Bayesian Decision Theory
and

Sequential Sampling

Angela Yu

July 19, 2007

Introduction

Speed VS. Accuracy

« Faster responses save time, but more errors
* What is optimal policy?
» What computations are involved?

* Are humans/animals optimal?

* How is it neurally implemented?

Outline

» Review of Bayesian Decision Theory: examples
» Temporal cost: problem & solution
* Ex (1): 2-alternative forced choice
— optimal policy (SPRT)
— behavior & neurobiology
¢ Ex (2): 2AFC with finite deadline
— optimal policy (SPRT + decaying threshold)

— behavior & neurobiology

Bayesian Decision Theory
Decision policy
A policy 7 : x — d is a mapping from input x into decision d,
where x is a sampled from the distribution p(x|s).
Loss function:

The loss function 1(d(x); s) depends on the decision d(x) and
the hidden variable s.

Expected loss:

The expected loss associated with a policy 7 is averaged over

the prior distribution p(s) and the likelihood p(x|s):
L(m) =< 1(d(z);8) >z.s

The optimal policy minimizes this expected loss.

Examples
Ex. 1: loss function is mean square error
I(3(x); 5) = (3 — 5)2

For each observation x, we need to minimize:
((3(x); ) = [(5 = 5)%p(slar)ds
Differentiating and setting to 0, we find loss is minimized if:
§(x) = [ sp(s|a)ds = (8)p(s|z)

Optimal policy is to report the mean of posterior p(s|x).
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Examples
Ex. 2: loss function is absolute error: |§ — s|

Optimal policy is to report the median of posterior p(s|x).

p(s|z) ooz N
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Ex. 3: loss function is 0-1 error: 0 if correct, 1 all other choices

Optimal policy is to report the mode of posterior p(s|x).

0.04,

(512 40
’ /\_/K

0 5
S

0,
-5




Time Matters — Repeated Decisions
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An Example: Binary Hypothesis Testing

Decision Problem:

Incorporate evidence iteratively (Bayes’ Rule):

zils=1)q—
qt éP(s:l‘x]M“,xt) = M
plxe|zy, ... xe—1)

Loss Function and Optimal Policy

Loss function penalizes both error and delay:
1(8,7;8) =6(5—s)+cT
Expected loss:
L(m) = Pr(5§ #3) + c(T)r
Optimal Policy (Bellman equation):
After observing inputs x,, ..., x,,

continue (observe x,. ) only if the i ion cost < ing cost

Pl

Stopping cost:  (QQs(q:) = min{q;, 1 — q;} + ct
A
§=0 §=1
Continuation cost:  Q.(q;) = infr~{(1(8,7;5)|q1) s,z

An Intractable Solution in Practice

Q(:(Qt) = inf7>t(l(,§, ) 5)‘qt>s‘m
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Time
Too hard!

Useful Properties of O, and Q,?
Wald & Wolfowitz (1948):

Continuation region is an interval (a, b) on the unit interval:
At time t, continue if ¢, < a and g, > b,

stop and report 5 =1if ¢ >b, report $=0 if ¢,<a.
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Sequential Probability Ratio Test

Log posterior ratio 7¢ £ Jog 1?{]{ G = %
undergoes a random walk:
_ p(z¢|s=1) _1no £(s=1)
ry = log Py T 1 To= log P0)

r, is monotonically related to g,, so we have (a’,b"), a >0, b’<0.
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In continuous-time, a drift-diffusion process w/ absorbing boundaries.




Generalize Loss Function
We assumed loss is linear in error and delay:
L(m) = Pr(5# 8) + c(T)x

What if it’s non-linear, e.g. maximize reward rate:

1—P(8#s)
() (Bogacz et al, 2006)
Wald also proved a dual statement:

Amongst all decision policies satisfying the criterion P(§ # s) < «

SPRT (with some thresholds) minimizes the expected sample size <t>.

This implies that the SPRT is optimal for all loss functions that

increase with inaccuracy and delay (proof by contradiction).

Do People/Animals Behave Optimally?
A favorite task: Random dots coherent motion detection

RT
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Properties: info/time slowed down, linear, and easily controlled

Do People/Animals Behave Optimally?

Accuracy vs. Coherence
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<RT> vs. Coherence
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(Roitman & Shadlen, 2002)

Neural Implementation

Saccade generation system
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LIP - neural SPRT integrator? (Roitman & Shalden, 2002; Gold & Shadlen, 2004)
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Caveat: Model Fit Imperfect

(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007)

Accuracy Mean RT RT Distributions

% correct
Mean RT [ms]

” ==]

Motion strength [% coh] Motion strength [% coh]

“ wrime ~ atims

Fix 1: Variable Drift Rate

(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007)
(idea from Ratcliff & Rouder, 1998)
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Fix 2: Increasing Drift Rate

(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007)
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A Principled Approach

Trials aborted w/o response or reward if monkey breaks fixation

(Data from Roitman & Shadlen, 2002)
(Analysis from Ditterich, 2007)

Abort time [ms] (with respect to stimulus onset)

* More “urgency” over time as risk of aborting trial increases

* Increasing gain equivalent to decreasing threshold

Imposing a Stochastic Deadline
(Frazier & Yu, 2007)

Loss function depends on error, delay, and whether deadline exceed
L(n) = Pr(§ # 8)P(r < D)+ ¢{1)x + dP(7 > D)

Optimal Policy is a sequence of monotonically decaying thresholds

Probability
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Timing Uncertainty
(Frazier & Yu, 2007)

Timing uncertainty — more conservative policy (lower threhsolds)
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Theory applies to a large class of deadline distributions:

delta, gamma, exponential, normal

Some Intuitions for the Proof
(Frazier & Yu, 2007)

Continuing vs. Stopping

Continuation
Region

Shrinking!

Summary

« Review of Bayesian Decision Theory: optimality depends on loss function
¢ Decision time complicates things: infinite repeated decisions

¢ Binary hypothesis testing, optimal policy is SPRT with fixed thresholds

« Behavioral & neural data suggestive, but ...

e ... imperfectly fit. Variable/increasing drift rate both ad hoc accounts

¢ Impose deadline (with timing uncertainty) yields decaying thresholds

¢ Current/future work: generalize theory, test model with experiments







