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A picture is worth a thousand words.
--- Confucius

or Printers’ Ink Ad (1921)
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• To build intelligent visual algorithms for 
machines and robots

• To understand human visual intelligence 
by applying computational tools
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Objects are hard to recognize

– View point



– View point
– Illumination

Objects are hard to recognize



– View point
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– View point
– Illumination
– Occlusion
– Scale
– Deformation
– Clutter
– Intra-class variability

Objects are hard to recognize





How many object categories are there?

Biederman 1987



Algorithm Training 
Examples Categories

Rowley 
et al.

~500 Faces

Schneiderman, et al. ~2,000 Faces, Cars

Burl, et al. Weber, 
et al. Fergus, et al. 200 ~ 400 Faces, Motorbikes, Spotted 

cats, Airplanes, Cars

Viola et al. ~10,000 Faces



One-shot learning
of object categoriesFei-Fei et al. ‘03, ‘04, ‘06



One-shot learning
of object categories

P. Bruegel, 1562

Fei-Fei et al. ‘03, ‘04, ‘06



One-shot learning
of object categoriesFei-Fei et al. ‘03, ‘04, ‘06

No labeling No segmentation No alignment



Prior knowledge about objects
ShapeAppearance
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One-shot learning
of object categories

model representation

Fei-Fei et al. ‘03, ‘04, ‘06
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The Generative Model
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The Generative Model

θn

θ1

θ2

where θ = {µX, ΓX, µA, ΓA}

ML/MAP

Weber et al. ’98 ’00, Fergus et al. ’03



The Generative Model

θn

θ1

θ2

where θ = {µX, ΓX, µA, ΓA}

ML/MAPΓXμX

ΓAμA

shape model

appearance model
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Bayesian

Parameters to estimate: {mX, βX, aX, BX, mA, βA, aA, BA}
i.e. parameters of Normal-Wishart distribution

θn

θ1

θ2

The Generative Model

Fei-Fei et al. ‘03, ‘04, ‘06
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The Generative Model
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Fei-Fei et al. ‘03, ‘04, ‘06
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Number of training examples



Number of training examples



Caltech101

dataset

Fei-Fei et al. 2004
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Challenges:
• Camera Motion
• Complex Background
• Viewpoint Change

Human Action Classification



Spatial-Temporal Interest Points

[Dollar et al ’05]



Unsupervised learning of human 
action categories using spatial-
temporal words.

A hierarchical model of shape 
and appearance for human 
action classification.

by J.C. Niebles, H. Wang, and L. Fei-Fei, BMVC 2006

by J.C. Niebles, and L. Fei-Fei, CVPR 2007



input

Unsupervised learning using pLSA

spatial-temporal word

action category

N
Wd

z wd

“camel spin”

Niebles, Wang & Fei-Fei, BMVC 2006



KTH dataset
[Schuldt et al., 2004]:

25 persons, indoors and outdoors, 4 long sequences per person

Experiment I:



Experiment I: Performance
• Leave-one person out cross 

validation
• Average performance: 81.50%

81.50% 81.17%

71.72%

62.96%

60%

65%

70%

75%

80%

85%

Our
Method

Dollar et
al.

Schuldt
et al.

Ke et al.

• Unsupervised training
• Handle multiple motions

Niebles, Wang & Fei-Fei, BMVC 2006



Experiment I: Multiple motions

handclapping

handwaving

Trained with the 
KTH data

Tested with our 
own data

Niebles, Wang & Fei-Fei, BMVC 2006



Experiment I: A longer sequence

walking

running

Trained with the 
KTH data

Tested with our 
own data

Niebles, Wang & Fei-Fei, BMVC 2006



Figure Skating data set:
[Y.Wang, G.Mori et al, CVPR 2006]

7 persons, 3 action classes: camel spin, stand spin, sit spin

Experiment II:

Niebles, Wang & Fei-Fei, BMVC 2006



Figure skating actions

Camel spin Sit spin Stand spin

Experiment II: Examples

Niebles, Wang & Fei-Fei, BMVC 2006



Experiment II: Long Sequences

Niebles, Wang & Fei-Fei, BMVC 2006



Unsupervised learning of human 
action categories using spatial-
temporal words.

A hierarchical model of shape 
and appearance for human 
action classification.

by J.C. Niebles, H. Wang, and L. Fei-Fei, BMVC 2006

by J.C. Niebles, and L. Fei-Fei, CVPR 2007



categorycategory
decisiondecision

learninglearning

feature detection
& representation

codewords dictionarycodewords dictionary

image representation

category modelscategory models
(and/or) classifiers(and/or) classifiers

recognitionrecognition



RepresentationRepresentation

feature detection
& representation1.1.

codewords dictionarycodewords dictionary
2.2.

image representation

3.3.



1.Feature detection 1.Feature detection and representationand representation

extract 
interest points

• DoG

• Saliency detector 
(Kadir and Brady)

• grid



1.Feature 1.Feature detection anddetection and representationrepresentation

represent 
interest points

• SIFT (Lowe ’99)

• gray scale values



2. Codewords dictionary formation2. Codewords dictionary formation



3. Image representation3. Image representation
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learninglearning

feature detection
& representation

codewords dictionarycodewords dictionary

image representation

category modelscategory models
(and/or) classifiers(and/or) classifiers



A Generative 
Model scene categoryscene category

)(~ ηcpcdiscrete variable:

forest coast kitchen mountain c

p(c|η)



A Generative 
Model mixing parameter for mixing parameter for 

the latent topicsthe latent topics

),(~ θππ cp

1
1

=∑
=

K

k
kπ K~ total number of topics

),(~ θπ cDir



expected value of expected value of ππ given given ‘‘coastcoast’’

topic #13

topic #15

details of a learnt model details of a learnt model 
-- coastcoast
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A Generative 
Model

)(~ πzMult

)(~ πzpz

{ }Kz ,,1K=

topic labeltopic label

K~ total number of topic

discrete variable:

a patch



A Generative 
Model

),(~ βzxMult
),(~ βzxpx

{ }Tx ,,1K= T~ total number of codewords

discrete variable:

patch labelpatch label

a patch



details of a learnt model details of a learnt model 
-- coastcoast

expected value of expected value of ββ given given ‘‘z=13z=13’’
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details of a learnt model details of a learnt model 
-- coastcoast

expected value of expected value of ββ given given ‘‘z=15z=15’’
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A Generative 
Model

Find the ‘best’  θ and β

learninglearning

• exact inference is intractable

• use Variational Inference
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joint probabilityjoint probability



A Generative 
Model
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Maximum Likelihood estimation (Minka 2000)

VariationalVariational InferenceInference



category modelscategory models
(and/or) classifiers(and/or) classifiers

categorycategory
decisiondecision

codewords dictionarycodewords dictionary

RecognitionRecognition



A Generative 
Model

testing (inference)testing (inference)
( )βθ ,,maxarg cxpc

c
=











model distance based on theme distributionmodel distance based on theme distribution



Thank you!Thank you!
• Collaborators:

– Pietro Perona, Silvio Savarese, Rob Fergus
• Students: 

– Juan Carlos Niebles

– Li-Jia Li

http://vision.cs.princeton.edu
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