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Ideal Observers / Ideal Actors

• Q: What is the “optimal” performance on a 
perceptual/cognitive/motor task?
– Given the information available in the 

environment, what is the best possible 
performance on a task?

• Ideal Observer / Ideal Actor
– Fully informed
– Infinite computational accuracy
– Fully rational 

Ideal Observers / Ideal Actors
• Valuable benchmark for evaluating human performance

– If human = ideal, human using all available 
information in an efficient manner

– If human < ideal, why?
• What are limitations on human 

perceptual/cognitive/motor processing?
• What training or manipulations can be done to 

improve human performance?

Ideal Observers / Ideal Actors
• Caveat: Definition of “optimal” based on 

assumptions!!!
– Can have multiple definitions of optimal 

performance, each based on a different set of 
assumptions

• Modeling assumptions
– About structure of graphical model

• E.g., independence assumptions
– About parametric forms of probability distributions
– About prior probabilities
– About loss functions

Outline

• Ideal Observers
– Visual Motion Perception
– Visual Contour Integration

• Ideal Actors
– Adaptive Control in Different Noise 

Environments

Motion Perception
• Problem: calculate 2D object velocity from a 

sequence of images

• We know based on the organization of the visual 
system that motion analysis begins with local 
measurements, such as the output of direction-
selective cells in V1 

• Local measurements must then be integrated to 
yield global motion percepts



Motion Perception

• Integration is essential because the initial 
local estimates are ambiguous

• Why are they ambiguous?  

• Local estimates suffer from the “Aperture 
Problem”

The velocity of a smooth contour 
viewed through an aperture is 
ambiguous 
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The resulting (1D) measurement is 
consistent with an infinite set of (2D) 
velocities 

Only the magnitude of the velocity 
perpendicular to the translating 
edge can be measured 

y

x

?

(0)∂ ∂− = +
∂ ∂ x y
I I v vt x

No intensity gradient is measured 
along the translating edge

i.e.,

Motion Integration

• Heuristic solutions

– Intersection of 
constraints (IOC)

– Vector average (VA)

Simple example: integration of two components in plaids and 
rhombuses

Motion Integration
• Human motion perception seems puzzling

• Performance sometimes consistent w/ IOC 
and sometimes w/ VA

• Strong dependence on relative orientation, 
speed, and contrast of components

Motion Integration

Percept consistent 
w/ VA

Percept consistent 
w/ IOC

Example: translating rhombus

At low contrasts and with close component orientations, perception seems 
to be consistent with VA. 

At high contrast and with distant component orientations, perception seems 
to be consistent IOC.

Optimal Motion Perception
• A better approach: Ideal observer model 

for motion perception
– Weiss, Simoncelli, and Adelson (2002)
– “Motion Illusions as Optimal Percpets”

• Key Assumptions: 
– Local image measurements are noisy

– Image velocities tend to be slow 



Optimal Motion Perception

For simplicity, imagine that we 
get information from only two 
local image windows

Now, the problem of 
estimating velocity looks 
like a cue-combination 
problem
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• Contrast affects the 
variance of the 
velocity estimates

• High contrast: narrow 
likelihood

• Low contrast: broad 
likelihood

• Thin, high-contrast 
rhombus

• Tight likelihoods 
dominate broad prior

• Result: IOC-like 
percept

• Thin, low-contrast 
rhombus

• IOC velocity has high 
magnitude

• Broad likelihoods, 
posterior influenced by 
prior 

• Result: posterior pulled 
toward lower speed 
velocity consistent w/ VA

• Fat, low-contrast 
rhombus

• IOC velocity has low 
magnitude

• Broad likelihoods, 
posterior influenced by 
prior 

• Result: posterior pulled 
toward lower speed but 
direction still consistent 
w/ IOC

Another Example: The “barberpole” illusion

grating motion perceived motion direction 

The perceived motion of a simple grating translating 
behind an aperture changes with the aperture’s shape



At the edges of the aperture,  local velocities are disambiguated by 2D 
motion signals 

Vertical aperture edges 
create a motion signal 
consistent with a vertically 
moving “corner”

Horizontal aperture edges 
create a motion signal 
consistent with a horizontally 
moving “corner”
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Local likelihoods

The tighter likelihoods at the 
aperture boundaries dominate 
both the broad prior and the 
underconstrained likelihood in 
the center

The horizontal velocity 
component dominates the 
percept due to the longer 
horizontal integration 
boundary 
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For a circular aperture, the effects of 
these boundaries is balanced

The prior dominates the ambiguous 
likelihood so that the MAP direction 
reflects the slowest velocity consistent 
with the constraint line

Contour Integration
• People are great at segmenting noisy and 

cluttered scenes into objects

• This is due in part to our ability to group local 
edges into contours

• This ability has been studied by many 
researchers
– Gestalt psychologists: “Good Continuity”
– Field, Hess & Hayes: “Local Association Field”

Contour Integration
• Ideal observer for contour integration

– Geisler, Perry, Super, and Gallogly (2001)
– “Edge Co-Occurrence in Natural Images Predicts Contour 

Grouping Performance”

• How would an ideal observer determine whether a set of 
edges belong to the same contour?

• Simple approach: calculate probability that two edges 
belong to same contour and apply transitivity rule 
(Geisler et al., 2001)

– Simplifying assumption: only pairwise edge statistics are 
important (pairwise approximation)   
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Measuring Edge Distributions for Natural Scenes

• Locate significant edges in natural 
images

• Label contour membership for 
each edge (ground truth)

• Measure conditional pairwise edge 
co-occurance statistics

(from Geisler et al., 2001)



• For each pair of edges in 
the image, determine

– d, the distance between the 
edges

– �, the angle between the 
edges

– �, the difference in 
orientation between the 
edges

– C, whether they belong to a 
common contour

• Use resulting histogram 
to estimate ( , , | )P d Cφ ϕ

Contour Integration
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Problem: Given a pair of edges e1, e2,  decide whether they belong to a 
common contour. That is, determine
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where C=1 indicates that the edges belong to a common contour and C=0
indicates that they do not.

Because C takes only two values, we can use a likelihood ratio test. The ideal 
observer decides that the edges belong together if
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(from Geisler et al., 2001)

Contour Integration
• Geisler et al. (2001) used a 

contour identification task to 
compare the performance of 
the ideal and human observers

• 2IFC Task: determine which 
stimulus contained the longest 
contour

• Ideal observer used measured 
statistics and transitivity rule  (if 
A�B and B�C, then A�C) to 
integrate edges

Contour Integration

• Results

– Closed figures represent 
human data

– Open circles represent 
ideal observer data

• The ideal observer based on 
natural scene statistics 
accounts well for human data 
across many conditions

(from Geisler et al., 2001)

Dynamics and Noise

• Chhabra and Jacobs (2006)
• “Near-Optimal Human Adaptive Control Across Different 

Noise Environments”

• Adaptive control requires learning about both the 
dynamics and the noise of a complex system

• Dynamics: relationship between control signals and the 
expected responses to these signals

• Noise: relationship between control signals and the 
variances of the responses to these signals



Dynamics and Noise

• Dynamics: 2nd –order linear system

– Object position, velocity, acceleration:
– Mass: m
– Force: f
– Viscous resistance: b

• Noise: corrupts force f 
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Three Noise Conditions
• No-Noise (NN)

• Proportional Noise (PN)
– Small forces are corrupted by small amounts of noise
– Large forces are corrupted by large amounts of noise

• Inversely-Proportional Noise (IPN)
– Small forces are corrupted by large amounts of noise
– Large forces are corrupted by small amounts of noise

Ideal Actors
• Optimal control laws computed via dynamic 

programming
– Optimal control law depends on the noise 

characteristics of the environment
– Different ideal actors were created for different noise 

conditions

• Efficiency: 
– Ratio of subject’s performance to expected 

performance of ideal actor

Experimental Results Experimental Results



Experimental Results
Proportional Noise Inversely-Proportional Noise

Ideal Actor

Average
over subjects

Results

• Subjects learned control strategies tailored to the 
specific noise characteristics of their conditions

– Allowed them to achieve levels of performance near 
the information-theoretic upper bounds

• Conclude: Subjects learned to efficiently use all available 
information to plan and execute control policies that 
maximized performances on their tasks

Results

• Q: Is human adaptive control optimal across different 
noise environments?

• A: Yes (under the conditions studied here)

Summary
• Ideal Observers

– Visual Motion Perception
– Visual Contour Integration

• Ideal Actors
– Adaptive Control in Different Noise 

Environments


