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Introduction

Speed Accuracyvs.

•  Faster responses save time, but more errors 

•  What is optimal policy?

•  What computations are involved?

•  Are humans/animals optimal?

•  How is it neurally implemented? 

Outline

•  Review of Bayesian Decision Theory: examples

•  Temporal cost: problem & solution

•  Ex (1): 2-alternative forced choice

–  optimal policy (SPRT)

–  behavior & neurobiology

•  Ex (2): 2AFC with finite deadline

– optimal policy (SPRT + decaying threshold)

– behavior & neurobiology

Bayesian Decision Theory
Decision policy

Loss function:

Expected loss:

A policy π : x → d is a mapping from input x into decision d,
where x is a sampled from the distribution p(x|s). 

The loss function l(d(x); s) depends on the decision d(x) and
the hidden variable s.

The expected loss associated with a policy π is averaged over
the prior distribution p(s) and the likelihood p(x|s):

The optimal policy minimizes this expected loss.

Examples
Ex. 1: loss function is mean square error

For each observation x, we need to minimize:

Differentiating and setting to 0, we find loss is minimized if:

Optimal policy is to report the mean of posterior p(s|x).

Examples
Ex. 2: loss function is absolute error:

Optimal policy is to report the median of posterior p(s|x).

Ex. 3: loss function is 0-1 error: 0 if correct, 1 all other choices

Optimal policy is to report the mode of posterior p(s|x).
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Time Matters → Repeated Decisions

A B A B A B

wait wait

+: more info

-: more time

An Example: Binary Hypothesis Testing

Decision Problem:

xτ…x1

s

x2 x3

Incorporate evidence iteratively (Bayes’ Rule):

Loss function penalizes both error and delay:

Optimal Policy (Bellman equation):

Loss Function and Optimal Policy

Stopping cost:

Expected loss:

Continuation cost:

After observing inputs x1, …, xt,

continue (observe xt+1) only if the continuation cost < stopping cost 

An Intractable Solution in Practice
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Too hard!
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Useful Properties of Qs and Qc?
Wald & Wolfowitz (1948):

Continuation region is an interval (a, b) on the unit interval:

At time t, continue if qt < a and qt > b, 

stop and report    =1if qt>b, report   =0 if qt<a. 

Sequential Probability Ratio Test
Log posterior ratio

undergoes a random walk:

rt is monotonically related to qt, so we have (a’,b’), a’>0, b’<0.

b’

a’

0rt

In continuous-time, a drift-diffusion process w/ absorbing boundaries.
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Generalize Loss Function
We assumed loss is linear in error and delay:

Wald also proved a dual statement:

Amongst all decision policies satisfying the criterion

SPRT (with some thresholds) minimizes the expected sample size <τ>.

This implies that the SPRT is optimal for all loss functions that
increase with inaccuracy and delay (proof by contradiction).

(Bogacz et al, 2006)

What if it’s non-linear, e.g. maximize reward rate:

Do People/Animals Behave Optimally?
A favorite task: Random dots coherent motion detection

Properties: info/time slowed down, linear, and easily controlled

Do People/Animals Behave Optimally?

Accuracy vs. Coherence <RT> vs. Coherence

(Roitman & Shadlen, 2002)

Neural Implementation
Saccade generation system

LIP - neural SPRT integrator? (Roitman & Shalden, 2002; Gold & Shadlen, 2004)

Time

LIP Response & Behavioral RT LIP Response & Coherence

Caveat: Model Fit Imperfect

Accuracy Mean RT RT Distributions

(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007) 

Fix 1: Variable Drift Rate
(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007) 

(idea from Ratcliff & Rouder, 1998)

Accuracy Mean RT RT Distributions
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Fix 2: Increasing Drift Rate
(Data from Roitman & Shadlen, 2002; analysis from Ditterich, 2007) 

Accuracy Mean RT RT Distributions

A Principled Approach
Trials aborted w/o response or reward if monkey breaks fixation

(Data from Roitman & Shadlen, 2002)
(Analysis from Ditterich, 2007) 

•  More “urgency” over time as risk of aborting trial increases
•  Increasing gain equivalent to decreasing threshold 

Imposing a Stochastic Deadline
(Frazier & Yu, 2007)

Loss function depends on error, delay, and whether deadline exceed

Optimal Policy is a sequence of monotonically decaying thresholds

Time
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Timing Uncertainty
(Frazier & Yu, 2007)

Timing uncertainty → more conservative policy (lower threhsolds)

Time
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Theory applies to a large class of deadline distributions:
delta, gamma, exponential, normal

Some Intuitions for the Proof
(Frazier & Yu, 2007)

Continuation
Region

Shrinking!

•  Review of Bayesian Decision Theory: optimality depends on loss function

•  Decision time complicates things: infinite repeated decisions

•  Binary hypothesis testing, optimal policy is SPRT with fixed thresholds

•  Behavioral & neural data suggestive, but …

•  … imperfectly fit.  Variable/increasing drift rate both ad hoc accounts

•  Impose deadline (with timing uncertainty) yields decaying thresholds

•  Current/future work: generalize theory, test model with experiments

Summary
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