Bayesian Decision Theory and Sequential Sampling

Angela Yu

July 19, 2007

Introduction

Speed

VS.

Accurac

- · Faster responses save time, but more errors
- · What is optimal policy?
- · What computations are involved?
- Are humans/animals optimal?
- How is it neurally implemented?

Outline

- Review of Bayesian Decision Theory: examples
- Temporal cost: problem & solution
- Ex (1): 2-alternative forced choice
 - optimal policy (SPRT)
 - behavior & neurobiology
- Ex (2): 2AFC with finite deadline
 - optimal policy (SPRT + decaying threshold)
 - behavior & neurobiology

Bayesian Decision Theory

Decision policy

A **policy** $\pi: x \to d$ is a mapping from input x into decision d, where x is a sampled from the distribution p(x|s).

Loss function

The *loss function* l(d(x); s) depends on the decision d(x) and the hidden variable s.

Expected loss:

The *expected loss* associated with a policy π is averaged over the prior distribution p(s) and the likelihood p(x|s):

$$L(\pi) = \langle l(d(x); s) \rangle_{x,s}$$

The optimal policy minimizes this expected loss.

Examples

Ex. 1: loss function is mean square error

$$l(\hat{s}(x);s) = (\hat{s} - s)^2$$

For each observation x, we need to minimize:

$$\langle l(\hat{s}(x);s)\rangle = \int (\hat{s}-s)^2 p(s|x) ds$$

Differentiating and setting to 0, we find loss is minimized if:

$$\hat{s}(x) = \int sp(s|x)ds = \langle s \rangle_{p(s|x)}$$

Optimal policy is to report the *mean* of posterior p(s|x).

Examples

Ex. 2: loss function is absolute error: $|\hat{s} - s|$

Optimal policy is to report the *median* of posterior p(s|x).

Ex. 3: loss function is 0-1 error: 0 if correct, 1 all other choices

Optimal policy is to report the *mode* of posterior p(s|x).

An Example: Binary Hypothesis Testing

Decision Problem:

Incorporate evidence iteratively (Bayes' Rule):

$$q_t \triangleq P(s=1|x_1,\ldots,x_t) = \frac{p(x_t|s=1)q_{t-1}}{p(x_t|x_1,\ldots,x_{t-1})}$$

Loss Function and Optimal Policy

Loss function penalizes both error and delay:

$$l(\hat{s}, \tau; s) = \delta(\hat{s} - s) + c\tau$$

Expected loss:

$$L(\pi) = P_{\pi}(\hat{s} \neq s) + c\langle \tau \rangle_{\pi}$$

Optimal Policy (Bellman equation):

After observing inputs $x_1, ..., x_t$,

continue (observe x_{t+1}) only if the *continuation cost* \leq *stopping cost*

Stopping cost:
$$\begin{aligned} Q_s(q_t) &= \min\{q_t, 1 - q_t\} + ct \\ \hat{s} &= 0 \end{aligned}$$

$$\hat{s} = 0$$
 $\hat{s} = 1$

Continuation cost: $Q_c(q_t) = \inf_{\tau > t} \langle l(\hat{s}, \tau; s) | q_t \rangle_{s,x}$

An Intractable Solution in Practice

$$Q_c(q_t) = \inf_{\tau > t} \langle l(\hat{s}, \tau; s) | q_t \rangle_{s,x}$$

Useful Properties of Q_s and Q_c ?

Wald & Wolfowitz (1948):

Continuation region is an **interval** (a, b) on the unit interval:

At time t, continue if $q_t < a$ and $q_t > b$,

stop and report $\hat{s} = 1$ if $q_i > b$, report $\hat{s} = 0$ if $q_i < a$.

Sequential Probability Ratio Test

 $\text{Log posterior ratio} \quad r_t \triangleq \log \tfrac{q_t}{1-q_t} \qquad q_t = \tfrac{p(x_t|s\!=\!1)q_{t-1}}{Z_t}$

undergoes a random walk:
$$r_t = \log \frac{p(x_t|s=1)}{p(x_t|s=0)} + r_{t-1} \quad r_0 = \log \frac{P(s=1)}{P(s=0)}$$

 r_t is monotonically related to q_t , so we have (a',b'), a'>0, b'<0.

In continuous-time, a drift-diffusion process w/ absorbing boundaries.

Generalize Loss Function

We assumed loss is *linear* in error and delay:

$$L(\pi) = P_{\pi}(\hat{s} \neq s) + c\langle \tau \rangle_{\pi}$$

What if it's non-linear, e.g. maximize reward rate:

$$\frac{1 - P(\hat{s} \neq s)}{\langle \tau \rangle}$$

(Bogacz et al, 2006)

Wald also proved a dual statement:

Amongst all decision policies satisfying the criterion $P(\hat{s} \neq s) \leq \alpha$ SPRT (with some thresholds) minimizes the expected sample size < >>.

This implies that the SPRT is optimal for all loss functions that increase with inaccuracy and delay (proof by contradiction).

Do People/Animals Behave Optimally?

A favorite task: Random dots coherent motion detection

Properties: info/time slowed down, linear, and easily controlled

Do People/Animals Behave Optimally? Accuracy vs. Coherence <RT> vs. Coherence

Saccade generation system

LIP - neural SPRT integrator? (Roitman & Shalden, 2002; Gold & Shadlen, 2004)

Caveat: Model Fit Imperfect

Fix 1: Variable Drift Rate

(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007) (idea from Ratcliff & Rouder, 1998)

