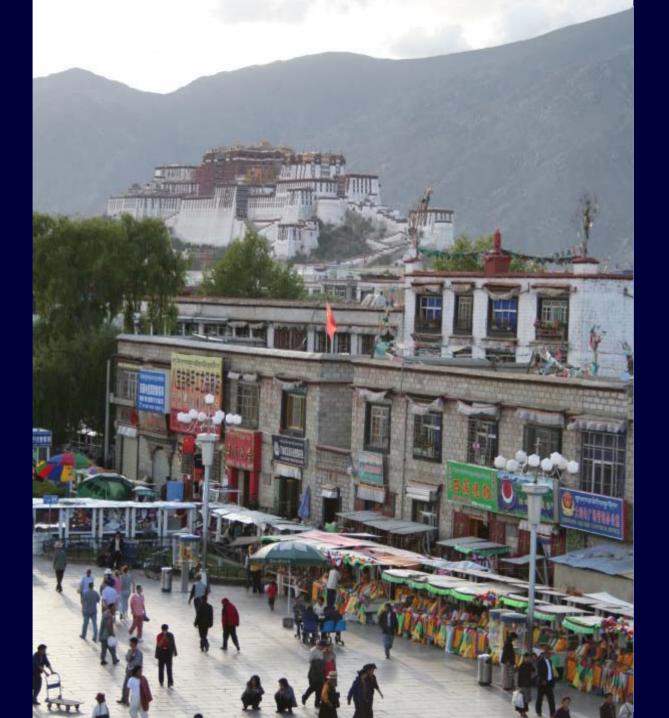
Discovering Meaning in the Visual World

Fei-Fei Li (publish under L. Fei-Fei)

A picture is worth a thousand words. --- Confucius or *Printers' Ink* Ad (1921)

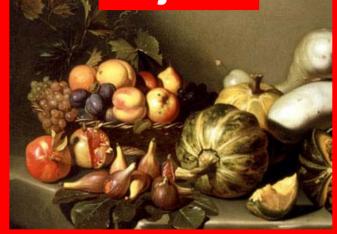


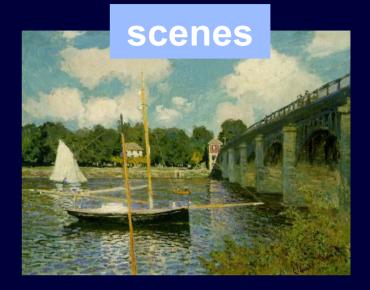
 To build intelligent visual algorithms for machines and robots

 To understand human visual intelligence by applying computational tools

Outline: it's all about 'categorization'

objects

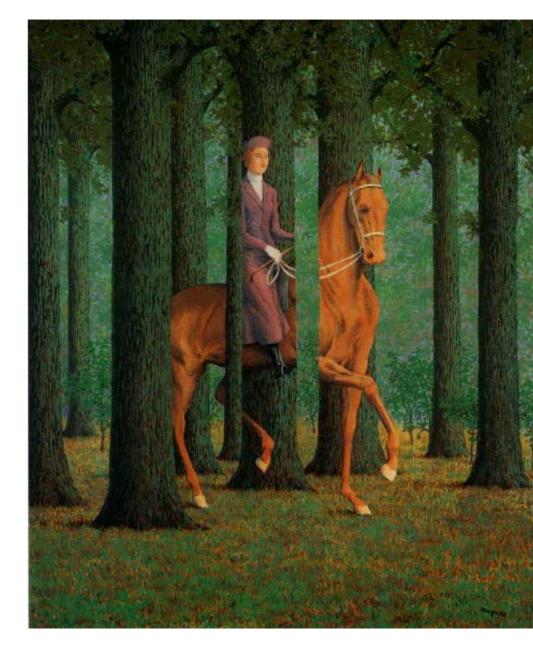




– View point

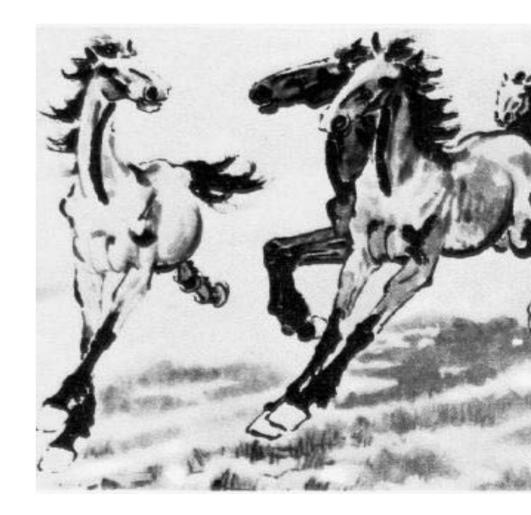
- View point
- Illumination

- View point
- Illumination
- Occlusion

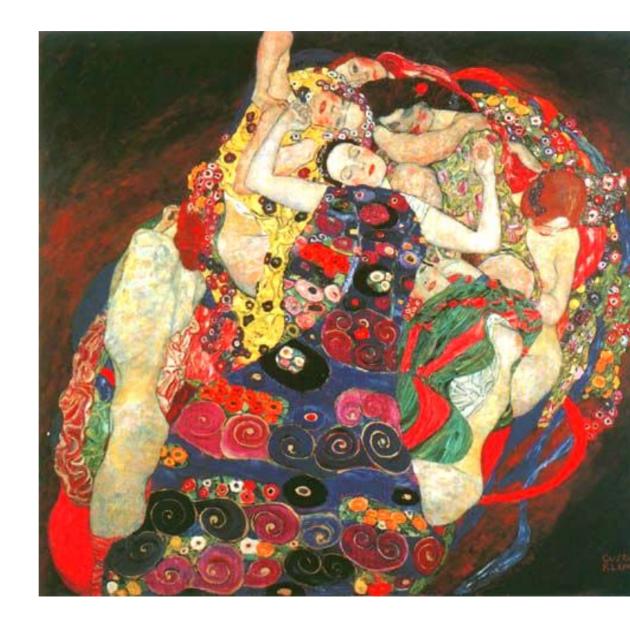


- View point
- Illumination
- Occlusion
- Scale

- View point
- Illumination
- Occlusion
- Scale
- Deformation



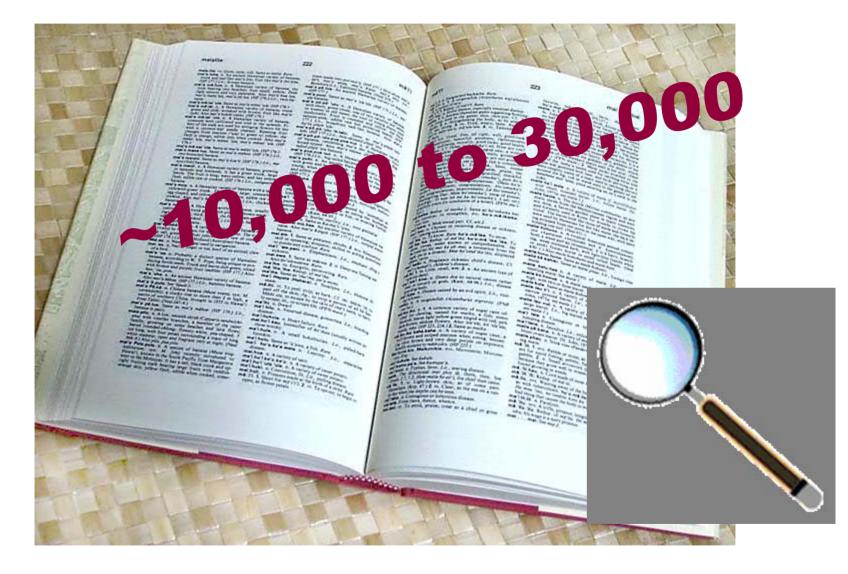
- View point
- Illumination
- Occlusion
- Scale
- Deformation
- Clutter



- View point
- Illumination
- Occlusion
- Scale
- Deformation
- Clutter
- Intra-class variability

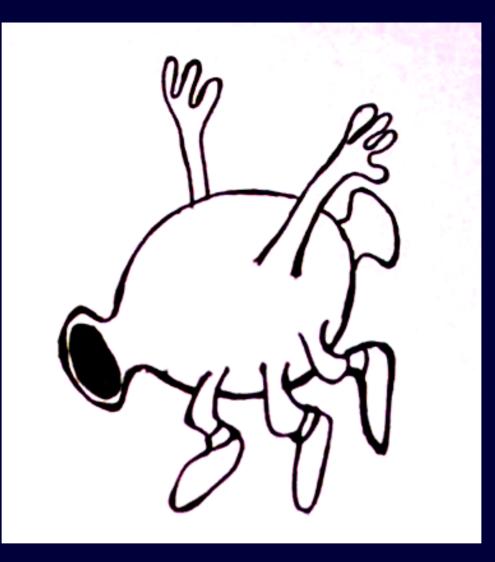
×

How many object categories are there?



Biederman 1987

Algorithm	Training Examples	Categories
Rowley et al.	~500	Faces
Schneiderman, et al.	~2,000	Faces, Cars
Viola et al.	~10,000	Faces
Burl, et al. Weber, et al. Fergus, et al.	200 ~ 400	Faces, Motorbikes, Spotted cats, Airplanes, Cars

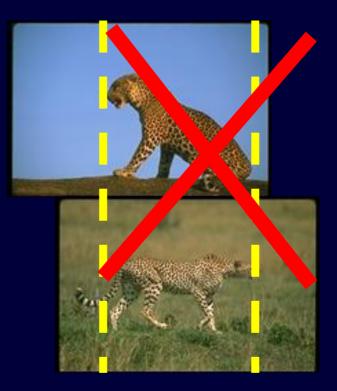


One-shot learning of object categories

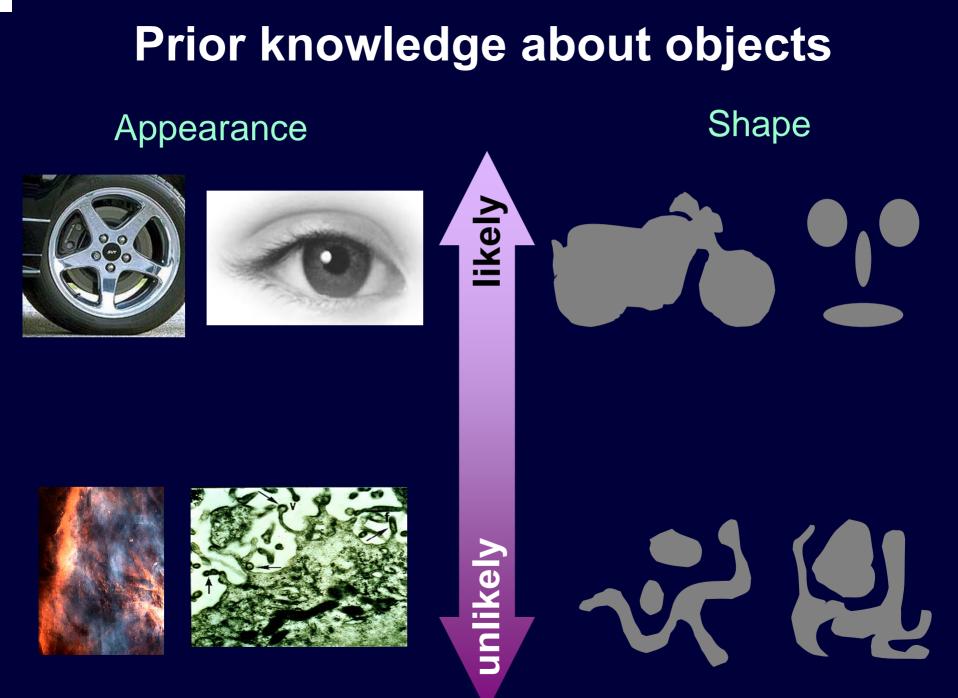
One-shot learning of object categories

No labeling

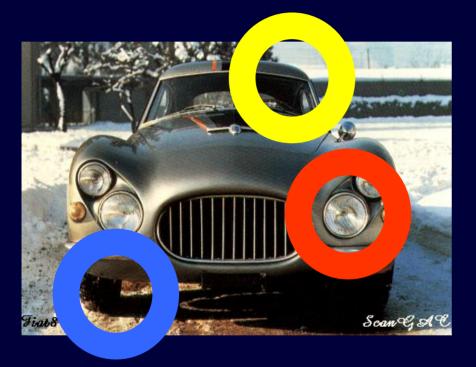
No segmentation No alignment



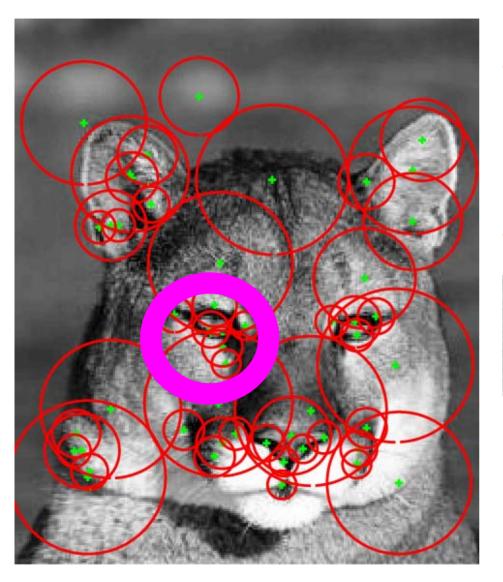
One-shot learning of object categories



model representation



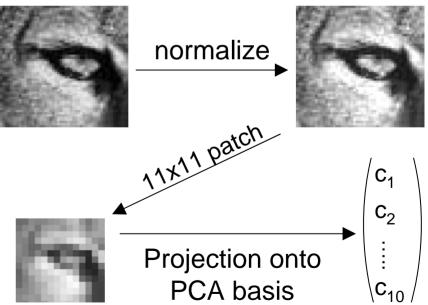
One-shot learning of object categories

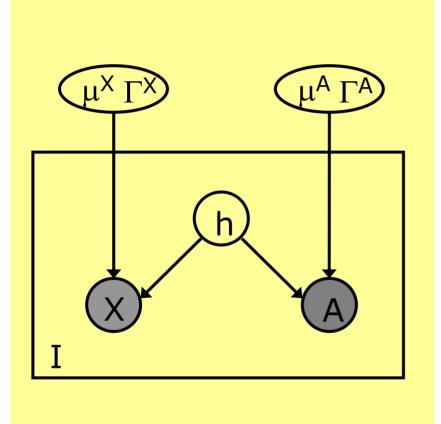


X (location)

(x,y) coords. of region center

A (appearance)

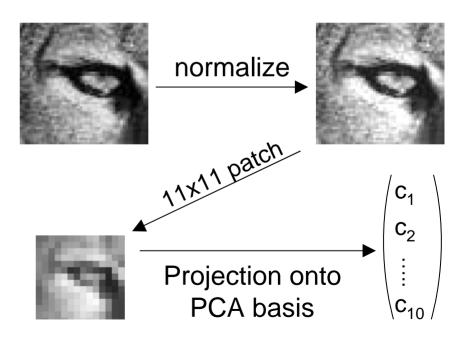


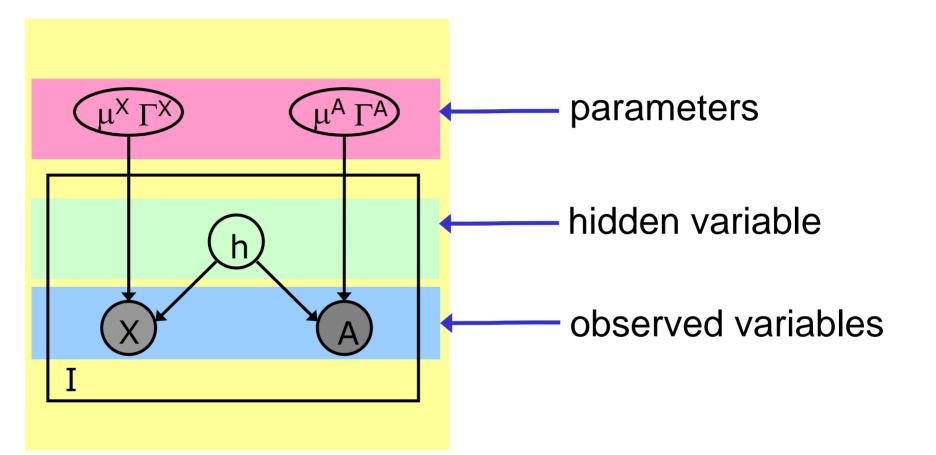


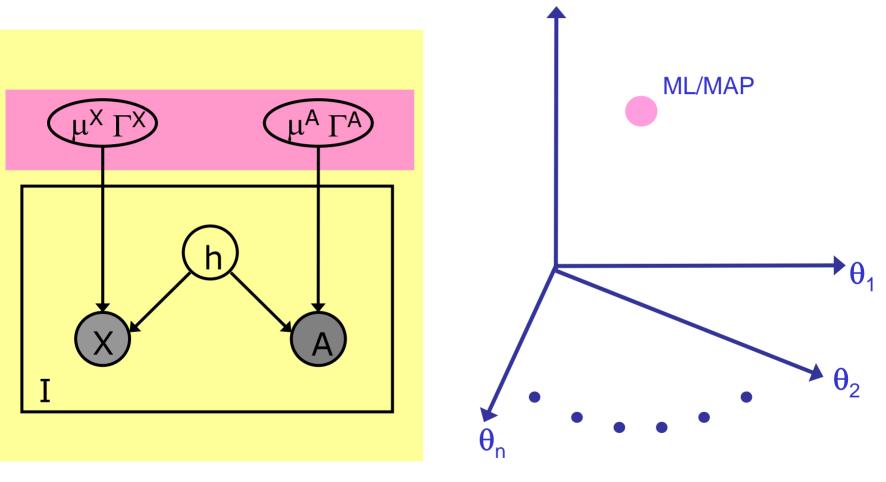
X (location)

(x,y) coords. of region center

A (appearance)

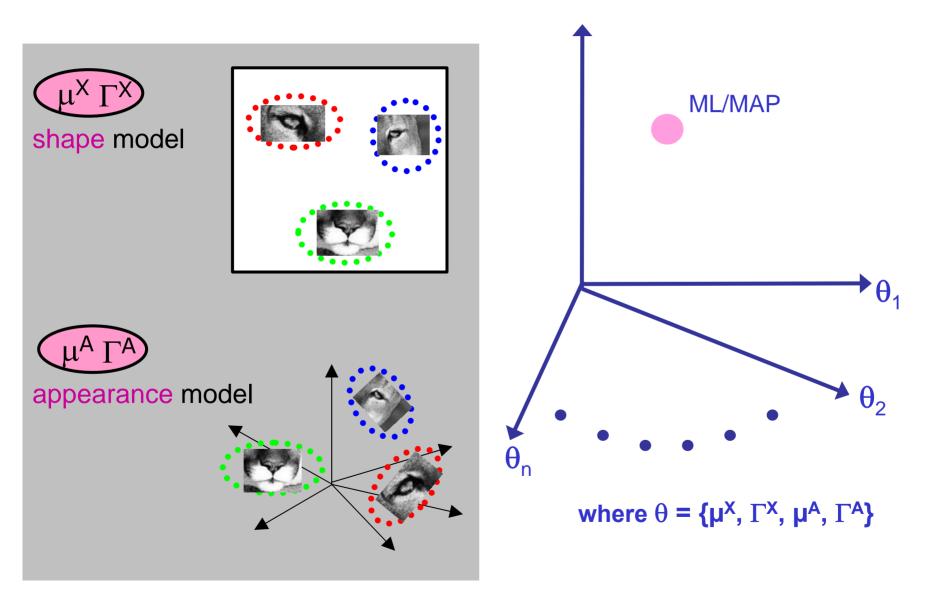


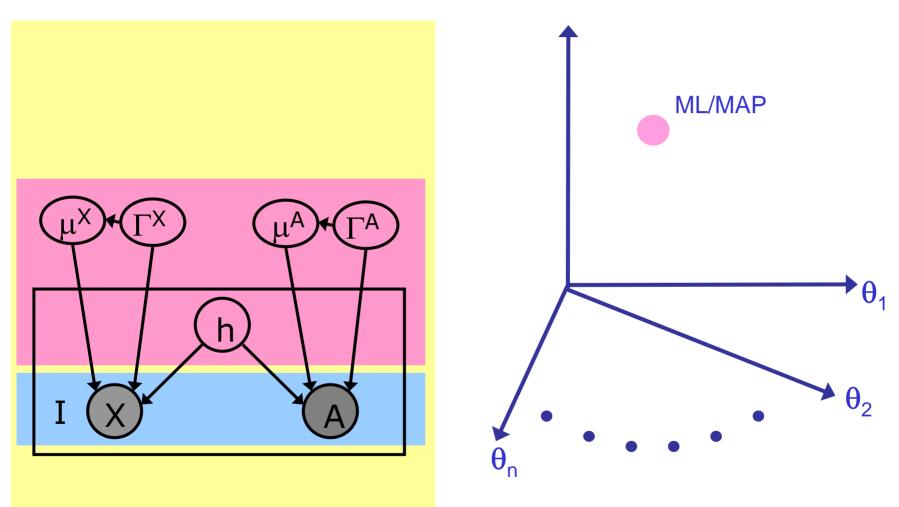


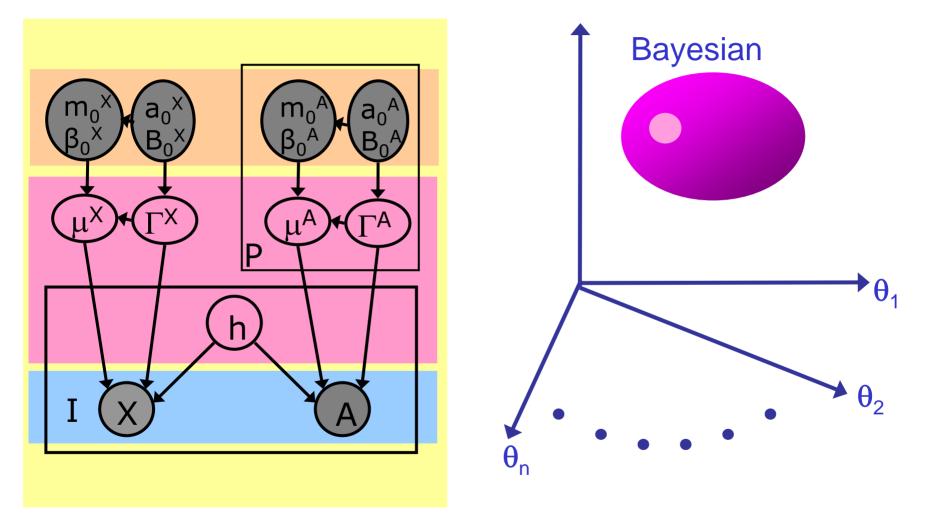


where $\theta = \{\mu^X, \Gamma^X, \mu^A, \Gamma^A\}$

Weber et al. '98 '00, Fergus et al. '03

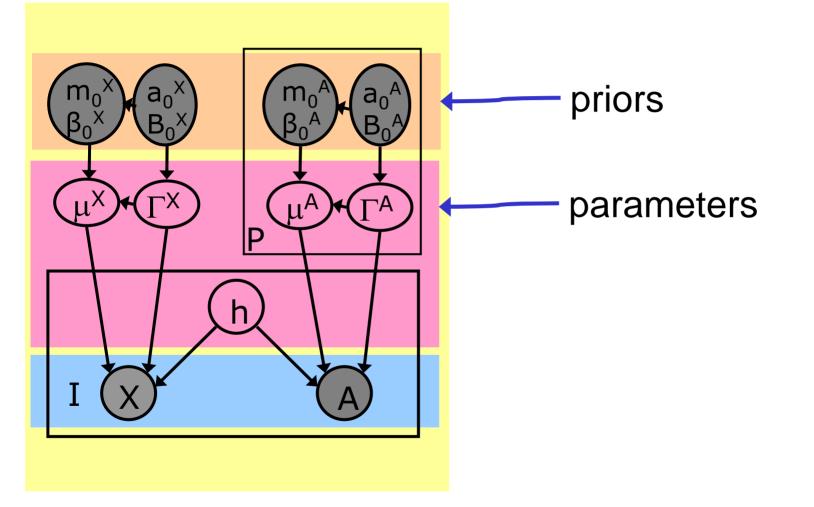


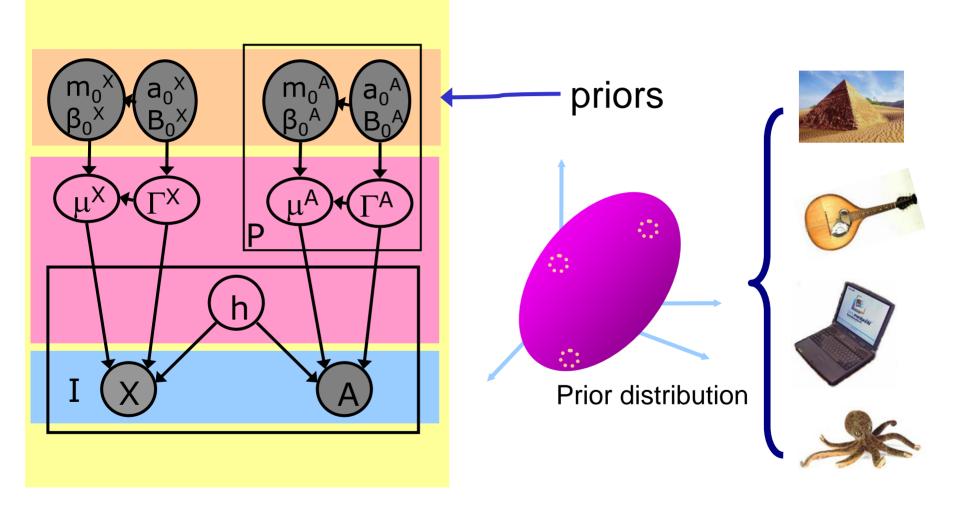


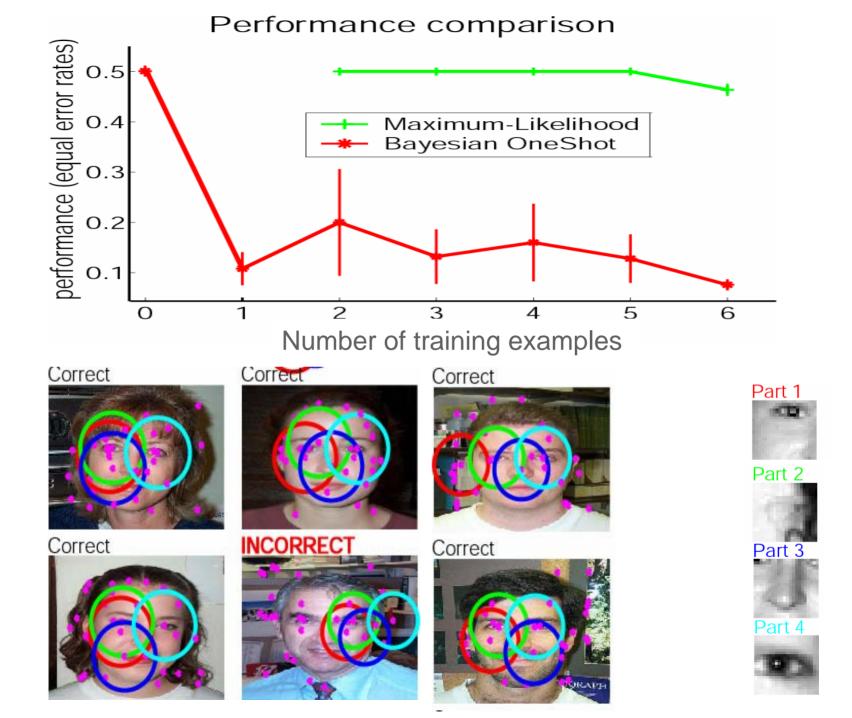


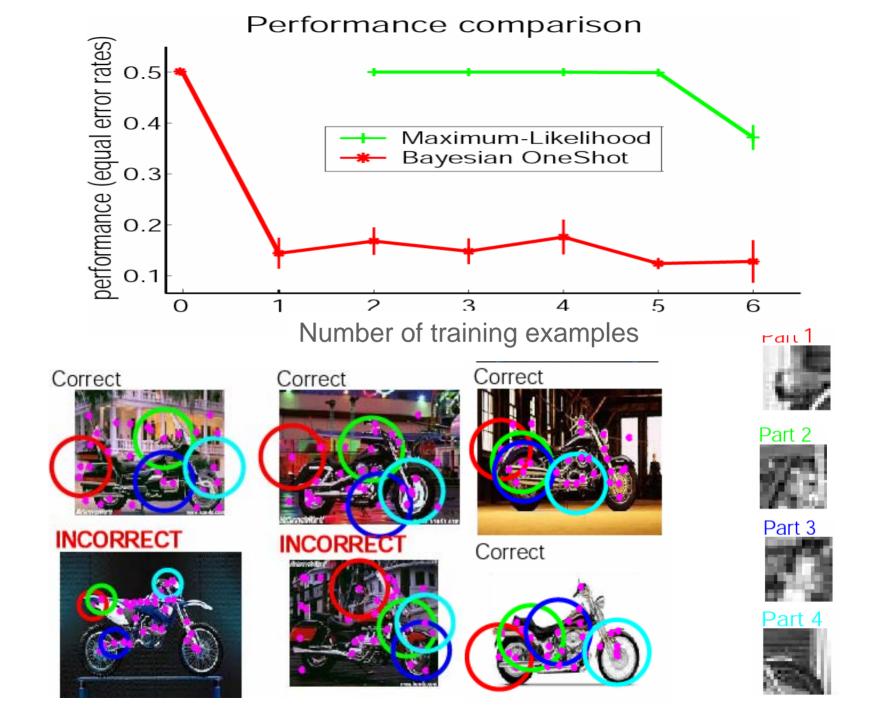
Fei-Fei et al. '03, '04, '06

Parameters to estimate: {m^X, β^{X} , a^{X} , B^{X} , m^{A} , β^{A} , a^{A} , B^{A} } i.e. parameters of Normal-Wishart distribution









Caltech101 dataset

Fei-Fei et al. 2004

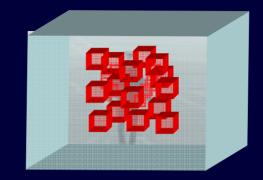
Outline: it's all about 'categorization'

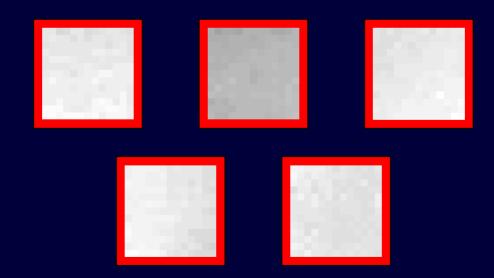
Human Action Classification

Challenges:

- Camera Motion
- Complex Background
- Viewpoint Change

Spatial-Temporal Interest Points

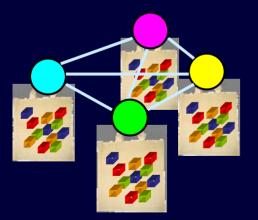




[Dollar et al '05]

Unsupervised learning of human action categories using spatialtemporal words.

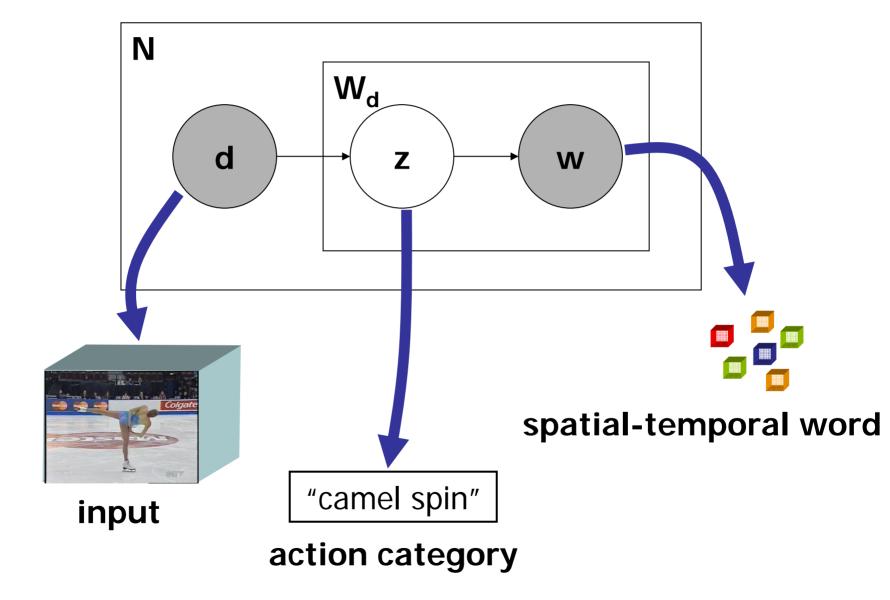
by J.C. Niebles, H. Wang, and L. Fei-Fei, BMVC 2006



A hierarchical model of shape and appearance for human action classification.

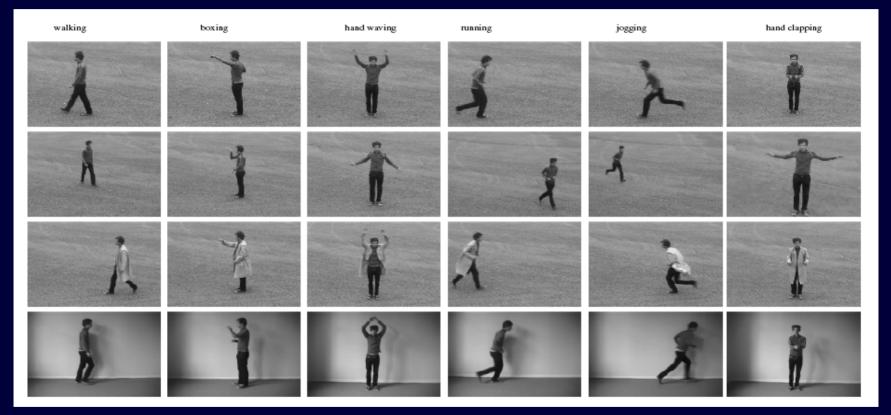
by J.C. Niebles, and L. Fei-Fei, CVPR 2007

Unsupervised learning using pLSA



Experiment I:

KTH dataset [Schuldt et al., 2004]:

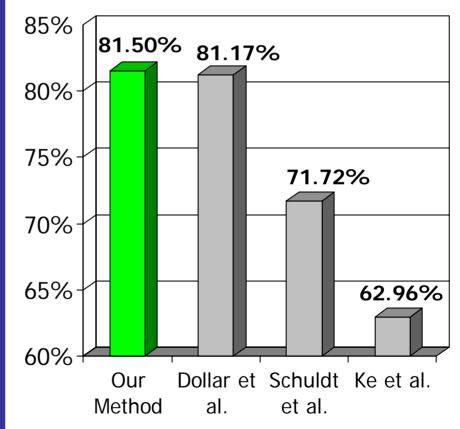


25 persons, indoors and outdoors, 4 long sequences per person

Experiment I: Performance

- Leave-one person out cross validation
- Average performance: 81.50%
- .79 .01 .14 .00 .06 .00 walking .01 .88 .11 .00 .00 .00 running .11 .36 .52 .00 .01 .00 jogging .00 .00 .00 .93 .01 .06 handwaving .77 .23 handclapping .00 .00 .00 .00 1.00 boxing .00 .00 .00 .00 .00

- Unsupervised training
- Handle multiple motions



Experiment I: Multiple motions

handclappinghandwaving

Trained with the KTH data

Tested with our own data

Experiment I: A longer sequence

walkingrunning

Trained with the KTH data

Tested with our own data

Experiment II:

Figure Skating data set: [Y.Wang, G.Mori et al, CVPR 2006]

7 persons, 3 action classes: camel spin, stand spin, sit spin

Experiment II: Examples

Figure skating actions

Camel spin

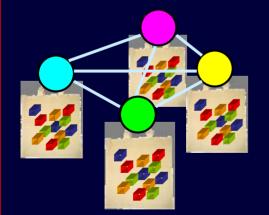
Sit spin

Stand spin

Experiment II: Long Sequences

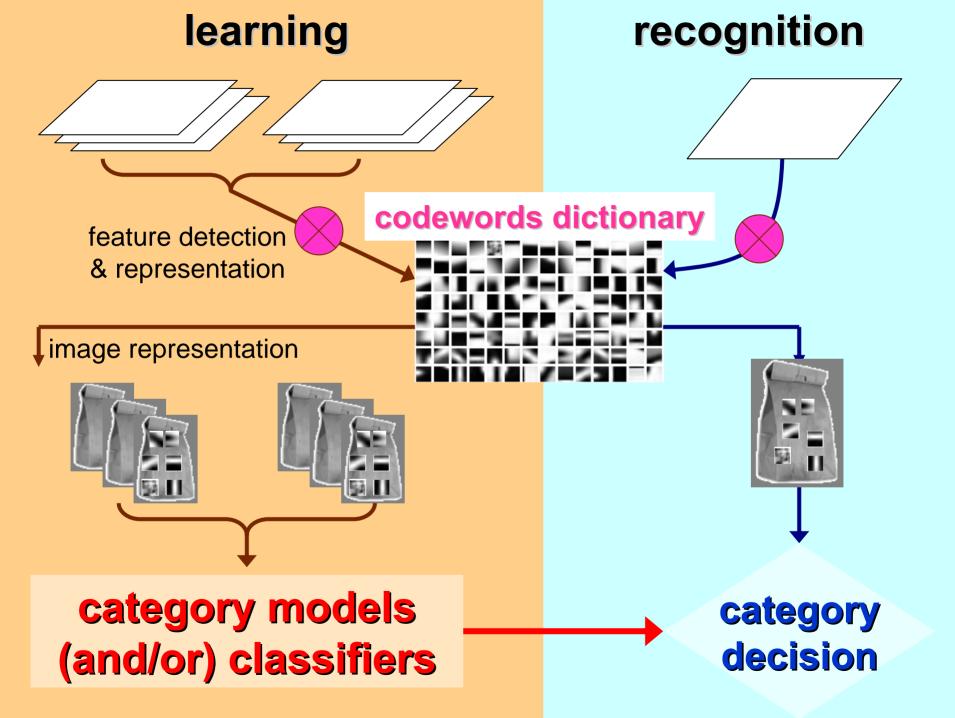
Unsupervised learning of human action categories using spatialtemporal words.

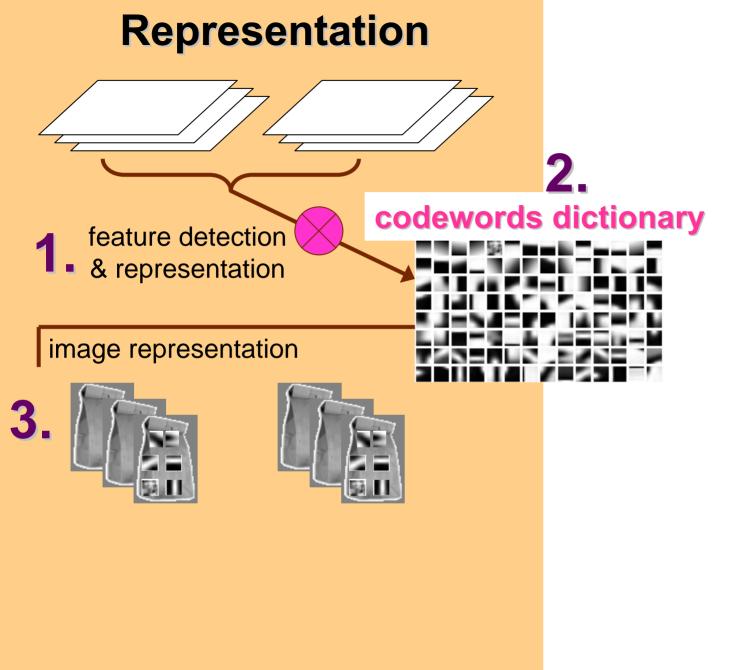
by J.C. Niebles, H. Wang, and L. Fei-Fei, BMVC 2006



A hierarchical model of shape and appearance for human action classification.

by J.C. Niebles and L. Fei-Fei, CVPR 2007





1.Feature detection and representation

extract interest points

- DoG
- Saliency detector (Kadir and Brady)

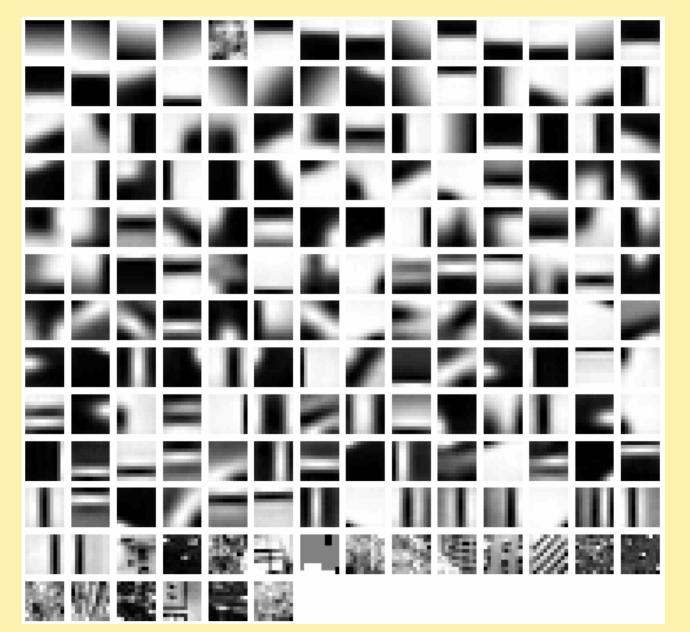
• grid

1.Feature detection and representation

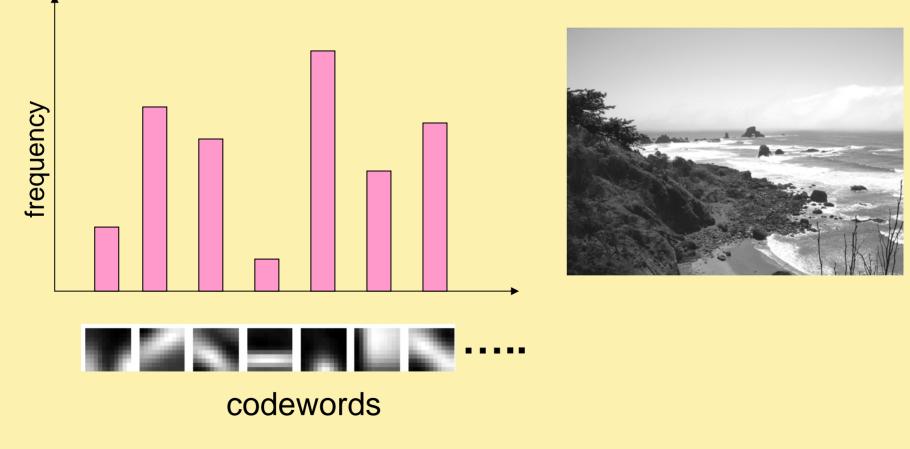
represent interest points

- SIFT (Lowe '99)
- gray scale values

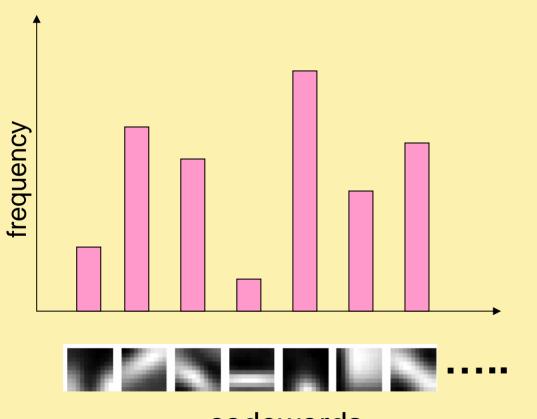
2. Codewords dictionary formation



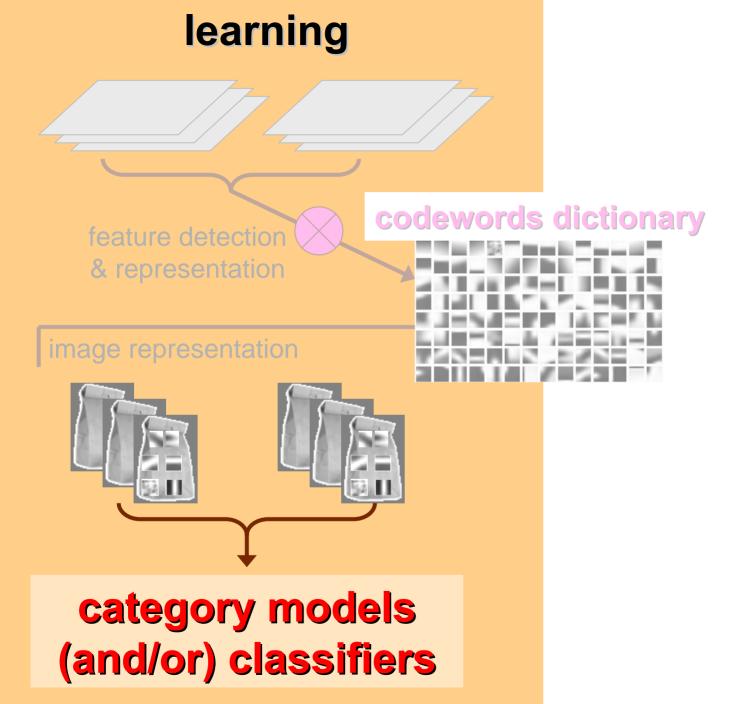
3. Image representation

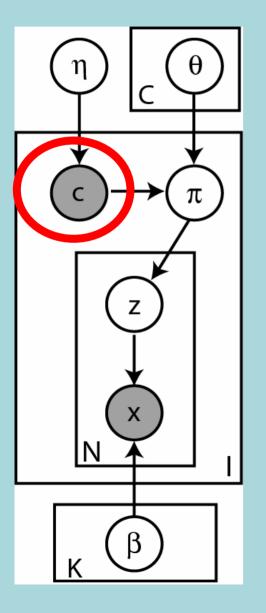


3. Image representation

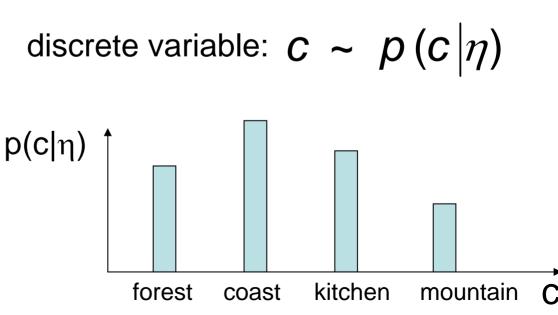


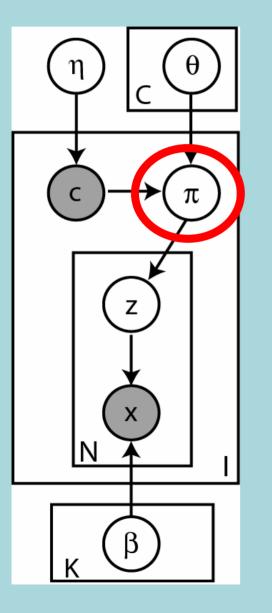
codewords





scene category





mixing parameter for the latent topics

$$\pi \sim p(\pi | c, \theta)$$

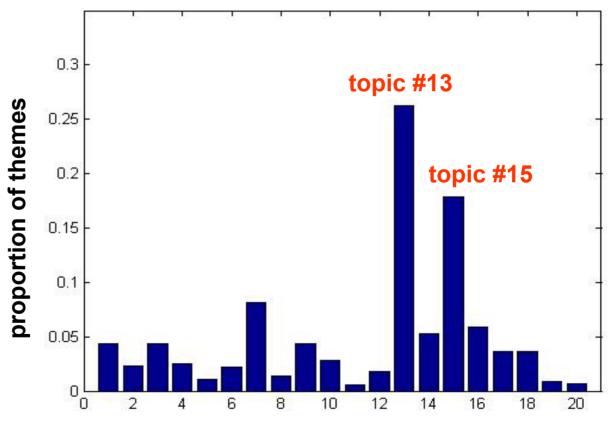
~ Dir $(\pi | c, \theta)$

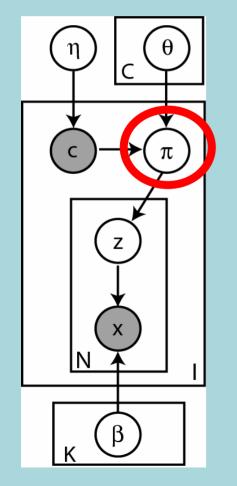
k = 1

 $\sum_{k=1}^{K} \pi_{k} = 1 \qquad \text{K~ total number of topics}$

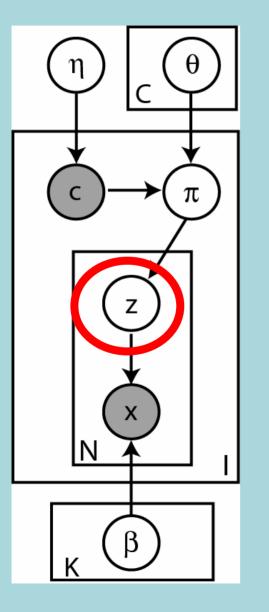
details of a learnt model - coast

expected value of π given 'coast'

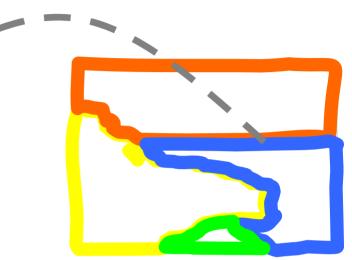




topics



topic label



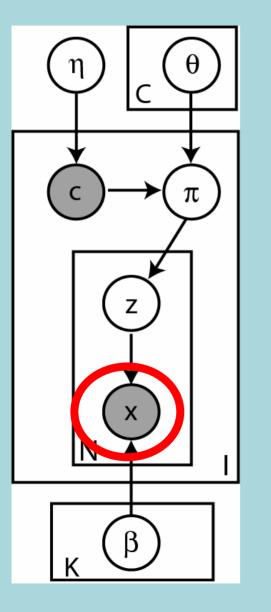
discrete variable:

a patch

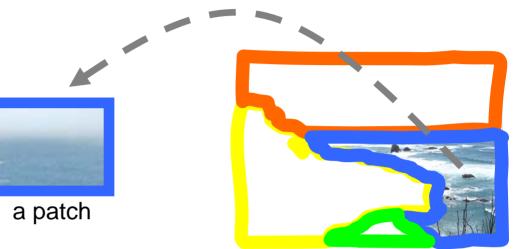
$$z \sim p(z|\pi)$$

~ Mult $(z|\pi)$

 $z = \{1, \dots, K\}$ K~ total number of topic



patch label



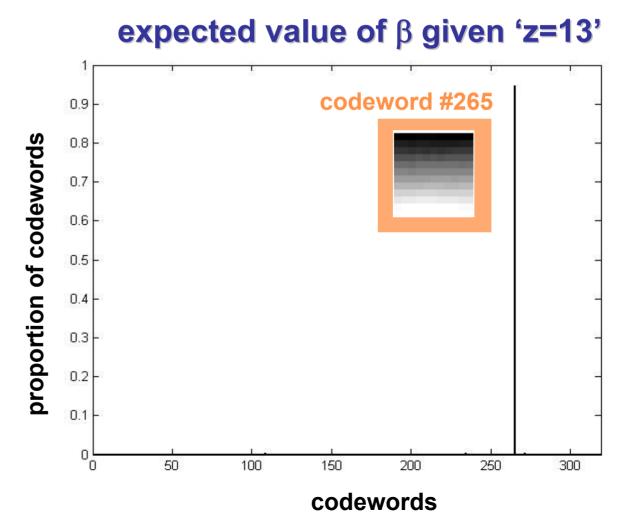
discrete variable:

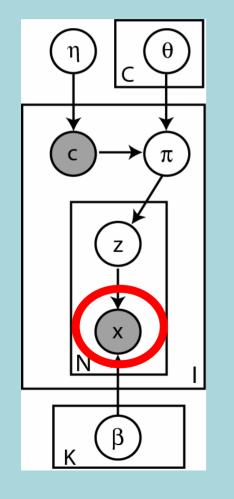
$$x \sim p(x|z, \beta)$$

~ Mult $(x|z, \beta)$

 $x = \{1, \dots, T\}$ T~ total number of codewords

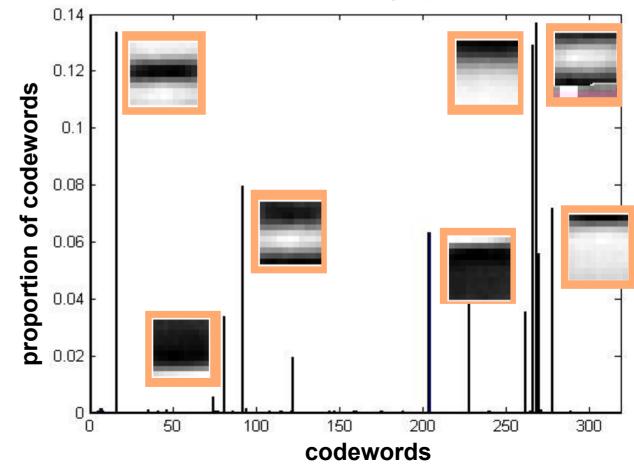
details of a learnt model - coast

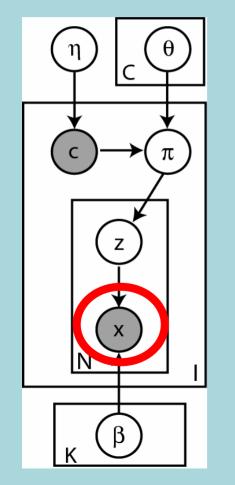


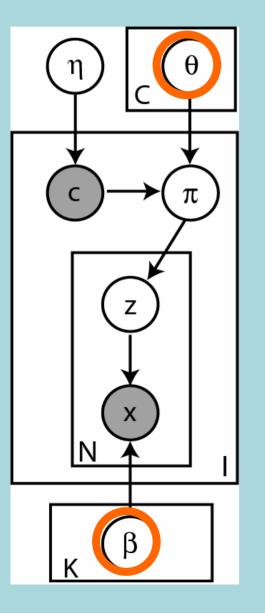


details of a learnt model - coast

expected value of β given 'z=15'







learning

Find the 'best' θ and β

joint probability

$$p(x, z, \pi | \theta, \beta, c) = p(\pi | c, \theta) \prod_{n}^{N} p(z_{n} | \pi) p(x_{n} | z_{n}, \beta)$$
$$p(x | \theta, \beta, c) = \int p(\pi | c, \theta) \left(\prod_{n}^{N} \sum_{z_{n}} p(z_{n} | \pi) p(x_{n} | z_{n}, \beta) \right) d\pi$$

- exact inference is intractable
- use Variational Inference

Z

Х

Ν

η

θ

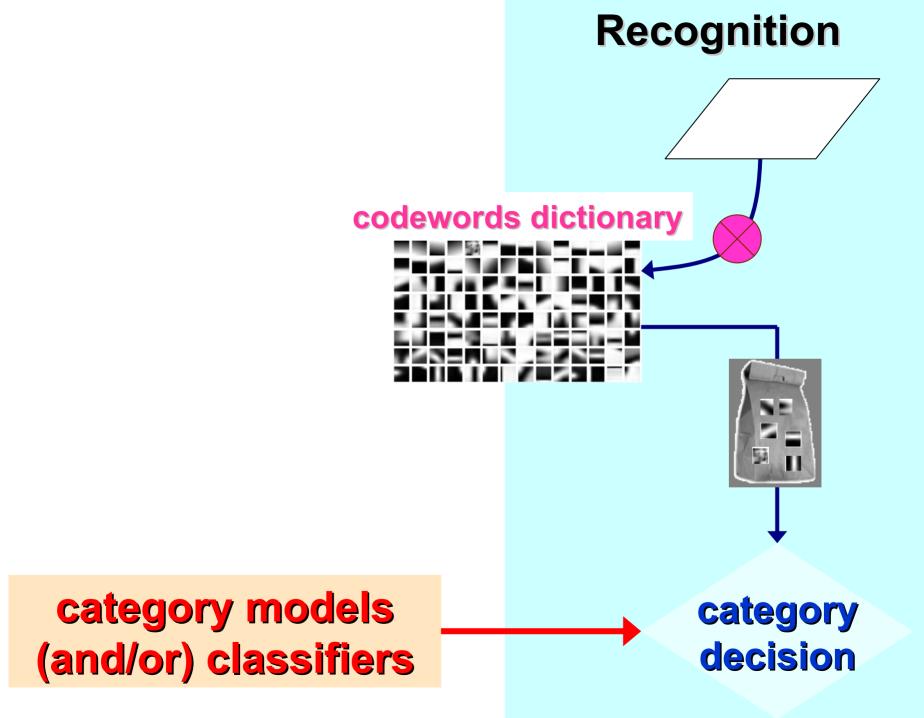
π

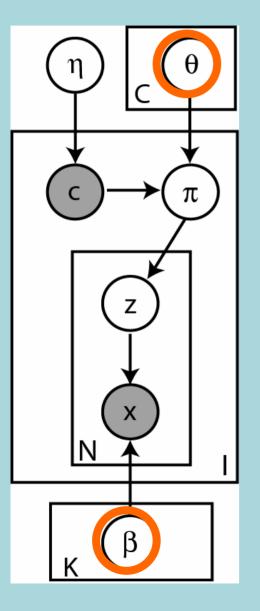
Maximum Likelihood estimation (Minka 2000)

$$\gamma_{ck} = \theta_{ck}^{0} + \sum_{n}^{N} \left\langle \delta(z_{n}^{k} = 1) \right\rangle$$
$$\left\langle \log \pi_{ck} \right\rangle = \Psi(\gamma_{ck}) - \Psi\left(\sum_{k} \gamma_{ck}\right)$$

$$\left\langle \delta \left(z_n^k = 1 \right) \right\rangle = \exp \left\{ \left\langle \log \pi_{ck} \right\rangle + \sum_t^T \left\langle \log \beta_{kt} \right\rangle \delta \left(x_n^t = 1 \right) \right\}$$

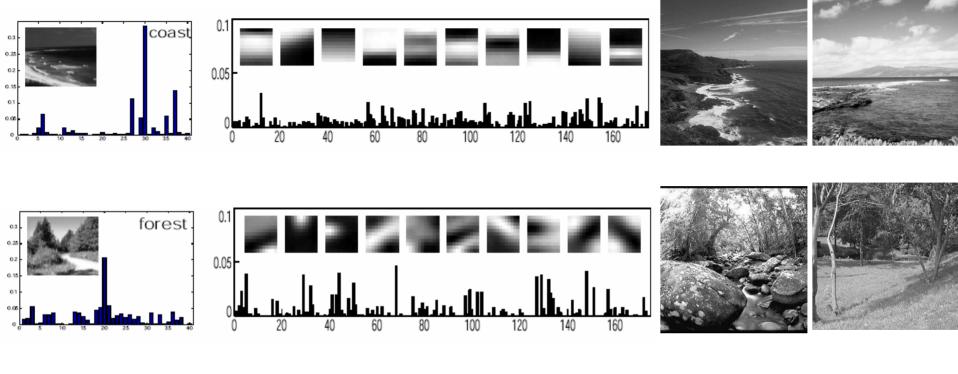
$$\begin{aligned} \xi_{kt} &= \zeta^0 + \sum_{i}^{I} \sum_{n}^{N} \left\langle \delta \left(z_{i,n}^k = 1 \right) \right\rangle \delta \left(x_{i,n}^t = 1 \right) \\ \left\langle \log \beta_{kt} \right\rangle &= \Psi(\xi_{kt}) - \Psi\left(\sum_{t} \xi_{kt} \right) \end{aligned}$$

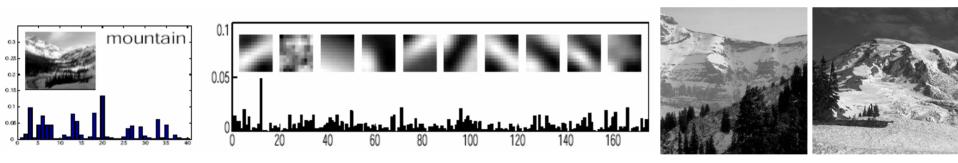


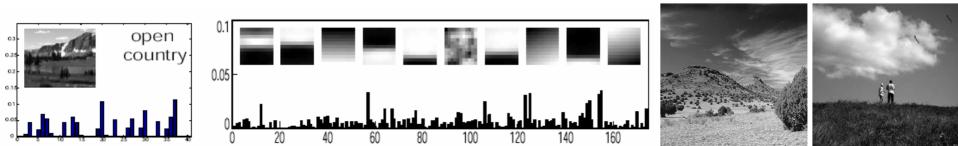


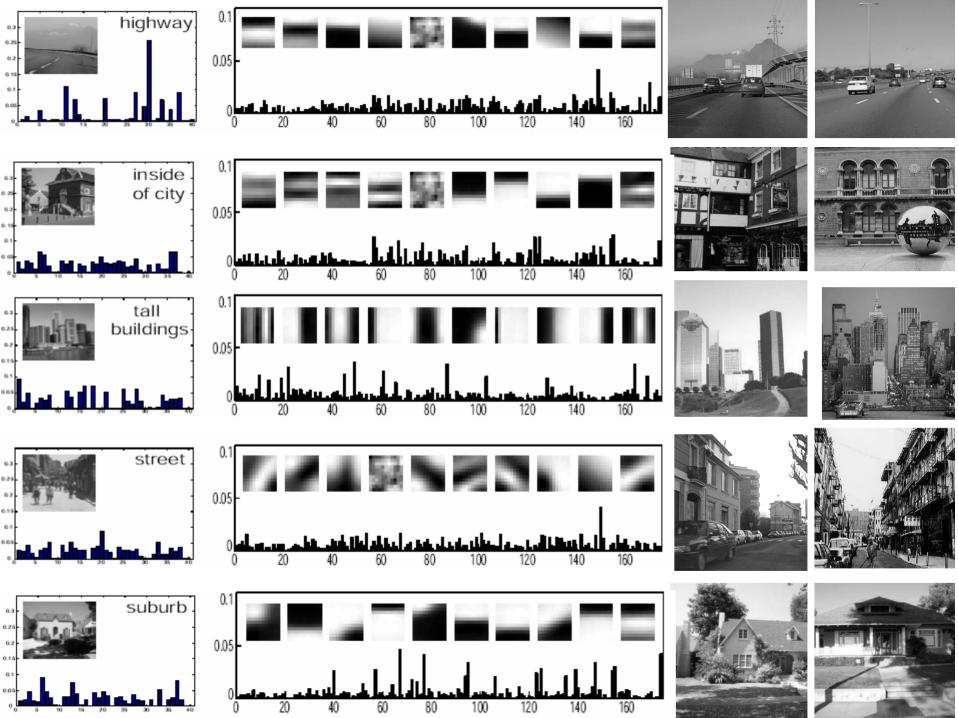
testing (inference) $c = \arg \max_{c} p(x | c, \theta, \beta)$

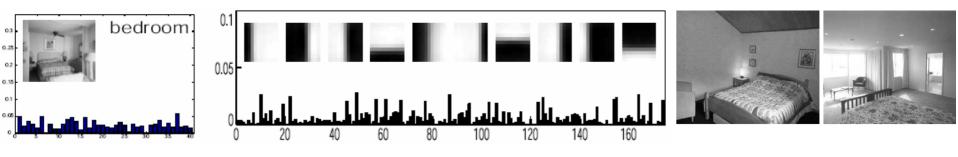
	highway	insidecity	tallbuildings	street	suburb	forest	coast	mountain	opencountry	bedroom	kitchen	livingroom	office
highway	74	2		2	2		14	4		2			
insidecity		58	10	6	8		4			2	6	4	2
tallbuildings		4	76	10				4		4		2	
street	2	4	6	78		2		2	2			4	
suburb					94	6				2			4
forest						88		12					
coast	2						78		20				1
mountain	4		4		2	6	8	70	6				
opencountry	8				8	10	16	10	48				
bedroom	4	2	2		2	2	2	4		28	12	38	4
kitchen		8	2				2				60	14	14
livingroom		2	2	2			2	4		4	18	56	10
office					2		2			8	12	12	64

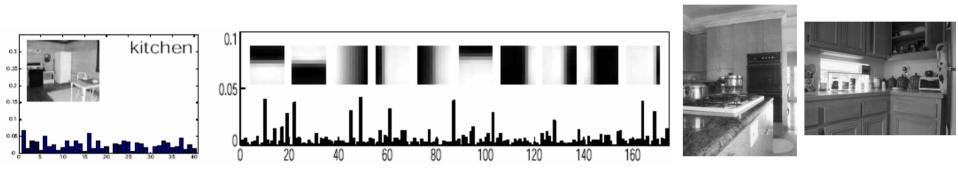


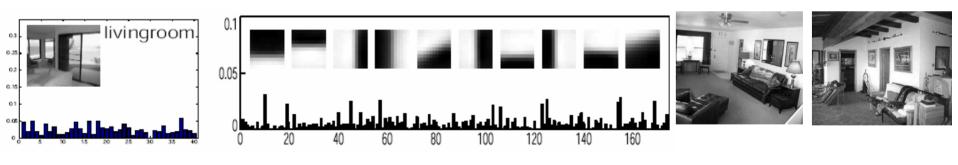


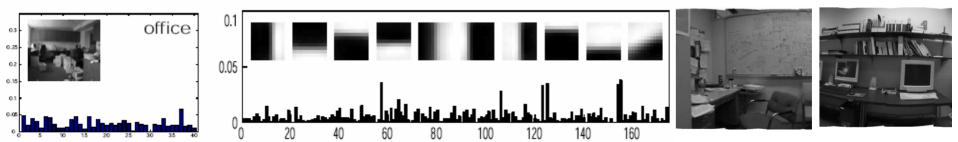




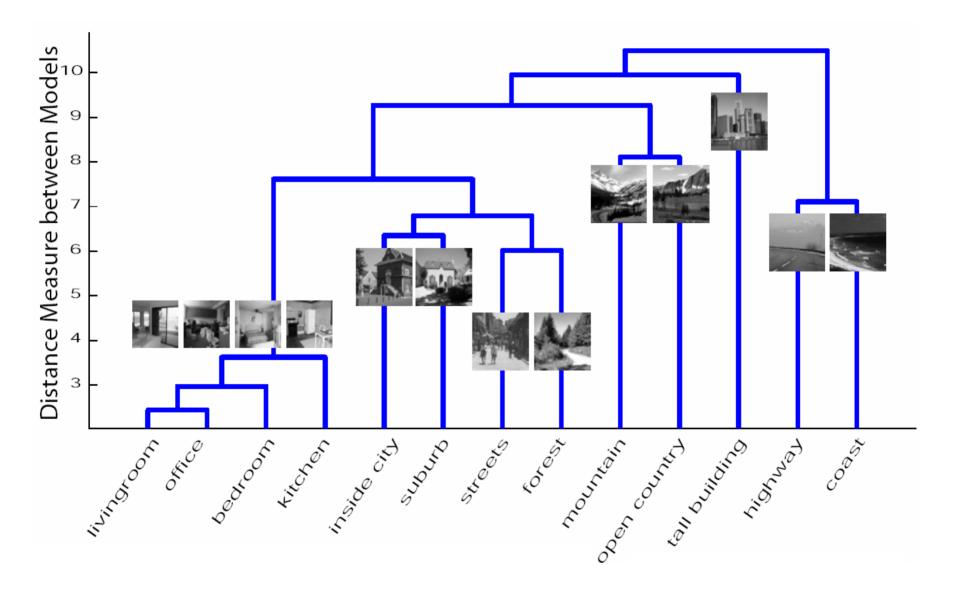








model distance based on theme distribution



Thank you!

- Collaborators:
 - Pietro Perona, Silvio Savarese, Rob Fergus
- Students:
 - Juan Carlos Niebles
 - Li-Jia Li

http://vision.cs.princeton.edu