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I.   Remarks on Computer Vision

• Vision is hard

• Why is vision hard?

II.   Approaches

III.   Bayesian Image Analysis

IV.   Probability Models

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Machines still can’t reliably read license plates

License plate images from Logan Airport

Machines can’t read fixed-font fixed-scale characters as well as humans

Wafer ID’s

Machines can’t find the bad guys at the Super Bowl

Super Bowl
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Vision is content sensitive

Instantiation

same

twins

Empire style table

Background is structured, and made of the same stuff!

“Clutter”

Human Interactive Proofs

I.   Remarks on Computer Vision

II.   Approaches

• Pure learning

• Fodor & Pylyshyun, 1988, and the critique of neural
networks

• Observations from the cognitive, neural, and
mathematical sciences

III.   Bayesian Image Analysis

IV.   Probability Models

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Pure learning

Google:

• 2 billion images

• train classifier: pornographic/not pornographic

• good classification

• not nearly as good as human performance

Pure learning

Human learning:

•      1 sample/10 seconds

•      16 hours/day

•      80 years

•  <  170 million samples/lifetime

Enough examples?

Did evolution have enough examples?

D. Geman: “The interesting limit is N goes to zero,
         not N goes to infinity”

Fodor & Pylyshyun, 1988, and the critique of neural
networks

Properties of human cognition:

* compositionality

       roughly: representation through syntactically  
                     constrained hierarchy of reusable parts

* productivity

       roughly: capable of an infinite number of well- 
                     formed actions, thoughts, sentences …
* systematicity

       roughly: invariance
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Fodor & Pylyshyun, 1988, and the critique of neural
networks

if ‘the boy ran home’

makes sense, then so does

‘the girl ran home’

‘john ran home’

‘john ran to school’

If                         is a triangle,

then so are

4   4    4   4   4   4    4
4

systematicity

Observations from the cognitive, neural, and
mathematical sciences

Human brains utilize strong representations

• Damassio (simulation=perception)

• Kosslyn (“resolution of the imaging debate”)

• Lakeoff, Fauconnier (the role of mental imagery
in language understanding)

Observations from the cognitive, neural, and
mathematical sciences

Structure:                  retina          LGN          V1          V2          V4          IT

Topography:          highly retinotopic                                  little
topology

Receptive Field:       small                                                                      large

Specificity:                low
high

Invariance:                low                                                                          high

SUMMARY:   A hierarchy of less-to-more invariant representations

Consider the ventral visual pathway:

Observations from the cognitive, neural, and
mathematical sciences

  Thought experiment:

      what if the world is a hierarchy of reusable parts?

Problem: test for ‘L’

God’s ROC curve (Neyman-Pearson Lemma):

impossible in practice…

Observations from the cognitive, neural, and
mathematical sciences

Testing against a universal null (pragmatic):

Observations from the cognitive, neural, and
mathematical sciences
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Testing “parts” against “wholes”:

Observations from the cognitive, neural, and
mathematical sciences
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Observations from the cognitive, neural, and
mathematical sciences ROCs

God’s ROC

universal null

parts against
wholes

Theorem (S. Geman, Y. Jin, W. Zhang)  At any fixed
probability of detection (`type I error’):

& various generalizations…

Observations from the cognitive, neural, and
mathematical sciences

Take Home Message: in a compositional world

• objects come equipped with their own background models

• background confusions occur at subsets of objects

I.   Remarks on Computer Vision

II.   Approaches

III.   Bayesian Image Analysis

• Overview

• Interpretations

IV.   Probability Models

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Bayesian image analysis - overview

Given an image Y:

     find a ‘good’ interpretation I using P(I|Y)

e.g. discontinuities,
gradient

e.g. linelets,
curvelets, T-
junctions

e.g. contours,
intermediate objects

e.g. animals, trees,
rocks

Interpretations:
built from hierarchies of reusable parts

“Bricks”
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Hierarchy of Disjunctions of Conjunctions Hierarchy of Disjunctions of Conjunctions

Hierarchy of Disjunctions of Conjunctions Hierarchy of Disjunctions of Conjunctions

Hierarchy of Disjunctions of Conjunctions Hierarchy of Disjunctions of Conjunctions
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Hierarchy of Disjunctions of Conjunctions Interpretations

Interpretation

selected complete
subgraph

Interpretations

selected complete
subgraph

Interpretation
I.   Remarks on Computer Vision

II.   Approaches

III.   Bayesian Image Analysis

IV.   Probability Models

• P(I)

• P(Y|I)

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Probability modeling Architecture

    Image

Bricks

Every brick is
• off, or
• on, and selects a
set of children
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Image interpretation

    Image

Bricks

Image interpretation:
  a complete subgraph

Notation

    Image

Bricks
B

Markov backbone

    Image

Bricks
B

Markov backbone

    Image

Bricks
B

Is this
sufficiently
constrained?

Beyond Markovian distributions

Compositions depend on instantiations…e.g. the positioning of parts

?

Compositional distribution – a perturbed Markov model

    Image

Bricks
B



8

Content-Sensitive Perturbation Content-Sensitive Perturbation

Content-Sensitive Perturbation

….  but perturbations interact!

….  nevertheless …

Probability modeling

Interpretation

Data Model
(overview) patch

locations
template

pixels

sufficiency
assumption

iid “background”

extend to
overlap

Select a terminal brick
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Select a state (e.g. left-eye brick)

pixels
covered by

Model

Template – one for each state of  brick

Image data

Assume C = Corr(       ,       ) sufficient:

+1-1

N(C) and the Central Limit Theorem

…intractable?

Then, exactly, if

CLT

Hence

Example: sampling         when          = eye patch

Example: sampling         when          = mouth patch Example: learning a mixture of 16 eye patches from
500 faces (using EM)
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Example: learning a mixture of 16 eye patches from
500 faces (using EM)

Example: learning a mixture of 16 nose and mouth
patches from 500 faces (using EM)

Example: learning a mixture of 16 nose and mouth
patches from 500 faces (using EM) I.   Remarks on Computer Vision

II.   Approaches

III.   Bayesian Image Analysis

IV.   Probability Models

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Test set: 385 images, mostly from Logan Airport

Courtesy of Visics Corporation

characters, plate sides

generic letter, generic number, L-junctions
of sides

license plates

Architecture

parts of characters, parts of plate sides

plate boundaries, strings (2 letters, 3 digits,
3 letters, 4 digits)

license numbers (3 digits + 3 letters,
4 digits + 2 letters)
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Original Image Top object

Top 10 objects Top 25 objects

Image interpretation

Test image Top objects

Image interpretation

• 385 images

• Six plates read with mistakes (>98%)

• Approx. 99.5% characters read correctly

• Zero false positives

Performance Efficient discrimination: Markov versus Content-Sensitive dist.

Sample 4-digit string

Perturbed distributionMarkov backbone

Original image Zoomed license region

Top object under Markov 
distribution

Top object under content-sensitive 
distribution

Efficient discrimination: Markov versus Content-Sensitive dist.

9 active “8” bricks under whole model 1 active “8” brick under parts model

Test image

Efficient discrimination: testing objects against their parts



12

Vision is Content Sensitive

  Summary

Background is Structured, and Made of the Same Stuff

Non-Markovian probability models

Objects come equipped with their own background models

I.   Remarks on Computer Vision

II.   Approaches

III.   Bayesian Image Analysis

IV.   Probability Models

V.   Demonstration System: Reading License Plates

VI.   Generalization: Face Detection

Face Hierarchy

Sampling faces from the
distribution

PATTERN SYNTHESIS

            =    PATTERN ANALYSIS

                                                                                      Ulf Grenander
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    Image

Bricks

Efficient computation: depth-first search

X

X

X

X X

Test image Top objects

Efficient computation: depth-first search

Number of visits to each pixel.  Left: linear scale  Right: log scale

Test image Top objects

Number of visits to each pixel.  Left: linear scale  Right: log scale

Efficient computation: depth-first search


