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Today

» To what extent can the “Bayes meets Marr”
approach be applied to cognition?

— Can we measure “true” priors for cognition based on
environmental statistics, and assess how well tuned
cognition is for these priors?

— Are there “universal” or “general-purpose” priors that
can be used to characterize performance in cognitive
tasks? How flexible are cognitive priors?

— Can we see optimal statistical inference in the neural
mechanisms of cognition?

Today

* Two case studies of memory
— Retrieval (Anderson, 1990)
— Prediction (Griffiths & Tenenbaum, 2006)

Anderson’s rational analysis of
memory retrieval

« Starting point: some items are remembered
better than others.

¢ What determines which items will be
remembered better, and why?

— How do probability and speed of recall depend
on amount of study?

— ...on delay since the information was
studied?

— ... on the particular pattern of study, e.g.
cramming or steady practice?

Ebbinghaus’s data (1885)
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(a) Ebbinghaus's Retention data

(b) Ebbinghaus's Practice Dats
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* Many decay functions in nature are exponential:
— radioactive decay
— heat diffusion

— sweeping up dust
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Memorizing sentences

FIGCERIS (?;}li (a)]nme kosfrecognize sentences as a function of number of days of
practice; log-log transformation of data in (a) to reveal function.
Pirolli & Anderson, 1985). power function. (From
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Adding numbers

FIGURE 6.4. The improvement in adding two numbers as a function of practice.
Data are plotted seperately for two subjects. (Plot by Crossman, 1959, using data
from Blackburn, 1936). Source: Figure 6.4 from E. R. F. W. Crossman. Ergonomics
Volume 2. A theory of the acquisition of speed-skill. Copyright © 1976 by Taylor &
Francis Ltd. Reprinted by permission.
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Why power laws?

* Mechanistic explanations in terms of
symbolic cognitive architectures:
e.g., “chunking” dynamics.

 But this mechanism was designed to
produce power laws of practice -- it does
not provide an independent explanation.

Marr’s three levels

+ Level 1: Computational theory
— What is the goal of the computation, and what is the
logic by which it is carried out?
+ Level 2: Representation and algorithm

— How is information represented and processed to
achieve the computational goal?

+ Level 3: Hardware implementation

— How is the computation realized in physical or
biological hardware?
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FIGURE 6.9. Growth in LTP as a function of number of days of practice: (4) in nor-
mal scale; (b) in log-log scale. (From Barnes, 1979).
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Independent effects of delay
and learning time
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A computational analysis

* Goal of memory retrieval:

— For each item in memory, estimate its need
probability, the probability that it will be useful
in the present context.

— Retrieve all items for which the expected utility
exceeds the cost of retrieval.

* The critical question becomes, how does the
mind estimate need probability?

* Failure to retrieve a memory is about
prioritization, not loss of information.

Evaluating the LTP account of
power laws in memory

* Provides a physical mechanism.

» Makes several nontrivial predictions
confirmed in behavioral data.

* But why does LTP work this way?

A computational analysis

* Factors determining the probability that an
item will be useful in the present context:
— Match to contextual cues
— History of prior use:
* Time since last use

* Number of times used previously

* Model of library book access (Burrell+)

A computational analysis

Factors determining the probability that an
item will be useful in the present context:
— Match to contextual cues

— History of prior use: Predicts power
* Time since last use laws, spacing
effects, ....

* Number of times used previously

Model of library book access (Burrell+)
Analogous factors in Google:

— Text match between query and web page.
— PageRank(tm) of web page.

Spacing effect
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Model of library book access (Burrell+)

Observed retrieval history: BB =Nug miyu_ui, ul
(n retrievals between =0 and ¢ = 7).

Probability of need at /= 7" ", I N g, Y
where Il H=Nugul,u_ulul_ =N

A latent variable model based on three assumptions:
1. There is a distribution of popularity over items, where
popularity controls the rate at which an item is accessed.
2. There is an aging process for items and their rate of use
decays over time. The rate of decay varies across items.
3. Items undergo random revivals of interest in which their
rate of use returns to their original level of popularity.

Model of library book access (Burrell+)

Observed retrieval history: BB =Nug miyu_ul, ul
(n retrievals between =0 and ¢ = 7).

Probability of need at /= 7" ", I g, Y
where I H=Nugulu_ulul =N
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where il is the most recent revival before 7.

Statistics of information usage in
the natural environment

Patterns of Word Usage (New York Times)
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Fig. 5. Patterns of usage of various words in the New York
Times data base over a 100-day period.
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6. (a) Probability of a word occurring in a headline of the New York Times on Day 101 as a function of
number of times it occurred in the previous 100 days: (b) probability of a word occurring in the 101st
srance from a parent as a function of the number of times it occurred in the previous 100 days; (c)
bability of receiving a message on the 101st day from a source as a function of the number of times
ssages were received from that source in the previous 100 days. Panels (d-f) provide transformation of
) plotting log needs against log frequency.
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Independent effects of delay and
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‘Spacing (a/k/a cramming) effects.

Summary: Bayes meets Marr in
memory retrieval

» Level 1: Computational theory

— What is the goal of the computation, and what is the
logic by which it is carried out?

» Level 2: Representation and algorithm

— How is information represented and processed to
achieve the computational goal?

+ Level 3: Hardware implementation

— How is the computation realized in physical or
biological hardware?

Today

* Two case studies of memory
— Retrieval (Anderson, 1990)
— Prediction (Griffiths & Tenenbaum, 2006)

Everyday prediction problems

(Griffiths & Tenenbaum, 2006)

* You read about a movie that has made $60 million to date.
How much money will it make in total?

* You see that something has been baking in the oven for 34
minutes. How long until it’s ready?

* You meet someone who is 78 years old. How long will they
live?

* Your friend quotes to you from line 17 of his favorite poem.
How long is the poem?

* You meet a US congressman who has served for 11 years.
How long will he serve in total?

* You encounter a phenomenon or event with an unknown
extent or duration, t,,,,, at a random time or value of 7 <t,,,,,.
What is the total extent or duration ¢,,,,?

Bayesian analysis

P(tmtal|t) o P(t|ttota[) P(ttotal)

x 1 /ttoml P(ttoml)

Assume
random
sample

(for0<r<t

else = 0)

total

Form of P(t,,,,)?
e.g., uninformative (Jeffreys) prior « 1/¢,,,,

Bayesian analysis

P(tmtal|t) & l/ttaml l/tt()ml
posterior Random  “Uninformative”
probability sampling  prior
P (trm‘allt)
t ttm‘al
Best guess for ¢,,,,: Yields Gott’s Rule:
t* such that P(t,,,,, > t*t) = 0.5 Guess t* = 2t




Evaluating Gott’s Rule

* You read about a movie that has made $78 million
to date. How much money will it make in total?
— “$156 million” seems reasonable.
* You meet someone who is 35 years old. How
long will they live?
— “70 years” seems reasonable.
+ Not so simple:
— You meet someone who is 78 years old. How long will
they live?
— You meet someone who is 6 years old. How long will
they live?
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Evaluating human predictions

* Different domains with different priors:
— A movie has made $60 million
— Your friend quotes from line 17 of a poem
— You meet a 78 year old man
— A move has been running for 55 minutes
— A U.S. congressman has served for 11 years
— A cake has been in the oven for 34 minutes
» Use 5 values of ¢ for each.

 People predict 7, .

Priors P(t,,,,) based on empirically measured durations or magnitudes
for many real-world events in each class:
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Median human judgments of the total duration or magnitude 7,,,,, of
events in each class, given that they are first observed at a duration or
magnitude ¢, versus Bayesian predictions (median of P(t,,,,?)).
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Pharaohs
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flood in the 11th year of P T—
a pharaoh’s reign. How
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Summary: prediction
* Predictions about the extent or magnitude of
everyday events follow Bayesian principles.

+ Contrast with Bayesian inference in perception,
motor control, memory: no “universal priors” here.

Predictions best explained by priors that are

appropriately calibrated for different domains.
— Form of the prior (e.g., power-law or exponential)
— Specific distribution given that form (parameters)

— Non-parametric distribution when necessary.

+ In the absence of concrete experience, priors may
be generated by qualitative background knowledge.

Open questions

* How flexible are memory retrieval and prediction?

How quickly and easily can people adapt to new
kinds of environmental statistics?

+ Can we scale the approach down to analyses of

individual subjects, as in perception and motor
control?

+ Can we scale up this approach to more complex

kinds of knowledge?

+ Can we find deeper mappings to neural

mechanisms?

Predictions in novel environments

=1 — Erlang prior (B = 4)
Human predictions

Buses

Subjects were
exposed to a class of
novel events with
durations ranging
from 0.5 to 32
seconds (geom.
mean = 4 sec). 1

total / tmax
©

t

Predicted

1 310 1 310 1310 1310 1310

IS

Subjects were then
asked to predict
durations of novel
events given 1, 3, or
10 samples of that
event.

total " ‘max
~ w

Predicted ¢,

131 1310 131 1310 1310
Number of examples

Bayesian prediction

P(ttotal| tpaxt) x l/ttotal P(tpast)

Random Domain-dependent
sampling prior

posterior
probability

What is the best guess for ¢,,,,?
Compute # such that P(¢,,,,; > 1t,,,,) = 0.5:
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We compared the median
of the Bayesian posterior
with the median of subjects’

il | judgments... but what about
the distribution of subjects’
judgments?

Sources of individual differences

* Individuals’ judgments could by noisy.

* Individuals’ judgments could be optimal,
but with different priors.

— e.g., each individual has seen only a sparse
sample of the relevant population of events.

* Individuals’ inferences about the posterior
could be optimal, but their judgments could
be based on probability (or utility) matching
rather than maximizing.

Proportion of judgments below predicted value

Individual differences in prediction
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Mean proportion of responses below predicted value

Individual differences in prediction

Pl g1l )

1,

total

Average over all
prediction tasks:
* movie run times

movie grosses
poem lengths

life spans

terms in congress
cake baking times

0 01 02 08 08 1

03 05 07
Quantie of posterior distribution

Why probability matching?

» Optimal behavior under some

(evolutionarily natural) circumstances.
— Optimal betting theory, portfolio theory

— Optimal foraging theory

— Competitive games

— Dynamic tasks (changing probabilities or utilities)

+ Side-effect of algorithms for approximating

complex Bayesian computations.

— Markov chain Monte Carlo (MCMC): instead of integrating over
complex hypothesis spaces, construct a sample of high-probability
hypotheses.

— Judgments from individual (independent) samples can on average
be almost as good as using the full posterior distribution.




