
7/25/07 12:30 AM

1

1

Reinforcement Learning with
Partial Programs

 Stuart Russell

Computer Science Division, UC Berkeley

 Joint work with Ron Parr, David Andre, Bhaskara Marthi,

 Andy Zimdars, David Latham, Carlos Guestrin
2

Scaling up

Human life: one trillion actions

World: gazillions of state variables

3

Structured behavior
Behavior is usually very structured and deeply nested:

 Moving my tongue

 Shaping this syllable

 Saying this word

 Saying this sentence

 Making a point about nesting

 Explaining structured behavior

 Giving this talk

4

Structured behavior
Behavior is usually very structured and deeply nested:

 Moving my tongue

 Shaping this syllable

 Saying this word

 Saying this sentence

 Making a point about nesting

 Explaining structured behavior

 Giving this talk

Modularity: Choice of tongue motions is independent of

almost all state variables, given the choice of word.

5

Running example
Peasants can move,
pickup and dropoff

Penalty for collision

Cost-of-living each step

Reward for dropping off
resources

Goal : gather 10 gold +
10 wood

(3L)n++ states s

7n primitive actions a

(Warren s 4th quadrant)
6

Reinforcement Learning

Learning

algorithm

Policy

a

s,r

7/25/07 12:31 AM

2

7

Q-functions

Can represent policies using a Q-function

Q (s,a) = “Expected total reward if I do action a in

environment state s and follow policy thereafter”

Q-learning provides a model-free solution method

Fragment of example Q-function

.........

1.9(South, West)Peas1Loc=(5,1), Peas2Loc=(1,2), Gold=8, Wood=3

-12(West, North)Peas1Loc=(4,4), Peas2Loc=(6,3), Gold=4, Wood=7

7.5(East,Pickup)Peas1Loc=(2,3),Peas2Loc=(4,2),Gold=8,Wood=3

.........

Q(s,a)as

8

Temporal abstraction in RL

Define temporally extended actions, e.g.,

“get gold”, “get wood”, “attack unit x” etc.

Set up a decision process with choice

states and extended choice-free actions

Resulting decision problem is semi-

Markov (Forestier & Varaiya, 1978)

Temporal abstraction in RL (HAMs (Parr &

Russell); Options (Sutton & Precup); MAXQ (Dietterich))

9

Partial programs

Choices only in some states

 => prior constraints on behavior

 => partially specified programs

Partial programming language

 = programming language + free choices

ALisp (Andre & Russell, 2002)

 Concurrent ALisp (Marthi et al., 2005)

Loose analogy to Bayes Nets
Domain experts supply structure (partial programs)

Learning fills in numerical details

Factored representation of Q-function => faster learning
(Dietterich, 2000)

10

RL and partial programs

Learning

algorithm

Completion

a

s,r

Partial
program

11

(defun top ()

 (loop do

 (choose ‘top-choice

(gather-wood)

(gather-gold))))

(defun gather-wood ()

 (with-choice ‘forest-choice

(dest *forest-list*)

 (nav dest)

 (action ‘get-wood)

 (nav *base-loc*)

 (action ‘dropoff)))

(defun gather-gold ()

 (with-choice ‘mine-choice

(dest *goldmine-list*)

 (nav dest))

 (action ‘get-gold)

 (nav *base-loc*))

 (action ‘dropoff)))

(defun nav (dest)

 (until (= (pos (get-state))
 dest)

 (with-choice ‘nav-choice

 (move ‘(N S E W NOOP))

 (action move))))

Single-threaded Alisp program

Program state includes

Program counter

Call stack

Global variables
12

Q-functions

Represent completions using Q-function

Joint state = [s,] env state + program state

MDP + partial program = SMDP over { }

Q (,u) = “Expected total reward if I make choice u in

and follow completion thereafter”

Modified Q-learning [AR 02] finds optimal completion

Example Q-function

.........

-42Gather-woodAt resource-choice, Gold=7, Wood=3

15NorthAt nav-choice, Pos=(2,3), Dest=(6,5)

.........

Q(,u)u

7/25/07 12:31 AM

3

13

Internal state

Availability of internal state (e.g., goal stack) can

greatly simplify value functions and policies

E.g., while navigating to location (x,y), moving

towards (x,y) is a good idea

Natural local shaping potential (distance from

destination) impossible to express in external

terms

14

Top Top
Top

GatherWood GatherGold

Nav(Forest1) Nav(Mine2)

Qr Qc Qe

Q

• Temporal decomposition Q = Qr+Qc+Qe where

• Qr(,u) = reward while doing u (may be many steps)

• Qc(,u) = reward in current subroutine after doing u

• Qe(,u) = reward after current subroutine

Temporal Q-decomposition

15

State abstraction

• Temporal decomposition => state abstraction

 E.g., while navigating, Qc independent of

gold reserves

In general, local Q-components can depend

on few variables => fast learning

16

Get-wood

Handling multiple effectors

Multithreaded agent programs

Threads = tasks

Each effector assigned to a thread

Threads can be created/destroyed

Effectors can be reassigned

Effectors can be created/destroyed

Get-gold Get-wood

(Defend-Base)

17

(defun top ()

 (loop do

 (until (my-effectors)

 (choose ‘dummy))

 (setf peas

(first (my-effectors))

 (choose ‘top-choice

 (spawn gather-wood peas)

 (spawn gather-gold peas))))

(defun gather-wood ()

 (with-choice ‘forest-choice

(dest *forest-list*)

 (nav dest)

 (action ‘get-wood)

 (nav *base-loc*)

 (action ‘dropoff)))

(defun top ()

 (loop do

 (choose ‘top-choice

 (gather-gold)

 (gather-wood))))

(defun gather-wood ()

 (with-choice ‘forest-choice

(dest *forest-list*)

 (nav dest)

 (action ‘get-wood)

 (nav *base-loc*)

 (action ‘dropoff)))

(defun gather-gold ()

 (with-choice ‘mine-choice

(dest *goldmine-list*)

 (nav dest)

 (action ‘get-gold)

 (nav *base-loc*)

 (action ‘dropoff)))

(defun nav (dest)

 (until (= (my-pos) dest)

 (with-choice ‘nav-choice

 (move ‘(N S E W NOOP))

 (action move))))

An example Concurrent ALisp programAn example single-threaded ALisp program

18

defun gather-wood ()

 (setf dest (choose *forests*))

 (nav dest)

 (action ‘get-wood)

 (nav *home-base-loc*)

 (action ‘put-wood))

(defun gather-gold ()

 (setf dest (choose *goldmines*))

 (nav dest)

 (action ‘get-gold)

 (nav *home-base-loc*)

 (action ‘put-gold))

(defun nav (Wood1)

 (loop

 until (at-pos Wood1)

 (setf d (choose ‘(N S E W R)))

 do (action d)

))

(defun nav (Gold2)

 (loop

 until (at-pos Gold2)

 (setf d (choose ‘(N S E W R)))

 do (action d)

))

Thread 2

Thread 1

Environment timestep 27Environment timestep 26

Peasant 1

Peasant 2

PausedMaking joint choice

PausedMaking joint choice

Running

Running

Waiting for joint action

Waiting for joint action

Concurrent Alisp semantics

7/25/07 12:31 AM

4

19

Threads execute independently until they

hit a choice or action

Wait until all threads are at a choice or

action

If all effectors have been assigned an action,

do that joint action in environment

Otherwise, make joint choice

Concurrent Alisp semantics

20

Q-functions

To complete partial program, at each choice state , need
to specify choices for all choosing threads

So Q(,u) as before, except u is a joint choice

Suitable SMDP Q-learning gives optimal completion

Example Q-function

.........

15.7(Peas1:East,

Peas3:Forest2)

Peas1 at NavChoice, Peas2 at

DropoffGold, Peas3 at ForestChoice,

Pos1=(2,3), Pos3=(7,4), Gold=12, Wood=14

.........

Q(,u)u

21

Making joint choices at runtime

At state , want to choose argmaxu Q(,u)

joint choices exponential in # choosing threads

See Parr, R. (2006) “Shameless plug.” Proc. NSF

Workshop on ADP, Cocoyoc, Mexico.

22

Problems with concurrent activities

Temporal decomposition of Q-function lost

No credit assignment among threads
Suppose peasant 1 drops off some gold at base, while
peasant 2 wanders aimlessly

Peasant 2 thinks he s done very well!!

Significantly slows learning as number of peasants
increases

23

Threadwise decomposition

Idea : decompose reward among threads
(Russell+Zimdars, 2003)

E.g., rewards for thread j only when peasant j drops
off resources or collides with other peasants

Qj (,u) = “Expected total reward received by
thread j if we make joint choice u and then do ”

Threadwise Q-decomposition Q = Q1+…Qn

Recursively distributed SARSA => global optimality
24

Peasant 3 thread

Learning threadwise decomposition

Peasant 2 thread

Peasant 1 thread

Top thread

a

r

r1
r2

r3

Action state

decomp

7/25/07 12:31 AM

5

25

Peasant 3 thread

Learning threadwise decomposition

Peasant 2 thread

Peasant 1 thread

Top thread

Choice state

Q1(,·) Q3(,·)

Q2(,·)

+

Q (,·)argmax = u

Q-update

Q-update

Q-update

26

Peasant 3 thread

Threadwise and temporal decomposition

Qj = Qj,r + Qj,c + Qj,e where
Qj,r (,u) = Expected reward gained by thread j
while doing u

Qj,c (,u) = Expected reward gained by thread j
after u but before leaving current subroutine

Qj,e (,u) = Expected reward gained by thread j
after current subroutine

Peasant 2 thread

Peasant 1 thread

Top thread

27Num steps learning (x 1000)

Reward
of
learnt
policy

Flat

Undecomposed

Threadwise

Threadwise +
Temporal

Resource gathering with 15 peasants

28

Main points to take away

Structure in behavior seems essential for scaling up

Partial programs
Provide natural structural constraints on policies

Decompose complex value functions into simple
components (based on conditional independence structure
of transition model and reward function)

Include internal state (e.g., “goals”) that further simplifies
value functions, shaping rewards

Concurrency
Simplifies description of multieffector behavior

Messes up temporal decomposition and credit assignment
(but threadwise reward decomposition restores it)

29

Current directions

• http://www.cs.berkeley.edu/~bhaskara/alisp/

Model-based learning and lookahead

Temporal logic as a partial programming
language

Partial observability ([s,] is just [])

Complex motor control tasks

Metalevel RL: choice of computation steps

Transfer of learned subroutines to new tasks

Eliminating Qe by recursive construction [UAI06]

Learning new hierarchical structure

30

Current directions

• http://www.cs.berkeley.edu/~bhaskara/alisp/

Model-based learning and lookahead

Temporal logic as a partial programming
language

Partial observability ([s,] is just [])

Complex motor control tasks

Metalevel RL: choice of computation steps

Transfer of learned subroutines to new tasks

Eliminating Qe by recursive construction [UAI06]

Learning new hierarchical structure

Yael s proposed NIPS workshop

