ⇒⋆ wi,j)P(C ⇒⋆ wj,k)

Return: P(s⇒⋆ w0,n)
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Dynamic programming recursion

PG(A⇒⋆ wi,k) =
k−1∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒⋆ wi,j)PG(C ⇒⋆ wj,k)

B C

A

wi,j wj,k

S

PG(A⇒⋆ wi,k) is called an “inside probability”.
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Example PCFG parse

1.0 S → NP VP 1.0 VP → V NP

0.7 NP → George 0.3 NP → John

0.5 V → likes 0.5 V → hates

George hates John

NP 0.7 V 0.5 NP 0.3

S 0.105

1 2 30

VP 0.15

Right string position

0 NP 0.7

2

1
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VP 0.15

1 2 3

V 0.5

NP 0.3

L
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p
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Two approaches to computational linguistics

“Rationalist”: Linguist formulates generalizations and expresses them in

a grammar

“Empiricist”: Collect a corpus of examples, linguists annotate them with

relevant information, a machine learning algorithm extracts

generalizations

• I don’t think there’s a deep philosophical difference here, but many

people do

• Continuous models do much better than categorical models

(statistical inference uses more information than categorical inference)

• Humans are lousy at estimating numerical probabilities, but luckily

parameter estimation is the one kind of machine learning that (sort of)

works
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Treebanks, prop-banks and discourse banks

• A treebank is a corpus of phrase structure trees

– The Penn treebank consists of about a million words from the Wall

Street Journal, or about 40,000 trees.

– The Switchboard corpus consists of about a million words of

treebanked spontaneous conversations, linked up with the acoustic

signal.

– Treebanks are being constructed for other languages also

• The Penn treebank is being annotated with predicate argument

structure (PropBank) and discourse relations.
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Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P





S

NP VP

rice grows




= 2/3

P





S

NP VP

corn grows




= 1/3

(The relative frequency estimator is also the MLE for PFSA, of course).
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Properties of MLE

The relative frequency estimator is the MLE for PCFGS, so it has the

following properties:

• Consistency: As the sample size grows, the estimates of the parameters

converge on the true parameters

• Asymptotic optimality: For large samples, there is no other consistent

estimator whose estimates have lower variance

• Sparse data is the big problem with the MLE.

– Rules that do not occur in the training data get zero probability

• Aside from this, MLEs for statistical grammars work well in practice.

– The Penn Treebank has ≈ 1.2 million words of Wall Street Journal

text annotated with syntactic trees

– The PCFG estimated from the Penn Treebank has ≈ 15,000 rules
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Unsupervised training and EM

Expectation Maximization (EM) is a general technique for approximating

the MLE when estimating parameters θ from the visible data x is difficult,

but estimating θ from augmented data z = (x, y) is easier (y is the hidden

data).

The EM algorithm given visible data x:

1. guess initial value θ0 of parameters (e.g., rule probabilities)

2. repeat for i = 0, 1, . . . until convergence:

Expectation step: For all y1, . . . , yn ∈ Y, generate pseudo-data

(x, y1), . . . , (x, yn), where (x, y) has “frequency” Pθi
(y|x)

Maximization step: Set θi+1 to the MLE from the pseudo-data

The EM algorithm finds the MLE θ̂ = argmaxθ Pθ(x) of the visible data x.

Sometimes it is not necessary to explicitly generate the pseudo-data (x, y);

often it is possible to perform the maximization step directly from

sufficient statistics (for PCFGs, the expected production frequencies)
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Dynamic programming for EG[nA→B C |w]

EG[nA→BC |w] =
∑

0≤i<j<k≤n

EG[Ai,k → Bi,jCj,k|w]

The expected fraction of parses of w in which Ai,k rewrites as Bi,jCj,k is:

EG[Ai,k → Bi,jCj,k|w]

=
P(S ⇒⋆ w1,iAwk,n)p(A→ BC)P(B ⇒⋆ wi,j)P(C ⇒⋆ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n31



Calculating PG(S ⇒⋆ w0,i Awk,n)

Known as “outside probabilities” (but if G contains unary productions,

they can be greater than 1).

Recursion from larger to smaller substrings in w.

Base case: P(S ⇒⋆ w0,0 S wn,n) = 1

Recursion: P(S ⇒⋆ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S
A→BC∈R

P(S ⇒⋆ w0,iAwk,n)p(A→ BC)P(B ⇒⋆ wi,j)

+
n∑

l=k+1

∑

A,D∈S
A→CD∈R

P(S ⇒⋆ w0,j Awl,n)p(A→ C D)P(D ⇒⋆ wk,l)
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Recursion in PG(S ⇒⋆ w0,iAwk,n)

P(S ⇒⋆ w0,j C wk,n) =
j−1∑

i=0

∑

A,B∈S
A→BC∈R

P(S ⇒⋆ w0,iAwk,n)p(A→ BC)P(B ⇒⋆ wi,j)

+
n∑

l=k+1

∑

A,D∈S
A→CD∈R

P(S ⇒⋆ w0,j Awl,n)p(A→ C D)P(D ⇒⋆ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n
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The EM algorithm for PCFGs

Infer hidden structure by maximizing likelihood of visible data:

1. guess initial rule probabilities

2. repeat until convergence

(a) parse a sample of sentences

(b) weight each parse by its conditional probability

(c) count rules used in each weighted parse, and estimate rule

frequencies from these counts as before

EM optimizes the marginal likelihood of the strings D = (w1, . . . , wn)

Each iteration is guaranteed not to decrease the likelihood of D, but EM

can get trapped in local minima.

The Inside-Outside algorithm can produce the expected counts without

enumerating all parses of D.

When used with PFSA, the Inside-Outside algorithm is called the

Forward-Backward algorithm (Inside=Backward, Outside=Forward)
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Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob

· · · · · ·

VP → V 0.2

VP → V NP 0.2

VP → NP V 0.2

VP → V NP NP 0.2

VP → NP NP V 0.2

· · · · · ·

Det → the 0.1

N → the 0.1

V → the 0.1

“English” input

the dog bites

the dog bites a man

a man gives the dog a bone

· · ·

“pseudo-Japanese” input

the dog bites

the dog a man bites

a man the dog a bone gives

· · ·
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Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “English”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06
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Rule probabilities from “Japanese”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
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Learning in statistical paradigm

• The likelihood is a differentiable function of rule probabilities

⇒ learning can involve small, incremental updates

• Learning new structure (rules) is hard, but . . .

• Parameter estimation can approximate rule learning

– start with “superset” grammar

– estimate rule probabilities

– discard low probability rules
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Applying EM to real data

• ATIS treebank consists of 1,300 hand-constructed parse trees

• ignore the words (in this experiment)

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.
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Experiments with EM

1. Extract productions from trees and estimate probabilities probabilities

from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE probabilities

3. Apply EM (to strings alone) to re-estimate production probabilities.

4. At each iteration:

• Measure the likelihood of the training data and the quality of the

parses produced by each grammar.

• Test on training data (so poor performance is not due to

overlearning).
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Likelihood of training strings

Iteration

log P

20151050

-14000

-14200

-14400

-14600

-14800

-15000

-15200

-15400

-15600

-15800

-16000
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Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7
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Why does EM do so poorly?

• EM assigns trees to strings to maximize the marginal probability of the

strings, but the trees weren’t designed with that in mind

• We have an “intended interpretation” of categories like NP, VP, etc.,

which EM has no way of knowing

• Our grammars are defective

– real language has dependencies that these PCFGs can’t capture

• How can information about the marginal distribution of strings P(w)

provide information about the conditional distribution of parses given

strings P(ψ|w)?

– need additional linking assumptions about the relationship between

parses and strings

• . . . but no one really knows.
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Subcategorization

Grammars that merely relate categories miss a lot of important linguistic

relationships.

R3 = {VP → V,VP → V NP,V → sleeps,V → likes, . . .}

S

NP VP

Al V

sleeps
*likes

S

NP VP

Al V NP

N

mangoes

likes
*sleeps

Verbs and other heads of phrases subcategorize for the number and kind of

complement phrases they can appear with.
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CFG account of subcategorization

General idea: Split the preterminal states to encode subcategorization.

[ ]

S

NP

Al

VP

V

sleeps

likes

[ NP]

NP

Al V

pizzas

N

NP

VP

S

R4 = {VP → V
[ ] ,VP → V

[ NP] NP, V
[ ] → sleeps, V

[ NP] → likes, . . .}

The “split preterminal states” restrict which contexts verbs can appear in.

As the non-terminal states are split, sparse data becomes a big problem

(essential to generalize beyond the cases seen in training data)
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Head to head dependencies and bilexical rules

Sam read bookaSasha

DT NN

NPNPVB

VPNP

S

Head=a Head=book

Head=bookHead=Sasha

Head=readHead=Sam

Head=read

Head=read

VP
Head=read

−→ VB
Head=read

NP
Head=Sasha

NP
Head=book

Number of possible rules grows rapidly; with a ≈ 104 word vocabulary

there are ≈ 108 possible bilexical rules.

Sparse data is biggest problem with such grammars; must generalize beyond

training data (smoothing and regularization)
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Summary and Conclusion

• Computational linguistics is great fun!

• . . . and maybe will help us understand deep things about language and

the mind

• Language possesses a rich compositional structure

• . . . and grammars are a way of describing that structure

• Probabilistic grammars give us a systematic way of distinguishing more

likely structures from less likely structures

• The number of parses (structures) can grow exponentially with

sentence length

• . . . but there are polynomial-time dynamic programming algorithms for

most of the important problems

• Sparse data is a big problem for realistic grammars

– little is known about combining unsupervised learning and

smoothing
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Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars (part 2)
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Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P





S

NP VP

rice grows




= 2/3

P





S

NP VP

corn grows




= 1/3
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Non-local constraints and PCFG MLE

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P





S

NP VP

rice grows




= 4/9

P





S

NP VP

bananas grow




= 1/9

partition function Z = 5/9
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Dividing by partition function Z

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3
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P





S

NP VP

rice grows




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P





S

NP VP
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


= 1/9 1/5

Z = 5/9
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Other values do better!

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 1/2

VP → grow 1 1/2

(Abney 1997)

P





S

NP VP

rice grows




= 2/6 2/3

P





S

NP VP

bananas grow




= 1/6 1/3

Z = 3/6
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Summary so far

• Maximum likelihood is a good way of estimating a grammar

• Maximum likelihood estimation of a PCFG from a treebank is easy if

the trees are accurate

• But real language has many more dependencies than treebank

grammar describes

⇒ relative frequency estimator not MLE

– Make non-local dependencies local by splitting categories

⇒ Astronomical number of possible categories

• Or find some way of dealing with non-local dependencies . . .
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Exponential models

• Rules are not independent ⇒ in general Z 6= 1

• Models with dependencies between features are called exponential

models

– Universe T (set of all possible parse trees)

– Features f = (f1, . . . , fm) (fj(t) = value of j feature on t ∈ T )

– Feature weights w = (w1, . . . , wm)

P(t) =
1

Z
expw · f(t)

Z =
∑

t′∈T

expw · f(t′)

Hint: Think of expw · f(t) as unnormalized probability of t
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PCFGs are exponential models

T = set of all trees generated by PCFG G

fj(t) = number of times the jth rule is used in t ∈ T

p(rj) = probability of jth rule in G

Set weight wj = log p(rj)

f





S

NP VP

rice grows




= [ 1︸︷︷︸

S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pw(t) =
m∏

j=1

p(rj)
fj(t) =

m∏

j=1

(expwj)
fj(t) = exp(w · f(t))

So a PCFG is just a special kind of exponential model with Z = 1.
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Advantages of exponential models

• Exponential models are very flexible . . .

• Features f can be any function of parses . . .

– whether a particular structure occurs in a parse

– conjunctions of prosodic and syntactic structure

• Parses t need not be trees, but can be anything at all

– Feature structures (LFG, HPSG)

• Exponential models are related to other popular models

– Harmony theory and optimality theory

– Maxent models
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Modeling dependencies

• It’s usually difficult to design a PCFG model that captures a particular

set of dependencies

– probability of the tree must be broken down into a product of

conditional probability distributions

– non-local dependencies must be expressed in terms of GPSG-style

feature passing

• It’s easy to make exponential models sensitive to new dependencies

– add a new feature functions to existing feature functions

– figuring out what the right dependencies are is hard, but

incorporating them into an exponential model is easy
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MLE of exponential models is hard

• An exponential model associates features f(t) = (f1(t), . . . , fm(t)) with

weights w = (w1, . . . , wm)

P(t) =
1

Z
expw · f(t)

Z =
∑

t′∈T

expw · f(t′)

• Given treebank (t1, . . . , tn), MLE chooses w to maximize

P(t1) × . . .× P(tn), i.e., make the treebank as likely as possible

• Computing P(t) requires the partition function Z

• Computing Z requires a sum over all parses T for all sentences

⇒ computing MLE of an exponential parsing model seems very hard
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Conditional ML estimation

• Conditional ML estimation chooses feature weights to maximize

P(t1|s1) × . . .× P(tn|sn), where si is string for ti

– choose feature weights to make ti most likely relative to parses

T (si) for si

⇒ CMLE doesn’t involve other sentences

P(t|s) =
1

Z(s)
expw · f(t)

Z(s) =
∑

t′∈T (s)

expw · f(t′)

• CMLE “only” involves repeatedly parsing training data

• With “wrong” models, CMLE often produces a more accurate parser

than joint MLE
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Conditional vs joint MLE

100×

VP

V

run 2×

V

see

NP

N

people

P

with

NP

N

telescopes

VP PP

VP

1×

VP

V

see

N

people

P

with

NP

N

telescopes

NP PP

NP

. . . × 2/105 × . . . . . . × 1/7 × . . .

. . . × 2/7 × . . . . . . × 1/7 × . . .

Rule count rel freq rel freq

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7
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Conditional ML estimation

s f(t̄) {f(t) : t ∈ T (s), t 6= t̄(s)}

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• Parser designer specifies feature functions f = (f1, . . . , fm)

• A parser produces trees T (s) for each sentence s ∈ (s1, . . . , sn)

• Treebank tells us correct tree t̄i ∈ T (si) for sentence si

• Feature functions f apply to each tree t ∈ T (s), producing feature

values f(t) = (f1(t), . . . , fm(t))

• MCLE estimates feature weights ŵ = (ŵ1, . . . , ŵm)
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Regularization

• With a large number of features, exponential models can over-fit

• Regularization: add bias term to ensure ŵ is finite and small

• In following experiments, regularizer is a polynomial penalty term

ŵ = argmax
w

log
n∑

i=1

Pw(ti|si) − c
m∑

j=1

|wj |
p

= argmax
w

n∑

i=1




m∑

j=1

wjfj(ti) − logZw(s)



− c
m∑

j=1

|wj |
p

• p = 2 gives a Gaussian prior.

• We maximize this expression using numerical optimization (Limited

Memory Variable Metric)
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Coarse-to-fine parsing

• Z(s) is still hard to compute ⇒ make T (s) even smaller!

• Restrict attention to 50-best parses produced by Charniak parser (a

good PCFG-based parser)

• Exponential model is trained using CMLE to pick out best parse from

Charniak’s 50-best parses

s

. . .

. . .

. . .w · f(t1) w · f(t50)

f(t1)

t1 t50

f(t50)

Charniak parser

Parse scores

Features

Trees

Sentence
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Parser evaluation

• A node’s edge is its label and beginning and ending string positions

• E(t) is the set of edges associated with a tree t

• If t is a parse tree and t̄ is the correct tree, then

precision Pt̄(t) = |E(t)|/|E(t) ∩ E(t̄)|

recall Rt̄(t) = |E(t̄)|/|E(t) ∩ E(t̄)|

f-score Ft̄(t) = 2/(Pt̄(t)
−1 + Rȳ(t)−1) (geometric mean of P and R)

Edges

(0 NP 2)

(2 VP 3)

(0 S 3)

ROOT

S

NP

DT

the

N

dog

VP

VB

barks
30 1 2
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Performance of Charniak parser

• F-score of Charniak’s most probable parse = 0.896 (cross-validated on

PTB sections 2-19)

• Oracle f-score of Charniak’s 50-best parses = 0.965 (66% redn)

Beam size
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Expt 1: Only “old” features

• Features: 1 log Charniak probability, 10, 124 Rule features

• Charniak’s parser already conditions on local trees!

• Feature selection: features must vary on 5 or more sentences

• Results: f -score = 0.894; baseline = 0.890; ≈ 4% error reduction

⇒ discriminative training alone can improve accuracy
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NNS

feelings

.

.
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Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Ancestor annotation provides a little “vertical context”

• Context annotation indicates constructions that only occur in main

clause (c.f., Emonds)

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP
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JJ
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and

JJ

fuzzy

NNS

feelings

.

.

Heads

Ancestor

Context

Rule
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Experimental results with all features

• Features must vary on parses of at least 5 sentences in training data

• In this experiment, 724,550 features

• Gaussian regularization, adjusted via cross-validation on section 23

• f-score on section 23 = 0.912 (15% error reduction over Charniak

parser)
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Conclusion

• It’s possible to build (moderately) accurate, broad-coverage parsers

• Generative parsing models are easy to estimate, but make questionable

independence assumptions

• Exponential models don’t assume independence, so it’s easy to add

new features, but are difficult to estimate

• Coarse-to-fine conditional MLE for exponential models is a compromise

– flexibility of exponential models

– possible to estimate from treebank data

• Gives the currently best-reported parsing accuracy results
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Sample parser errors
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