Image Parsing & DDMCMC.

Alan Yuille (Dept. Statistics. UCLA)

(Largely based on: Tu, Chen, Yuille & Zhu ICCV
2003, IJCV 2005. Yuille & Kersten 2006).

Image Parsing.

® (I) Image are composed of visual patterns:

® (II) Parse an image by decomposing it into
patterns.

Analysis by Synthesis (AS).

® Ability to use models P(I|W) & P(W) to
synthesize images of objects.

® This is an internal ability of the brain — dream of
objects, simulate the environment, mental
images?

® AS (1): synthesize until the observed images is
identical to the synthesized image.

® AS(2): use proposals: low-level cues propose
objects, that can be validated or rejected by
synthesis.

Generating an Image

¢ Generate an Image in terms of
vocabularies of features.

¢ Simple vocabularies give rise to little
ambiguity and easy inference.
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Inference: interpreting images.

® | ow-level features propose hypotheses
that are validated or rejected by high-level
generative models.
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If the brain was simple, then we couldn’t understand it. John Mayhew.

Part I: How to Generate an Image.

e Stochastic grammar for generating images
in terms of visual patterns.

e Visual patterns can be generic
(texture/shading) or objects.

e Hierarchical Probability model — probability
on graphs.




Part II: How to Parse an Image

e Interpreting an image corresponds to constructing a
parse graph.

® Set of moves for constructing the parse graph.

® Dynamics for moves use bottom-up & top-down
visual processing.

® Data-Driven Markov Chain Monte Carlo (DDMCMC).

® Discriminative Models to drive Generative models.

Part I: Generative Models.
® Previous related work by our group:

® Zhu & Yuille 1996 (Region Competition).
e Tu & Zhu 2002. Tu & Zhu 2003.

® These theories assumed generic visual
patterns only.

Generic Patterns & Object Patterns.

® Limitations of Generic Visual Patterns.

® Object patterns enable us to unify segmentation &
recognition.
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Stochastic Grammar: Parsing Graph.

® Nodes represent visual patterns. Child nodes to
image pixels.




Image Patterns.

® Node attributes: Ci? Li? @z
e Zeta: Pattern Type — 66

(I) Gaussian,

(II) Texture/Clutter,

(IIT) Shading.

(1V) Faces,

(V- LXVI) Text Characters.
® | — shape descriptor (image region modeled).
e Theta: Model parameters.

W= (K. (6. Li,©;) 11 =1,2. .. K}).

Generative Model:

K
p1W) = [[ (g6 Li O
=

e Likelihood:
K
° PriOr' W) = ,.(1(»H‘,rL,»,,/;, Li)p(6;(¢).
L/ &8)/a/ @ B\E &/EEEE[8)5
® Samples: (o= /73] @)/a WJIJIEE
B = AN i - qdhd WHJ jflﬂff’*ﬁ ’i’”ﬂ?@h i/
== - E = D[] =157 Tale) [8l/@/aL 5"

S AR
- -

Stochastic Grammar Summary.

[ Graph represents: W=(K {(G.L;.©;) :i=1.2,.. K}).
e Sampling from the graph generates an image.

Part II: Inference Algorithm.

¢ We described a model to generate image:
P(I|W) & P(W).

¢ Need an algorithm to infer W* from
P(I|W) & P(W).

Inference Strategy:

e Discriminative versus Generative.

 Discriminative methods (eg. SVM,
AdaBoost, etc.) can be very fast.

¢ But generative methods are better for
global consistency — richness of inference.
Generative methods Discriminative methods
W= (w,w,,...w,)
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Inference & Parse Graph.

® Inference requires constructing a parse
graph.

® Dynamics to create/delete nodes and alter
node attributes:




Inference Dynamics

More visually:
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Moves:

¢ Birth & Death of Text.

¢ Birth & Death of Faces.

e Splitting & Merging of Regions.

¢ Switching Node Attributes (Model
Parameters & Pattern Types).

¢ Moving Region Boundaries.

Markov Chain Monte Carlo.

® Design a Markov Chain (MC) with transition kernel
KWW 1)
® Satisfies Detailed Balance.
POV D (W W 1) = p(W 1)K, (W7 1),

® Then repeated sampling from the MC will converge
to samples from the posterior P(W|I).

Moves & Sub-kernels.

® Implement each move by a transition sub-

kernel: o
Ka(W/W 1)

® Combines moves by a full kernel:

KW,W') =5 0;(DE;(W, W), Yiai(I) =1

® At each time-step — choose a type of move,
then apply it to the graph.
® Kernels obey:
Sw KW, W)P(W|I) = P(W'|I)

Data Driven Proposals.

® Use data-driven proposals to make the Markov
Chain efficient.
® Metropolis-Hastings design:

POW'D) Q;(W,W'|T'st;(T)) )
POWIL) Q;(W,W'Tst;(1) 1

K{(W, W) = Q;(W, W/|Tst;(I)) min{1,
® Proposal probabilities are based on discriminative
cues.
Qi(W,W'I)?

Discriminative Methods:

¢ Edge Cues

* Binarization Cues.

® Face Region Cues (AdaBoost).

e Text Region Cues (AdaBoost).

¢ Shape Affinity Cues.

® Region Affinity Cues.

¢ Model Parameters & Pattern Type.




Design Proposals I.
e How to generate proposals Q; (W, W’|I)?

S; (W) is the scope of W~ states that can be
reached from W with one move of type i.

e [deal proposal.

P(W'|L
QW WD) = g~ sy W € Si(W

Q;(W,W'|I) =0, otherwise

Design Proposals II.

® Re-express this as:

) Y — P(W'L)/P(W|T)
QZ(W7 w ‘I) - ZVV”ES,;(W) P(W'TL)/P(WT)
for W' e S;(W)

Q;(W,W'|I) = 0, otherwise

® Set Q(W,W’[I) to approximate P(W’'|I)/P(W|I)
and be easily computatable.

Example: Create Node by Splitting

® Select region (node) R_k.
® Propose a finite set of ways to split R_k based
on discriminative cues (edges and edge linking).
® Consider split R_k to R_i & R_j.
p(W'|D) _ p(IRi‘CuLUeL)p(IRj‘C]sLjvej) )

p(W[I) — p(IR, 1k, L, Or)
o PEGLi®DP(G1;:9;5)  p(I+1)
(L, @L) p(K)

¢; = (¢, L;, ©;) are node attributes.

Example: Create Node by Splitting.

® Create (Split).
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® Denominator is known, we are in state W.
Qij ~ p(IR;|¢:)p(IRl6;) Qij independent of ¢;, ¢;
® Use an affinity measure

Example: Create Face

® Create Face.

® Bottom-up proposal for face driven by
AdaBoost & edge detection.

® This will require splitting an existing region R_k
into R_i (face) and R_j (remainder).

® Parameters for R_k & R_j are known (the
same).

Qi(W, W) ~ paﬁ"K;(Lf,;e{c): (LILR]G‘)?),LW@]) :

o PGiLi:®)p(¢;.L;.O;) p(1<+l>
l’(CL Li,©%) p(K)

Examples: Death by Merging.

® Death (Merge).

® Select regions R_i & R_j to merge based on
a similarity measure (as for splitting).

® Same approximations as for splitting to
approximate.
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Node Splitting/Merging.

® Causes for split/merge.

® (i) Bottom-up cue — there is probably a face or
text here (AdaBoost + Edge Detection).

® (i) Bottom-up cue — there is an intensity edge
splitting the region.

o (ijii) Current state W — model for region I fits
data poorly.

® (iv) Current state W -- two regions are similar
(by affinity measure).

Full Strategy:

® Integration:

The bottom-up proposals are
increasing good...

e Text Detection and Binarization.
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AdaBoost — Conditional Probs.

® Supervised Learning.
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Experiments:

® Competition & Cooperation.

How to Go Forward?

¢ Need more sophisticated grammatical
models. Hierarchical models. And/Or
graphs.

¢ | earn the models from data:
(i) Supervised: The Lotus Hill Dataset.
(ii) Unsupervised (next week).




Zhu's Program.

® www.stat.ucla.edu/~sczhu/papers/Grammar_quest.pdf

Clock Example

® Grammar (AND/OR)
e Samples from models
® Parses
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Lotus Hill Dataset.

e Construct
grammars
by
interactive
parsing.

Unsupervised Learning

e Constellation models (Perona’s Caltech
group).
e Compositional models (Geman).

e Can we learn these models in an
upsupervised/semi-supervised manner?

Learning Graphical Models.

e | earn a “grammar” defined on interest
points in the image.

Triangles: Or nodes.
Triplets as basic
building blocks.

Combination of triples

gives Junction-tree s
representations, enables J . F—— o
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Inference: 1 second.

Example Models

® Grand Piano, Rooster, Faces, Motorbikes, Airplanes.




Horses as AND/OR Graphs.

¢ Horse decomposition.

Parsed Results for AND/OR graph

® The OR nodes enable the model to
account for different configurations of the
horse.

Key Ideas of Image Parsing:

e Generative Models for Visual Patterns &
Stochastic Grammars.

¢ Inference: set of “*moves” on the parse
graph implemented by Kernels.

¢ Discriminative Models — bottom-up — drive
top-down Generative Models.

® Proposals and validation.

The Future:

e More sophisticated representations learnt
from large datasets.

e Stochastic Grammars, visual vocabularies,
re-useable parts, compositionality.

® Bottom-up/top-down processing.




