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The Data

• Central Asia (CASIA) database from the Kansas Event Data
Survey (http://www.ku.edu/keds/data.html)

• Events as reported in Reuters newswire

• 139 state and non-state actors

• Events from May 1989 through July 1999



What’s Wrong with This Picture?



The problem with most probabilistic models for

graphs is that they don’t account for any graph

dynamics.



The p∗-model

Let G = {V, E} be a directed graph with a vertex set V = {v1, . . . , vg}, and
edge set E = {eij} where eij = 1 if vertex vi sends a link to vertex vj and 0

otherwise for i = 1, . . . , g, j = 1, . . . , g, i 6= j. Model the logit of P(eij = 1) as

logit(eij) = log
(

P(eij = 1)

P(eij = 0)

)
= αi + βj + γ.



Some Attempts at Dynamism

There appear to be two main ways to introduce some dynamics into a
graph:

• Assume that each graph is an independent sample from some (possi-
bly unknown) distribution and look for changes.

• Use an exponential smoothing scheme to weight recent activity more
than activity in the past.

What’s really needed is a “Kalman Filter” for graphs.



Review of Linear Models

Let Y = (y1, . . . , yt)
′ be a series of observations. Suppose there’s a set of

unknown parameters, θ, such that for a known design matrix, F,

Y = F ′θ + V,

where V = (v1, . . . , vt)
′ is a vector of iid disturbance terms.

If one assumes that vi ∼ N(0, σ2), then one has at their disposal all the
standard regression tools.



Dynamic Linear Models

yt = F ′
tθt + vt

θt= Gtθt−1 +ωt

where ωt is a disturbance term uncorrelated with θt−1 and vt.

Now how does one estimate θt?



The Basic Idea

1. Take what we know now (Dt)

2. Predict what we will see next

3. See what we see next

4. See how far off we are

5. Fix our mistakes

6. Iterate



An Example

yt = F ′
tθt + vt vt ∼ N(0, V)

θt = Gtθt−1 + ωt ωt ∼ N(0,Wt)

(θt−1|Dt−1) ∼ N(mt−1,Ct−1)

(θt|Dt−1) ∼ N(at,Rt) at = Gtmt−1

Rt = GtCt−1G ′
t + Wt

(Yt|Dt−1) ∼ N(ft,Qt) ft = F ′
tat

Qt = F ′
tRtFt + V

et = yt − ft At = RtFt/Qt

mt = at + Atet Ct = Rt − AtA ′
tQt



The Linear Model Revisited

Recall the linear model y = F ′θ+ v with v ∼ N(0, σ2) One could decompose
this into three components

1. A RANDOM COMPONENT: Y ∼ N(µ, σ2), where, µ = E(Y).

2. A SYSTEMATIC COMPONENT: A linear predictor η = F ′θ.

3. A LINK COMPONENT: g(µ) = η, in this case the identity.



So What?

1. RANDOM COMPONENT: Let Y ∼ Bin(n, µ), where the probability of suc-
cess is µ.

2. SYSTEMATIC COMPONENT: η = F ′θ.

3. LINK COMPONENT: g(µ) = log µ
1−µ

Now we talking about Generalized Linear Models.



Exponential Family of Distributions

If the density of y can be written in the form

fY(y; θ, φ) = exp ((yθ − b(θ))/a(φ) + c(y,φ)) ,

for specific functions a(.), b(.), and c(.), then it is said to be of the expo-
nential family.



Fitting GLMs

Fitting GLMs is accomplished by using an iteratively reweighted least
squares algorithm. Let η̂0 be the current estimate of the linear predic-
tor, and µ̂0 the corresponding fitted response value. Form the adjusted
dependent value

z0 = η̂0 + (y − µ̂0)

(
dη

dµ

)
0

.

Do a weighted regression of z0 onto F with quadratic weights

W−1
0 =

(
dη

dµ

)2

0

V0

to obtain new estimates of θ and η.



Dynamic GLM

yt = g−1(F ′
tθt)

θt = Gtθt−1 + ωt



The Basic Idea

1. Take what we know now (Dt)

2. Predict what we will see next

3. See what we see next

4. See how far off we are

5. Fix our mistakes

6. Iterate



Going Forward

yt = g−1(F ′
tθt)

θt = Gtθt−1 + ωt ωt ∼ N(0,Wt)

(θt−1|Dt−1) ∼ N(mt−1,Ct−1)

(θt|Dt−1) ∼ N(at,Rt) at = Gtmt−1

Rt = GtCt−1G ′
t + Wt

ηt|t−1 = F ′at



Going Backwards

As with GLMs, DGLMs use Fisher scoring to update the parameters. Let

ut(θt) = ∂lt(θt)/∂θt = F ′Ht(θt)Σ
−1
t (θt)(yt − µt(θt))

and

Ut(θt) = E(−∂2lt(θt)/∂θt∂θ ′
t|θ, Dt−1) = F ′Ht(θt)Σ

−1
t (θt)H ′

t(θt)F,

where µt(θt) = g−1(ηt) is the conditional expectation, Σ−1
t (θt), the condi-

tional covariance matrix, and Ht(θt), the Jacobian, then

Ct = (C−1
t−1 + Ut(θt))

−1 θt = at + Ctut.



Remember This Guy?

Let G = {V, E} be a directed graph with a vertex set V = {v1, . . . , vg}, and
edge set E = {eij} where eij = 1 if vertex vi sends a link to vertex vj and 0

otherwise for i = 1, . . . , g, j = 1, . . . , g, i 6= j. Model the logit of P(eij = 1) as

logit(eij) = log
(

P(eij = 1)

P(eij = 0)

)
= αi + βj + γ.



A Simple Random Walk Model

• Ft = F, a sparse (2g − 1)× (g2 − g) matrix

• Gt = G, the (2g − 1)× (2g − 1) identity matrix

• Precision decreases by 20% at each time step

• Initialize the algorithm by fitting a p∗-model to the first graph

• Move forward in time using a DGLM with binomial errors

• If a goodness-of-fit model indicates a poor fit after some time, reini-
tialize
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