Dynamic Models for Graphs

William F. Szewczyk

Math Research Group National Security Agency wfszewc@afterlife.ncsc.mil

The Data

- Central Asia (CASIA) database from the Kansas Event Data Survey (http://www.ku.edu/keds/data.html)
- Events as reported in Reuters newswire
- 139 state and non-state actors
- Events from May 1989 through July 1999

What's Wrong with This Picture?

The problem with most probabilistic models for graphs is that they don't account for any graph dynamics.

The p*-model

Let $G = \{V, E\}$ be a directed graph with a vertex set $V = \{v_1, \ldots, v_g\}$, and edge set $E = \{e_{ij}\}$ where $e_{ij} = 1$ if vertex v_i sends a link to vertex v_j and 0 otherwise for $i = 1, \ldots, g, j = 1, \ldots, g, i \neq j$. Model the logit of $P(e_{ij} = 1)$ as

logit(
$$e_{ij}$$
) = log $\left(\frac{P(e_{ij} = 1)}{P(e_{ij} = 0)}\right) = \alpha_i + \beta_j + \gamma.$

Some Attempts at Dynamism

There appear to be two main ways to introduce some dynamics into a graph:

- Assume that each graph is an independent sample from some (possibly unknown) distribution and look for changes.
- Use an exponential smoothing scheme to weight recent activity more than activity in the past.

What's really needed is a "Kalman Filter" for graphs.

Review of Linear Models

Let $\mathbf{Y} = (y_1, \dots, y_t)'$ be a series of observations. Suppose there's a set of unknown parameters, θ , such that for a known design matrix, \mathbf{F} ,

$$\mathbf{Y} = \mathbf{F}' \mathbf{\theta} + \mathbf{V},$$

where $\mathbf{V} = (v_1, \dots, v_t)'$ is a vector of iid disturbance terms.

If one assumes that $v_i \sim N(0, \sigma^2)$, then one has at their disposal all the standard regression tools.

Dynamic Linear Models

$$y_{t} = \mathbf{F}'_{t}\theta_{t} + v_{t}$$
$$\theta_{t} = \mathbf{G}_{t}\theta_{t-1} + \omega_{t}$$

where ω_t is a disturbance term uncorrelated with θ_{t-1} and v_t .

Now how does one estimate θ_t ?

The Basic Idea

- 1. Take what we know now (D_t)
- 2. Predict what we will see next
- 3. See what we see next
- 4. See how far off we are
- 5. Fix our mistakes
- 6. Iterate

An Example

 $\mathbf{y}_{t} = \mathbf{F}'_{t}\mathbf{\theta}_{t} + \mathbf{v}_{t} \qquad \mathbf{v}_{t} \sim \mathbf{N}(\mathbf{0}, \mathbf{V})$ $\theta_t = \mathbf{G}_t \theta_{t-1} + \omega_t \qquad \omega_t \sim N(0, \mathbf{W}_t)$ $(\theta_{t-1}|D_{t-1}) \sim N(\mathbf{m}_{t-1}, \mathbf{C}_{t-1})$ $(\boldsymbol{\theta}_t | \mathbf{D}_{t-1}) \sim \mathbf{N}(\mathbf{a}_t, \mathbf{R}_t)$ $\mathbf{a}_{t} = \mathbf{G}_{t}\mathbf{m}_{t-1}$ $\mathbf{R}_{t} = \mathbf{G}_{t}\mathbf{C}_{t-1}\mathbf{G}_{t}' + \mathbf{W}_{t}$ $(Y_t | D_{t-1}) \sim N(f_t, Q_t)$ $f_t = \mathbf{F}'_t \mathbf{a}_t$ $Q_t = \mathbf{F}'_t \mathbf{R}_t \mathbf{F}_t + V$ $e_t = y_t - f_t$ $\mathbf{A}_t = \mathbf{R}_t \mathbf{F}_t / Q_t$ $\mathbf{m}_{t} = \mathbf{a}_{t} + \mathbf{A}_{t}e_{t}$ $\mathbf{C}_{t} = \mathbf{R}_{t} - \mathbf{A}_{t}\mathbf{A}_{t}^{\prime}\mathbf{Q}_{t}$

The Linear Model Revisited

Recall the linear model $y = \mathbf{F}' \theta + v$ with $v \sim N(0, \sigma^2)$ One could decompose this into three components

- 1. A RANDOM COMPONENT: $Y \sim N(\mu, \sigma^2)$, where, $\mu = E(Y)$.
- 2. A Systematic Component: A linear predictor $\eta = \mathbf{F}' \boldsymbol{\theta}$.
- 3. A Link Component: $g(\mu) = \eta$, in this case the identity.

So What?

- 1. Random Component: Let $Y \sim Bin(n,\mu),$ where the probability of success is $\mu.$
- 2. Systematic Component: $\eta = \mathbf{F}' \boldsymbol{\theta}$.
- 3. Link Component: $g(\mu) = \log \frac{\mu}{1-\mu}$

Now we talking about Generalized Linear Models.

Exponential Family of Distributions

If the density of y can be written in the form

 $f_{Y}(y;\theta,\varphi) = exp\left((y\theta - b(\theta))/a(\varphi) + c(y,\varphi)\right),$

for specific functions a(.), b(.), and c(.), then it is said to be of the exponential family.

Fitting GLMs

Fitting GLMs is accomplished by using an iteratively reweighted least squares algorithm. Let $\hat{\eta}_0$ be the current estimate of the linear predictor, and $\hat{\mu}_0$ the corresponding fitted response value. Form the adjusted dependent value

$$z_0 = \hat{\eta}_0 + (y - \hat{\mu}_0) \left(\frac{d\eta}{d\mu}\right)_0.$$

Do a weighted regression of z_0 onto **F** with quadratic weights

$$W_0^{-1} = \left(\frac{\mathrm{d}\eta}{\mathrm{d}\mu}\right)_0^2 V_0$$

to obtain new estimates of θ and η .

Dynamic GLM

$$y_t = g^{-1}(\mathbf{F}'_t \boldsymbol{\theta}_t)$$
$$\boldsymbol{\theta}_t = \mathbf{G}_t \boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t$$

The Basic Idea

- 1. Take what we know now (D_t)
- 2. Predict what we will see next
- 3. See what we see next
- 4. See how far off we are
- 5. Fix our mistakes
- 6. Iterate

Going Forward

$$\begin{split} y_t &= g^{-1}(\boldsymbol{F}_t'\boldsymbol{\theta}_t) \\ \boldsymbol{\theta}_t &= \boldsymbol{G}_t\boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t \qquad \boldsymbol{\omega}_t \sim N(\boldsymbol{0}, \boldsymbol{W}_t) \\ (\boldsymbol{\theta}_{t-1}|D_{t-1}) &\sim N(\boldsymbol{m}_{t-1}, \boldsymbol{C}_{t-1}) \\ (\boldsymbol{\theta}_t|D_{t-1}) &\sim N(\boldsymbol{a}_t, \boldsymbol{R}_t) \qquad \boldsymbol{a}_t = \boldsymbol{G}_t \boldsymbol{m}_{t-1} \\ \boldsymbol{R}_t &= \boldsymbol{G}_t \boldsymbol{C}_{t-1} \boldsymbol{G}_t' + \boldsymbol{W}_t \\ \eta_{t|t-1} &= \boldsymbol{F}' \boldsymbol{a}_t \end{split}$$

Going Backwards

As with GLMs, DGLMs use Fisher scoring to update the parameters. Let

$$\mathbf{i}_{t}(\boldsymbol{\theta}_{t}) = \partial l_{t}(\boldsymbol{\theta}_{t}) / \partial \boldsymbol{\theta}_{t} = \mathbf{F}' \mathbf{H}_{t}(\boldsymbol{\theta}_{t}) \boldsymbol{\Sigma}_{t}^{-1}(\boldsymbol{\theta}_{t}) (\boldsymbol{y}_{t} - \boldsymbol{\mu}_{t}(\boldsymbol{\theta}_{t}))$$

and

$$\mathbf{U}_{t}(\boldsymbol{\theta}_{t}) = E(-\partial^{2}l_{t}(\boldsymbol{\theta}_{t})/\partial\boldsymbol{\theta}_{t}\partial\boldsymbol{\theta}_{t}'|\boldsymbol{\theta}, D_{t-1}) = \mathbf{F}'\mathbf{H}_{t}(\boldsymbol{\theta}_{t})\boldsymbol{\Sigma}_{t}^{-1}(\boldsymbol{\theta}_{t})\mathbf{H}_{t}'(\boldsymbol{\theta}_{t})\mathbf{F}_{t}$$

where $\mu_t(\theta_t) = g^{-1}(\eta_t)$ is the conditional expectation, $\Sigma_t^{-1}(\theta_t)$, the conditional covariance matrix, and $\mathbf{H}_t(\theta_t)$, the Jacobian, then

$$\mathbf{C}_{t} = (\mathbf{C}_{t-1}^{-1} + \mathbf{U}_{t}(\boldsymbol{\theta}_{t}))^{-1} \qquad \boldsymbol{\theta}_{t} = \mathbf{a}_{t} + \mathbf{C}_{t}\mathbf{u}_{t}.$$

Remember This Guy?

Let $G = \{V, E\}$ be a directed graph with a vertex set $V = \{v_1, \ldots, v_g\}$, and edge set $E = \{e_{ij}\}$ where $e_{ij} = 1$ if vertex v_i sends a link to vertex v_j and 0 otherwise for $i = 1, \ldots, g, j = 1, \ldots, g, i \neq j$. Model the logit of $P(e_{ij} = 1)$ as

$$logit(e_{ij}) = log\left(\frac{P(e_{ij} = 1)}{P(e_{ij} = 0)}\right) = \alpha_i + \beta_j + \gamma.$$

A Simple Random Walk Model

- $\mathbf{F}_t = \mathbf{F}$, a sparse $(2g 1) \times (g^2 g)$ matrix
- $\mathbf{G}_t = \mathbf{G}$, the $(2g 1) \times (2g 1)$ identity matrix
- Precision decreases by 20% at each time step
- Initialize the algorithm by fitting a p*-model to the first graph
- Move forward in time using a DGLM with binomial errors
- If a goodness-of-fit model indicates a poor fit after some time, reinitialize

Pakistan

N. Korea (Red)/ S. Korea (Blue)

Iraq

Kuwait

References

- Anderson, C. J., S. Wasserman, and B. Crouch (1999). A p* Primer: Logit Models for Social Networks. *Social Networks 21*, 37–66.
- Cortes, C., D. Pregibon, and C. Volinsky (2004). Computational Methods for Dynamic Graphs. *Journal of Computational and Graphical Statistics* 12, 950–970.
- Fharmeir, L. (1992). Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models. *Journal of the American Statistical Association* 87, 501–509.
- McCullagh, P. and J. A. Nelder (1989). *Generalized Linear Models* (Second ed.). Boca Raton: Chapman & Hall/CRC.
- West, M. and J. Harrison (1997). *Bayesian Forecasting and Dynamic Models* (Second ed.). New York: Springer-Verlag.