Dynamic Models for Graphs

William F. Szewczyk

Math Research Group

National Security Agency
wfszewc@afterlife.ncsc.mil

The Data

- Central Asia (CASIA) database from the Kansas Event Data Survey (http://www.ku.edu/keds/data.html)
- Events as reported in Reuters newswire
- 139 state and non-state actors
- Events from May 1989 through July 1999

What's Wrong with This Picture?

The problem with most probabilistic models for graphs is that they don't account for any graph dynamics.

The p^{*}-model

Let $G=\{V, E\}$ be a directed graph with a vertex set $V=\left\{v_{1}, \ldots, v_{g}\right\}$, and edge set $E=\left\{e_{i j}\right\}$ where $e_{i j}=1$ if vertex v_{i} sends a link to vertex v_{j} and 0 otherwise for $\mathfrak{i}=1, \ldots, g, j=1, \ldots, g, i \neq j$. Model the logit of $P\left(e_{i j}=1\right)$ as

$$
\operatorname{logit}\left(e_{i j}\right)=\log \left(\frac{P\left(e_{i j}=1\right)}{P\left(e_{i j}=0\right)}\right)=\alpha_{i}+\beta_{j}+\gamma .
$$

Some Attempts at Dynamism

There appear to be two main ways to introduce some dynamics into a graph:

- Assume that each graph is an independent sample from some (possibly unknown) distribution and look for changes.
- Use an exponential smoothing scheme to weight recent activity more than activity in the past.

What's really needed is a "Kalman Filter" for graphs.

Review of Linear Models

Let $\mathbf{Y}=\left(y_{1}, \ldots, y_{t}\right)^{\prime}$ be a series of observations. Suppose there's a set of unknown parameters, θ, such that for a known design matrix, \mathbf{F},

$$
\mathbf{Y}=\mathbf{F}^{\prime} \boldsymbol{\theta}+\mathbf{V}
$$

where $\mathbf{V}=\left(v_{1}, \ldots, v_{\mathrm{t}}\right)^{\prime}$ is a vector of iid disturbance terms.
If one assumes that $\nu_{i} \sim N\left(0, \sigma^{2}\right)$, then one has at their disposal all the standard regression tools.

Dynamic Linear Models

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{t}}=\mathbf{F}_{\mathrm{t}}^{\prime} \boldsymbol{\theta}_{\mathrm{t}}+\nu_{\mathrm{t}} \\
& \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \boldsymbol{\theta}_{\mathrm{t}-1}+\boldsymbol{\omega}_{\mathrm{t}}
\end{aligned}
$$

where ω_{t} is a disturbance term uncorrelated with θ_{t-1} and ν_{t}.
Now how does one estimate θ_{t} ?

The Basic Idea

1. Take what we know now $\left(D_{t}\right)$
2. Predict what we will see next
3. See what we see next
4. See how far off we are
5. Fix our mistakes
6. Iterate

An Example

$$
\begin{aligned}
& y_{\mathrm{t}}=\mathbf{F}_{\mathrm{t}}^{\prime} \boldsymbol{\theta}_{\mathrm{t}}+v_{\mathrm{t}} v_{\mathrm{t}} \sim \mathrm{~N}(0, \mathrm{~V}) \\
& \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \boldsymbol{\theta}_{\mathrm{t}-1}+\omega_{\mathrm{t}} \omega_{\mathrm{t}} \sim \mathrm{~N}\left(0, \mathbf{W}_{\mathrm{t}}\right) \\
&\left(\boldsymbol{\theta}_{\mathrm{t}-1} \mid \mathrm{D}_{\mathrm{t}-1}\right) \sim \mathrm{N}\left(\mathbf{m}_{\mathrm{t}-1}, \mathbf{C}_{\mathrm{t}-1}\right) \\
&\left(\boldsymbol{\theta}_{\mathrm{t}} \mid \mathrm{D}_{\mathrm{t}-1}\right) \sim \mathrm{N}\left(\mathbf{a}_{\mathrm{t}}, \mathbf{R}_{\mathrm{t}}\right) \mathbf{a}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \mathbf{m}_{\mathrm{t}-1} \\
& \mathbf{R}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \mathbf{C}_{\mathrm{t}-1} \mathbf{G}_{\mathrm{t}}^{\prime}+\mathbf{W}_{\mathrm{t}} \\
&\left(\mathrm{Y}_{\mathrm{t}} \mid \mathrm{D}_{\mathrm{t}-1}\right) \sim \mathrm{N}\left(\mathrm{f}_{\mathrm{t}}, \mathrm{Q}_{\mathrm{t}}\right) \mathrm{f}_{\mathrm{t}}=\mathbf{F}_{\mathrm{t}}^{\prime} \mathbf{a}_{\mathrm{t}} \\
& \mathrm{Q}_{\mathrm{t}}=\mathbf{F}_{\mathrm{t}}^{\prime} \mathbf{R}_{\mathrm{t}} \mathbf{F}_{\mathrm{t}}+\mathrm{V} \\
& \mathbf{A}_{\mathrm{t}}=y_{\mathrm{t}}-\mathrm{f}_{\mathrm{t}} \\
& \mathbf{A}_{\mathrm{t}}=\mathbf{R}_{\mathrm{t}} \mathbf{F}_{\mathrm{t}} / \mathrm{Q}_{\mathrm{t}} \\
& \mathbf{m}_{\mathrm{t}}=\mathbf{a}_{\mathrm{t}}+\mathbf{A}_{\mathrm{t}} e_{\mathrm{t}} \mathbf{C}_{\mathrm{t}}=\mathbf{R}_{\mathrm{t}}-\mathbf{A}_{\mathrm{t}} \mathbf{A}_{\mathrm{t}}^{\prime} \mathrm{Q}_{\mathrm{t}}
\end{aligned}
$$

The Linear Model Revisited

Recall the linear model $y=\mathbf{F}^{\prime} \theta+v$ with $v \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ One could decompose this into three components

1. A Random Component: $\mathrm{Y} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, where, $\mu=\mathrm{E}(\mathrm{Y})$.
2. A Systematic Component: A linear predictor $\eta=\mathbf{F}^{\prime} \boldsymbol{\theta}$.
3. A Link Component: $g(\mu)=\eta$, in this case the identity.

So What?

1. RANDOM COMPONENT: Let $Y \sim \operatorname{Bin}(n, \mu)$, where the probability of success is μ.
2. Systematic Component: $\eta=\mathbf{F}^{\prime} \boldsymbol{\theta}$.
3. Link Component: $g(\mu)=\log \frac{\mu}{1-\mu}$

Now we talking about Generalized Linear Models.

Exponential Family of Distributions

If the density of y can be written in the form

$$
f_{Y}(y ; \theta, \phi)=\exp ((y \theta-b(\theta)) / a(\phi)+c(y, \phi)),
$$

for specific functions $a(),. b($.$) , and c($.$) , then it is said to be of the expo-$ nential family.

Fitting GLMs

Fitting GLMs is accomplished by using an iteratively reweighted least squares algorithm. Let $\widehat{\eta}_{0}$ be the current estimate of the linear predictor, and $\hat{\mu}_{0}$ the corresponding fitted response value. Form the adjusted dependent value

$$
z_{0}=\hat{\eta}_{0}+\left(y-\hat{\mu}_{0}\right)\left(\frac{d \eta}{d \mu}\right)_{0} .
$$

Do a weighted regression of z_{0} onto \mathbf{F} with quadratic weights

$$
W_{0}^{-1}=\left(\frac{d \eta}{d \mu}\right)_{0}^{2} V_{0}
$$

to obtain new estimates of θ and $\boldsymbol{\eta}$.

Dynamic GLM

$$
\begin{aligned}
& y_{\mathrm{t}}=\mathrm{g}^{-1}\left(\mathbf{F}_{\mathrm{t}}^{\prime} \boldsymbol{\theta}_{\mathrm{t}}\right) \\
& \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \boldsymbol{\theta}_{\mathrm{t}-1}+\omega_{\mathrm{t}}
\end{aligned}
$$

The Basic Idea

1. Take what we know now $\left(D_{t}\right)$
2. Predict what we will see next
3. See what we see next
4. See how far off we are
5. Fix our mistakes
6. Iterate

Going Forward

$$
\begin{aligned}
& y_{\mathrm{t}}=\mathrm{g}^{-1}\left(\mathbf{F}_{\mathrm{t}}^{\prime} \boldsymbol{\theta}_{\mathrm{t}}\right) \\
& \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \boldsymbol{\theta}_{\mathrm{t}-1}+\omega_{\mathrm{t}} \omega_{\mathrm{t}} \sim \mathrm{~N}\left(0, \mathbf{W}_{\mathrm{t}}\right) \\
&\left(\boldsymbol{\theta}_{\mathrm{t}-1} \mid \mathrm{D}_{\mathrm{t}-1}\right) \sim \mathrm{N}\left(\mathbf{m}_{\mathrm{t}-1}, \mathbf{C}_{\mathrm{t}-1}\right) \\
&\left(\boldsymbol{\theta}_{\mathrm{t}} \mid \mathrm{D}_{\mathrm{t}-1}\right) \sim \mathrm{N}\left(\mathbf{a}_{\mathrm{t}}, \mathbf{R}_{\mathrm{t}}\right) \mathbf{a}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \mathbf{m}_{\mathrm{t}-1} \\
& \mathbf{R}_{\mathrm{t}}=\mathbf{G}_{\mathrm{t}} \mathbf{C}_{\mathrm{t}-1} \mathbf{G}_{\mathrm{t}}^{\prime}+\mathbf{W}_{\mathrm{t}} \\
& \eta_{\mathrm{tt}-1}=\mathbf{F}^{\prime} \mathbf{a}_{\mathrm{t}}
\end{aligned}
$$

Going Backwards

As with GLMs, DGLMs use Fisher scoring to update the parameters. Let

$$
\mathbf{u}_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)=\partial l_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) / \partial \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{F}^{\prime} \mathbf{H}_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) \boldsymbol{\Sigma}_{\mathrm{t}}^{-1}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)\left(\boldsymbol{y}_{\mathrm{t}}-\mu_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)\right)
$$

and

$$
\mathbf{U}_{\mathrm{t}}\left(\theta_{\mathrm{t}}\right)=\mathrm{E}\left(-\partial^{2} l_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) / \partial \theta_{\mathrm{t}} \partial \theta_{\mathrm{t}}^{\prime} \mid \boldsymbol{\theta}, \mathrm{D}_{\mathrm{t}-1}\right)=\mathbf{F}^{\prime} \mathbf{H}_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) \boldsymbol{\Sigma}_{\mathrm{t}}^{-1}\left(\theta_{\mathrm{t}}\right) \mathbf{H}_{\mathrm{t}}^{\prime}\left(\boldsymbol{\theta}_{\mathrm{t}}\right) \mathbf{F},
$$

where $\mu_{t}\left(\theta_{t}\right)=g^{-1}\left(\eta_{t}\right)$ is the conditional expectation, $\Sigma_{t}^{-1}\left(\theta_{t}\right)$, the conditional covariance matrix, and $\mathbf{H}_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)$, the Jacobian, then

$$
\mathbf{C}_{\mathrm{t}}=\left(\mathbf{C}_{\mathrm{t}-1}^{-1}+\mathbf{U}_{\mathrm{t}}\left(\boldsymbol{\theta}_{\mathrm{t}}\right)\right)^{-1} \quad \boldsymbol{\theta}_{\mathrm{t}}=\mathbf{a}_{\mathrm{t}}+\mathbf{C}_{\mathrm{t}} \mathbf{u}_{\mathrm{t}} .
$$

Remember This Guy?

Let $G=\{V, E\}$ be a directed graph with a vertex set $V=\left\{v_{1}, \ldots, v_{g}\right\}$, and edge set $E=\left\{e_{i j}\right\}$ where $e_{i j}=1$ if vertex v_{i} sends a link to vertex v_{j} and 0 otherwise for $\mathfrak{i}=1, \ldots, g, j=1, \ldots, g, i \neq j$. Model the logit of $P\left(e_{i j}=1\right)$ as

$$
\operatorname{logit}\left(e_{i j}\right)=\log \left(\frac{P\left(e_{i j}=1\right)}{P\left(e_{i j}=0\right)}\right)=\alpha_{i}+\beta_{j}+\gamma
$$

A Simple Random Walk Model

- $\mathbf{F}_{\mathrm{t}}=\mathbf{F}$, a sparse $(2 \mathrm{~g}-1) \times\left(\mathrm{g}^{2}-\mathrm{g}\right)$ matrix
- $\mathbf{G}_{\mathrm{t}}=\mathbf{G}$, the $(2 \mathrm{~g}-1) \times(2 g-1)$ identity matrix
- Precision decreases by 20% at each time step
- Initialize the algorithm by fitting a p^{*}-model to the first graph
- Move forward in time using a DGLM with binomial errors
- If a goodness-of-fit model indicates a poor fit after some time, reinitialize

Pakistan

N. Korea (Red)/ S. Korea (Blue)

Iraq

Kuwait

References

Anderson, C. J., S. Wasserman, and B. Crouch (1999). A p* Primer: Logit Models for Social Networks. Social Networks 21, 37-66.

Cortes, C., D. Pregibon, and C. Volinsky (2004). Computational Methods for Dynamic Graphs. Journal of Computational and Graphical Statistics 12, 950-970.

Fharmeir, L. (1992). Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models. Journal of the American Statistical Association 87, 501-509.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (Second ed.). Boca Raton: Chapman \& Hall/CRC.

West, M. and J. Harrison (1997). Bayesian Forecasting and Dynamic Models (Second ed.). New York: Springer-Verlag.

