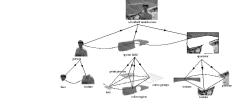


Image Parsing.

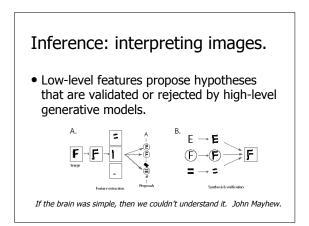
- (I) Image are composed of visual patterns:
- (II) Parse an image by decomposing it into patterns.



Analysis by Synthesis (AS).

- Ability to use models P(I|W) & P(W) to synthesize images of objects.
- This is an internal ability of the brain dream of objects, simulate the environment, mental images?
- AS (1): synthesize until the observed images is identical to the synthesized image.
- AS(2): use proposals: low-level cues propose objects, that can be validated or rejected by synthesis.

Generating an Image Generate an Image in terms of vocabularies of features. Simple vocabularies give rise to little ambiguity and easy inference.



Part I: How to Generate an Image.

- Stochastic grammar for generating images in terms of *visual patterns*.
- Visual patterns can be *generic* (texture/shading) or *objects*.
- Hierarchical Probability model probability on graphs.

Part II: How to Parse an Image

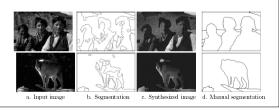
- Interpreting an image corresponds to constructing a *parse graph*.
- Set of *moves* for constructing the parse graph.
- Dynamics for moves use bottom-up & top-down
- visual processing.Data-Driven Markov Chain Monte Carlo (DDMCMC).
- Discriminative Models to drive Generative models.

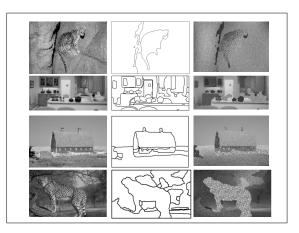
Part I: Generative Models.

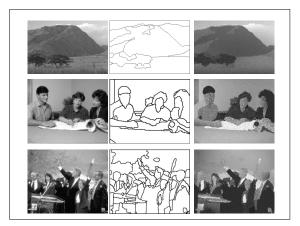
- Previous related work by our group:
- Zhu & Yuille 1996 (Region Competition).
- Tu & Zhu 2002. Tu & Zhu 2003.
- These theories assumed *generic visual patterns* only.

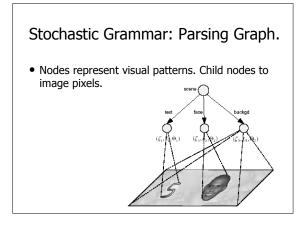
Generic Patterns & Object Patterns.

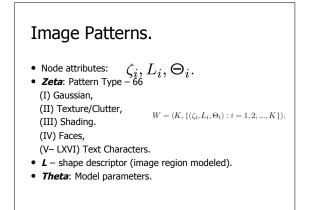
- Limitations of Generic Visual Patterns.
- Object patterns enable us to unify segmentation & recognition.

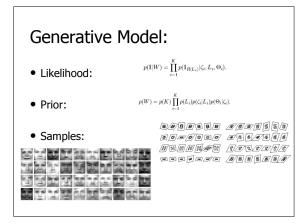


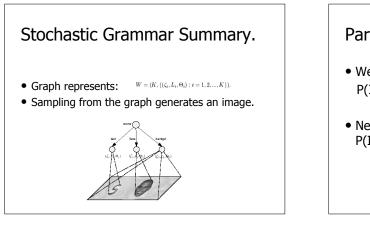






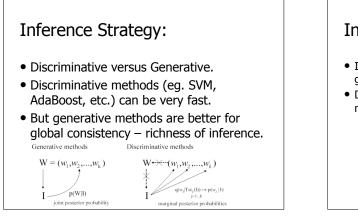




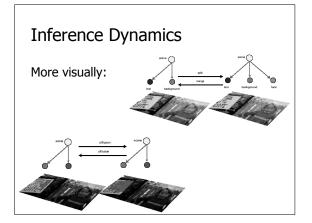


Part II: Inference Algorithm.

- We described a model to generate image: P(I|W) & P(W).
- Need an algorithm to infer W* from P(I|W) & P(W).



Inference & Parse Graph. Inference requires constructing a parse graph. Dynamics to create/delete nodes and alter node attributes:



Moves:

- Birth & Death of Text.
- Birth & Death of Faces.
- Splitting & Merging of Regions.
- Switching Node Attributes (Model Parameters & Pattern Types).
- Moving Region Boundaries.

Markov Chain Monte Carlo.

- Design a Markov Chain (MC) with transition kernel $\mathcal{K}(W'|W: \mathbf{I})$
- Satisfies Detailed Balance. $p(W|\mathbf{I})\mathcal{K}_a(W'|W:\mathbf{I}) = p(W'|\mathbf{I})\mathcal{K}_a(W|W':\mathbf{I}).$
- Then repeated sampling from the MC will converge to samples from the posterior P(W|I).

Moves & Sub-kernels.

- Implement each move by a transition subkernel: $\mathcal{K}_a(W'|W:\mathbf{I})$
- Combines moves by a full kernel:
- $K(W, W') = \sum_{i} \alpha_{i}(I) K_{i}(W, W'), \quad \sum_{i} \alpha_{i}(I) = 1$
- At each time-step choose a type of move, then apply it to the graph.
- Kernels obey: $\sum_W K(W, W') P(W|I) = P(W'|I)$

Data Driven Proposals.

- Use data-driven proposals to make the Markov Chain efficient.
- Metropolis-Hastings design: $K_i(W,W') = Q_i(W,W'|Tst_i(\mathbf{I})) \min\{1, \frac{P(W'|\mathbf{I})Q_i(W,W'|Tst_i(\mathbf{I}))}{P(W|\mathbf{I})Q_i(W,W'|Tst_i(\mathbf{I}))}\}.$
- Proposal probabilities are based on discriminative cues.

 $Q_i(W, W'|\mathbf{I})$?

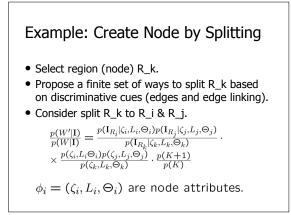
Discriminative Methods:

- Edge Cues
- Binarization Cues.
- Face Region Cues (AdaBoost).
- Text Region Cues (AdaBoost).
- Shape Affinity Cues.
- Region Affinity Cues.
- Model Parameters & Pattern Type.

Design Proposals I.
• How to generate proposals
$$Q_i(W, W'|\mathbf{I})$$
?
 $S_i(W)$ is the scope of W– states that can be
reached from W with one move of type i.
• *Ideal proposal*:
 $Q_i(W, W'|\mathbf{I}) = \frac{P(W'|\mathbf{I})}{\sum_{W'' \in S_i(W)} P(W''|\mathbf{I})}, \quad W' \in S_i(W)$
 $Q_i(W, W'|\mathbf{I}) = 0, \quad \text{otherwise}$

Design Proposals II.

- Re-express this as:
 $$\begin{split} Q_i(W,W'|\mathbf{I}) &= \frac{P(W'|\mathbf{I})/P(W|\mathbf{I})}{\sum_{W''\in S_i(W)}P(W''|\mathbf{I})/P(W|\mathbf{I})} \\ \text{for } W' \in S_i(W) \\ Q_i(W,W'|\mathbf{I}) &= 0, \quad \text{otherwise} \end{split}$$
- Set Q(W,W'|I) to approximate P(W'|I)/P(W|I) and *be easily computatable*.

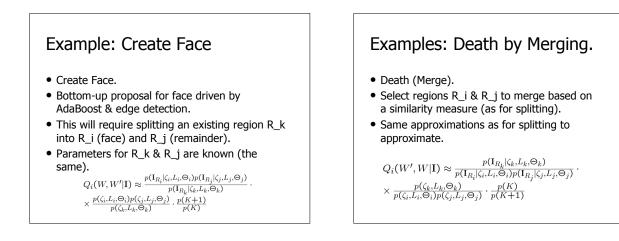


Example: Create Node by Splitting.

• Create (Split).

$$\begin{aligned} Q_i(W, W' | \mathbf{I}) &\approx \frac{p(\mathbf{I}_{R_i} | \phi_i) p(\mathbf{I}_{R_j} | \phi_j)}{p(\mathbf{I}_{R_k} | \phi_k)} \cdot \\ &\times \frac{p(\phi_i) p(\phi_j)}{p(\phi_k)} \cdot \frac{p(K+1)}{p(K)} \end{aligned}$$

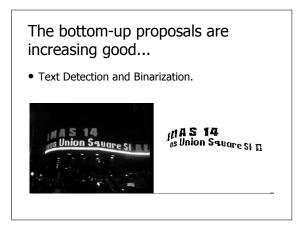
- Denominator is known, we are in state W. $Q_{ij} \approx p(\mathbf{I}_{R_i}|\phi_i)p(\mathbf{I}_{R_j}|\phi_j) Q_{ij}$ independent of ϕ_i, ϕ_j
- Use an affinity measure

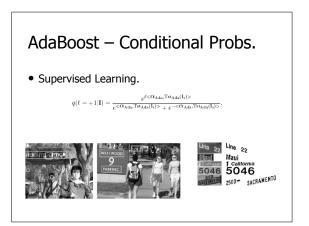


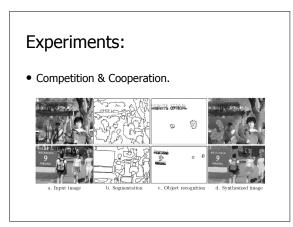
Node Splitting/Merging.

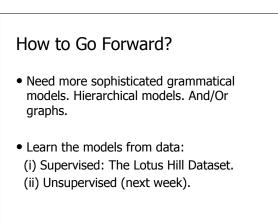
- Causes for split/merge.
- (i) Bottom-up cue there is probably a face or text here (AdaBoost + Edge Detection).
- (ii) Bottom-up cue there is an intensity edge splitting the region.
- (iii) Current state W model for region I fits data poorly.
- (iv) Current state W -- two regions are similar (by affinity measure).

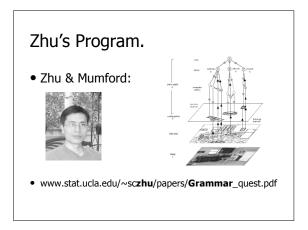
Full Strategy: • Integration:

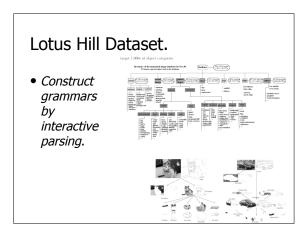


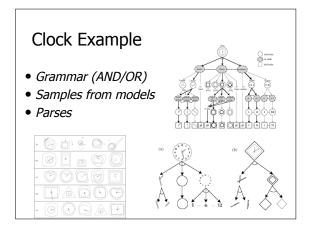






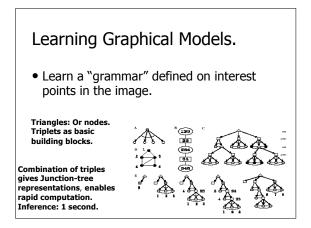


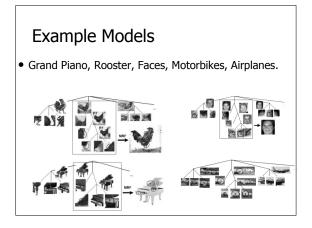


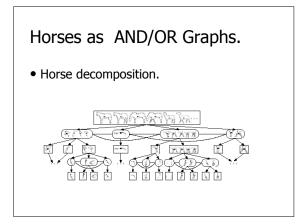


Unsupervised Learning

- Constellation models (Perona's Caltech group).
- Compositional models (Geman).
- Can we learn these models in an upsupervised/semi-supervised manner?







Parsed Results for AND/OR graph

• The OR nodes enable the model to account for different configurations of the horse.

Key Ideas of Image Parsing:

- Generative Models for Visual Patterns & Stochastic Grammars.
- Inference: set of "moves" on the parse graph implemented by Kernels.
- Discriminative Models bottom-up drive top-down Generative Models.
- Proposals and validation.

The Future:

- More sophisticated representations learnt from large datasets.
- Stochastic Grammars, visual vocabularies, re-useable parts, compositionality.
- Bottom-up/top-down processing.