

Hierarchy and Reusability in Image Analysis

Stuart Geman

Eran Borenstein, Ya Jin, Wei Zhang

- I. Remarks on Computer Vision
- II. Approaches
- III. Bayesian Image Analysis
- IV. Probability Models
- V. Demonstration System: Reading License Plates
- VI. Generalization: Face Detection

- I. Remarks on Computer Vision
 - · Vision is hard
 - · Why is vision hard?
- II. Approaches
- III. Bayesian Image Analysis
- IV. Probability Models
- V. Demonstration System: Reading License Plates
- VI. Generalization: Face Detection

Pure learning

Human learning:

• 1 sample/10 seconds

VI. Generalization: Face Detection

- = 16 hours/day
- **=** 80 years
- < 170 million samples/lifetime

Enough examples?

Did evolution have enough examples?

D. Geman: "The interesting limit is N goes to zero, not N goes to infinity"

Fodor & Pylyshyun, 1988, and the critique of neural networks

Properties of human cognition:

* compositionality

roughly: representation through syntactically constrained hierarchy of reusable parts

* productivity

roughly: capable of an infinite number of wellformed actions, thoughts, sentences ...

* systematicity

roughly: invariance

Observations from the cognitive, neural, and mathematical sciences

Human brains utilize strong representations

• Damassio (simulation=perception)

• Kosslyn ("resolution of the imaging debate")

• Lakeoff, Fauconnier (the role of mental imagery in language understanding)

- I. Remarks on Computer Vision
- II. Approaches
- III. Bayesian Image Analysis
- IV. Probability Models
 - P(I)
 - P(Y|I)
- V. Demonstration System: Reading License Plates
- VI. Generalization: Face Detection

Content-Sensitive Perturbation

 $I \{x^{\beta}\}_{\beta \in B}$, state of each brick

 β arbitrary, fixed, brick

 $a^{\beta}(I)$ arbitrary function of the progeny of β

 $p^c(a^{\beta})$ target cond. $(x^{\beta} > 0)$ prob. on a^{β}

 $p^o(a^\beta)$ unpertrubed cond. ($x^\beta>0$) prob. on a^β

Content-Sensitive Perturbation

$$\begin{split} p(I) &= p(I|x^{\beta} = 0)p(x^{\beta} = 0) + p(I|x^{\beta} > 0)p(x^{\beta} > 0) \\ &= p(I|x^{\beta} = 0)p(x^{\beta} = 0) + p(I,a^{\beta}|x^{\beta} > 0)p(x^{\beta} > 0) \\ &= p(I|x^{\beta} = 0)p(x^{\beta} = 0) + p(I|a^{\beta},x^{\beta} > 0)p^{o}(a^{\beta})p(x^{\beta} > 0) \end{split}$$

$$\begin{split} &\rightarrow p(I|x^{\beta}=0)p(x^{\beta}=0) + p(I|a^{\beta},x^{\beta}>0)p^{c}(a^{\beta})p(x^{\beta}>0) \\ &= p(I|x^{\beta}=0)p(x^{\beta}=0) + p(I|a^{\beta},x^{\beta}>0)p^{o}(a^{\beta})p(x^{\beta}>0)\frac{p^{c}(a^{\beta})}{p^{o}(a^{\beta})} \\ &= p(I)\left(\frac{p^{c}(a^{\beta})}{p^{o}(a^{\beta})}\right)^{1_{x^{\beta}>0}} \end{split}$$

Content-Sensitive Perturbation

.... but perturbations interact!

.... nevertheless ...

THEOREM (Wei Zhang):

(1) if $p^c(a^{\beta}(I)) > 0 \ \forall \ \beta \in B \ \& \ I \in \mathcal{I}$, then $\exists \ p(I)$ consistent with $\{p^c(a^{\beta}(I))\}_{\beta \in B}$

(2) iterative perturbation, over all $\beta \in B,$ generates such a distribution.

I. Remarks on Computer Vision

II. Approaches

III. Bayesian Image Analysis

IV. Probability Models

V. Demonstration System: Reading License Plates

VI. Generalization: Face Detection

Objects come equipped with their own background models

- I. Remarks on Computer Vision
- II. Approaches
- III. Bayesian Image Analysis
- IV. Probability Models
- V. Demonstration System: Reading License Plates
- VI. Generalization: Face Detection

PATTERN SYNTHESIS = PATTERN ANALYSIS Ulf Grenander

