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Rational analysis of human memory
and prediction

Josh Tenenbaum
MIT

Bayesian inference in perception and
motor control

(Weiss, Simoncelli & Adelson 2002) (Kording & Wolpert 2004)

Today
• To what extent can the “Bayes meets Marr”

approach be applied to cognition?
– Can we measure “true” priors for cognition based on

environmental statistics, and assess how well tuned
cognition is for these priors?

– Are there “universal” or “general-purpose” priors that
can be used to characterize performance in cognitive
tasks?  How flexible are cognitive priors?

– Can we see optimal statistical inference in the neural
mechanisms of cognition?

Today
• Two case studies of memory

– Retrieval (Anderson, 1990)
– Prediction (Griffiths & Tenenbaum, 2006)

Anderson’s rational analysis of
memory retrieval

• Starting point: some items are remembered
better than others.

• What determines which items will be
remembered better, and why?
– How do probability and speed of recall depend

on amount of study?
–  . . . on delay since the information was

studied?
– . . . on the particular pattern of study, e.g.

cramming or steady practice?

Ebbinghaus’s data (1885)
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• Many decay functions in nature are exponential:
– radioactive decay
– heat diffusion
– sweeping up dust

Memorizing sentences

Adding numbers Memory for TV characters
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Why power laws?

• Mechanistic explanations in terms of
symbolic cognitive architectures: 

e.g., “chunking” dynamics.

• But this mechanism was designed to
produce power laws of practice -- it does
not provide an independent explanation.

Marr’s three levels

• Level 1: Computational theory
– What is the goal of the computation, and what is the

logic by which it is carried out?

• Level 2: Representation and algorithm
– How is information represented and processed to

achieve the computational goal?

• Level 3: Hardware implementation
– How is the computation realized in physical or

biological hardware?

Excitatory synapse: pre-synaptic cell firing makes
post-synaptic cell more likely to fire. 

Synapses vary in strength or “weight”. 

Long-term potentiation (LTP)

Decay of LTP

Independent
effects of delay
and learning
time.
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Independent effects of delay
and learning time Evaluating the LTP account of

power laws in memory
• Provides a physical mechanism.
• Makes several nontrivial predictions

confirmed in behavioral data.
• But why does LTP work this way?

A computational analysis
• Goal of memory retrieval:

– For each item in memory, estimate its need
probability, the probability that it will be useful
in the present context.

– Retrieve all items for which the expected utility
exceeds the cost of retrieval.

• The critical question becomes, how does the
mind estimate need probability?

• Failure to retrieve a memory is about
prioritization, not loss of information.

A computational analysis
• Factors determining the probability that an

item will be useful in the present context:
– Match to contextual cues
– History of prior use:

• Time since last use
• Number of times used previously

• Model of library book access (Burrell+)

A computational analysis
• Factors determining the probability that an

item will be useful in the present context:
– Match to contextual cues
– History of prior use:

• Time since last use
• Number of times used previously

• Model of library book access (Burrell+)
• Analogous factors in Google:

– Text match between query and web page.
– PageRank(tm) of web page.

Predicts power
laws, spacing
effects, ….

2 sessions each
over 4 days

8 sessions on 
1 day

Spacing effect
(a/k/a Cramming effect)

c.f. motor
adaptation
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Model of library book access (Burrell+)

Observed retrieval history:
     (n retrievals between t = 0 and t = T).

Probability of need at t = T:
   where

A latent variable model based on three assumptions:
1. There is a distribution of popularity over items, where

popularity controls the rate at which an item is accessed.
2. There is an aging process for items and their rate of use

decays over time. The rate of decay varies across items.
3. Items undergo random revivals of interest in which their

rate of use returns to their original level of popularity.

Model of library book access (Burrell+)

Popularity

Decay rate

Revival history

Retrieval history

where         is the most recent revival before t.

Latent
variables

Observed retrieval history:
     (n retrievals between t = 0 and t = T).

Probability of need at t = T:
   where

Statistics of information usage in
the natural environment
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New York Times 
(retention)

Parental speech 
(retention)

Mail sources
(retention)

Independent effects of delay and
learning time in the New York Times.
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New York Times 
(retention)

Parental speech 
(retention)

Mail sources
(retention)

Spacing (a/k/a cramming) effects.

Summary: Bayes meets Marr in
memory retrieval

• Level 1: Computational theory
– What is the goal of the computation, and what is the

logic by which it is carried out?

• Level 2: Representation and algorithm
– How is information represented and processed to

achieve the computational goal?

• Level 3: Hardware implementation
– How is the computation realized in physical or

biological hardware?

Today
• Two case studies of memory

– Retrieval (Anderson, 1990)
– Prediction (Griffiths & Tenenbaum, 2006)

• You read about a movie that has made $60 million to date.
How much money will it make in total?

• You see that something has been baking in the oven for 34
minutes.  How long until it’s ready?

• You meet someone who is 78 years old.  How long will they
live?

• Your friend quotes to you from line 17 of his favorite poem.
How long is the poem?

• You meet a US congressman who has served for 11 years.
How long will he serve in total?

• You encounter a phenomenon or event with an unknown
extent or duration, ttotal, at a random time or value of t <ttotal.
What is the total extent or duration ttotal?

Everyday prediction problems
(Griffiths & Tenenbaum, 2006)

Bayesian analysis

P(ttotal|t)   ∝   P(t|ttotal)  P(ttotal)

               ∝    1/ttotal     P(ttotal)

Assume 
random
sample 

(for 0 < t < ttotal
else = 0)

Form of P(ttotal)?
  e.g., uninformative (Jeffreys) prior ∝ 1/ttotal

posterior 
probability

Random
sampling

“Uninformative”
  prior

P(ttotal|t)

ttotalt
Best guess for ttotal:  
t* such that P(ttotal > t*|t) = 0.5

Yields Gott’s Rule:
Guess t*  = 2t 

Bayesian analysis

P(ttotal|t)   ∝    1/ttotal        1/ttotal
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Evaluating Gott’s Rule

• You read about a movie that has made $78 million
to date.  How much money will it make in total?
– “$156 million” seems reasonable.

• You meet someone who is 35 years old.  How
long will they live?
– “70 years” seems reasonable.

• Not so simple:
– You meet someone who is 78 years old.  How long will

they live?
– You meet someone who is 6 years old.  How long will

they live?

The importance of priors
Different kinds of
priors P(ttotal) are
appropriate in
different domains.

Gott’s rule
P(ttotal) ∝

ttotal
-1

Evaluating human predictions

• Different domains with different priors:
– A movie has made $60 million
– Your friend quotes from line 17 of a poem
– You meet a 78 year old man
– A move has been running for 55 minutes
– A U.S. congressman has served for 11 years
– A cake has been in the oven for 34 minutes

• Use 5 values of t for each.
• People predict ttotal .

Priors P(ttotal) based on empirically measured durations or magnitudes
for many real-world events in each class:

Median human judgments of the total duration or magnitude ttotal of
events in each class, given that they are first observed at a duration or
magnitude t, versus Bayesian predictions (median of P(ttotal|t)).

You learn that in ancient
Egypt, there was a great
flood in the 11th year of
a pharaoh’s reign.  How
long did he reign?

You learn that in ancient
Egypt, there was a great
flood in the 11th year of
a pharaoh’s reign.  How
long did he reign?

How long did the typical
pharaoh reign in ancient
egypt?
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Summary: prediction
• Predictions about the extent or magnitude of

everyday events follow Bayesian principles.

• Contrast with Bayesian inference in perception,
motor control, memory: no “universal priors” here.

• Predictions best explained by priors that are
appropriately calibrated for different domains.
– Form of the prior (e.g., power-law or exponential)
– Specific distribution given that form (parameters)
– Non-parametric distribution when necessary.

• In the absence of concrete experience, priors may
be generated by qualitative background knowledge.

Open questions

• How flexible are memory retrieval and prediction?
How quickly and easily can people adapt to new
kinds of environmental statistics?

• Can we scale the approach down to analyses of
individual subjects, as in perception and motor
control?

• Can we scale up this approach to more complex
kinds of knowledge?

• Can we find deeper mappings to neural
mechanisms?

Predictions in novel environments
Subjects were
exposed to a class of
novel events with
durations ranging
from 0.5 to 32
seconds (geom.
mean = 4 sec).

Subjects were then
asked to predict
durations of novel
events given 1, 3, or
10 samples of that
event.

Buses

Gems

Bayesian prediction

P(ttotal|tpast)

ttotal

What is the best guess for ttotal? 
Compute t such that P(ttotal > t|tpast) = 0.5:

            P(ttotal|tpast) ∝    1/ttotal              P(tpast)

posterior 
probability

Random
sampling

Domain-dependent
  prior

We compared the median
of the Bayesian posterior
with the median of subjects’
judgments… but what about
the distribution of subjects’
judgments?

• Individuals’ judgments could by noisy.
• Individuals’ judgments could be optimal,

but with different priors.
– e.g., each individual has seen only a sparse

sample of the relevant population of events.
• Individuals’ inferences about the posterior

could be optimal, but their judgments could
be based on probability (or utility) matching
rather than maximizing.

Sources of individual differences Individual differences in prediction
P(ttotal|t)

ttotal

Quantile of Bayesian posterior distribution
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Individual differences in prediction

Average over all 
prediction tasks:
•  movie run times
•  movie grosses
•  poem lengths
•  life spans
•  terms in congress
•  cake baking times

P(ttotal|t)

ttotal

• Optimal behavior under some
(evolutionarily natural) circumstances.
– Optimal betting theory, portfolio theory
– Optimal foraging theory
– Competitive games
– Dynamic tasks (changing probabilities or utilities)

• Side-effect of algorithms for approximating
complex Bayesian computations.
– Markov chain Monte Carlo (MCMC): instead of integrating over

complex hypothesis spaces, construct a sample of high-probability
hypotheses.

– Judgments from individual (independent) samples can on average
be almost as good as using the full posterior distribution.

Why probability matching?


