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The box-ball system

The box-ball system is a discrete-time, deterministic dynamical
system introduce by Takahashi-Satsuma in 1990:
@ Suppose we have a box at every positive integer.

@ A finite number d of the boxes contain a single ball, the rest
are empty (d-ball system). Record this as a binary sequence
X :N—{0,1}.

@ At each step of the dynamics, a “carrier” sweeps across the
integers and transports the balls according to certain rules.

X =(1,1,0,1,1,1,0,0,0,1,0,0,0,...)
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The box-ball system

The carrier
@ Sweeps from left to right
@ Whenever it reaches a box with a ball, it picks up the ball.

@ If it reaches an empty box while holding at least one ball, it
drops a ball in the box.
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The Box-Ball System

The box-ball system

The carrier
@ Sweeps from left to right
@ Whenever it reaches a box with a ball, it picks up the ball.

@ If it reaches an empty box while holding at least one ball, it
drops a ball in the box.

@ The full carrier sweep is one step of the dynamics.
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The box-ball system

Equivalently, we can express this via a vertex model:
Suppose we have a d-ball system. Consider a vertex model such

that
° spin—% on the vertical edges
° spin—% on the horizontal edges

@ Weights given by:

k==—k k=—T=k+1 k+1=|%k P —
gk — qd—k+1z (1_q2(d—k))z 1_q2(k+1) qd—k = gk+1z

@ The vertex model is Yang-Baxter integrable.
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The box-ball system

Taking the limit ¢ — 0 the only non-zero weights belong to

vertices of the form:
1 _| |
-- k f k+1 k+1 ‘ k d | d
z ‘ 1

“Combinatorial R matrix”

1



The Box-Ball System

The box-ball system

@ A single step in the dynamics corresponds to a row of the
vertex model.

@ The number of horizontal paths on an edge corresponds to
the number of balls in the carrier.

1.%5

Rich world of connections between the box-ball system and
integrable vertex models (Bethe ansatz, KKR bijection, etc.)

@ A nice review article: R. Inoue, A. Kuniba, T. Takagi 2012
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The box-ball system

The box-ball system exhibits solitons:
@ A soliton of length ¢ is a contiguous interval of ¢ balls.

@ It will move at speed ¢ under the dynamics.
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The Box-Ball System
The box-ball system

The box-ball system exhibits solitons:

@ The shape and speed is maintained after collisions with other
solitons.
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Collision of a 3-soliton and a 2-soliton.
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@ Discrete limit of the KdV equation
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for which solitons take the form of solitary wave solutions.



The Box-Ball System

The box-ball system

After running the dynamics for a sufficiently long time, the ball
configuration will decompose into solitons of weakly increasing
length (looking left-to-right).
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@ Decomposes into solitons of length 4, 1, and 1. Conserved
quantity of the dynamics.
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Young diagram:
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The box-ball system

One way to add randomness to this system is by choosing a
random initial distribution of balls. Many works in this direction:
Soliton decomposition:

@ A. Kuniba, H. Lyu, M. Okado 2018

o L. Levine, H. Lyu, J. Pike 2020

e J. Lewis, H. Lyu, P. Pylyavskyy, A. Sen 2023
Stationary measures:

@ P. Ferrari, C. Nguyen, L. Rolla, M. Wang 2021

o P. Ferrari, D. Gabrielli 2020

e D.A. Croydon, T. Kato, M. Sasada, S. Tsujimoto 2023

We'll study a different means of adding randomness.
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Part 2: The Stochastic Box-Ball System
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The stochastic box-ball system

Another way to add randomness:
@ Let the number of balls to be d and fix € € (0, 1).

@ Suppose that the carrier is now faulty: with probability € it
fails to pick up a ball. If it fails, the ball is left in place and
the sweep continues.

@ This failure chance is applied independently to each ball.
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The Stochastic Box-Ball System

The stochastic box-ball system
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5 balls, 50 steps, ¢ = 0.5



The Stochastic Box-Ball System

The stochastic box-ball system

50 balls, 1250 steps, ¢ = 0.01:
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@ Solitons tend to disintegrate into single particles the travel
with average speed 1 — ¢

@ Occasionally form pairs that live for geometric amount of
time, give a speed boost to the particles



The Stochastic Box-Ball System

The stochastic box-ball system

Pair forming and breaking, ¢ = 0.1:

1

avg. lifespan of a pair: 1-o




The Stochastic Box-Ball System

Limiting values of ¢

@ Clearly, when € = 0, the carrier never fails and we return to
the usual box-ball system.

o Consider the limit ¢ — 1. The balls tend to stay in place. On
rare occasions a single ball will be picked up (an independent
Geom(1 — ¢€) clock for each ball):

T

Rather than the ball being carried to the end of a stack, we
can view it as the whole stack in front of it being pushed.

@ After rescaling time, in the limit ¢ — 1, this becomes
pushTASEP, with independent Exp(1) clocks for each particle.

The stochastic box-ball system interpolates between these two
integrable particle system.
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The stochastic box-ball system

@ Can we find some integrable structures that can be used to
help study this model?

@ Are there other ways to add randomness to the dynamics that
preserves some integrability?
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The inter-distance process

Rather than study the ball positions themselves, we will instead
focus on the inter-distance process.

@ Suppose at step k the balls are located at positions
1 2 d
C£)<C,(<)<...<C,E ),
@ Define the inter-distance vector
1 d—1 _
W= W, w7 Yy e zdt

at step k b
P g W(i) _ A(i+1) (1 1
K = Ck — G~

that is, the number of empty boxes between balls i and i + 1.
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The inter-distance process
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@ Stochastic box-ball dynamics are translationally invariant, so
we don't need to care about the overall positions of the balls.

@ At each step of the dynamics, we flip a sequence of
independent biased coins fif; ... fy, one for each ball to
determine whether it gets picked up.

@ Once we know which balls are picked up, where they are
dropped is completely determined.

@ Don't keep track of which ball is which.

@ Markov chain on Zd>61.



The Stochastic Box-Ball System

Two-ball system

ol | || o |@e®

1 1) _
Wi > 0 W =0
+1, w/ probability (1 — ¢€) »
1 babil 1-—
AwW® ={ _1, w/ probability (1 — ¢) aw® = {; ; Wj P’°babflfzy i( ;)
0,  w/ probability €2 + (1 —¢)? » w/ probability 1 —€(1 —¢)

@ Lazy symmetric random walk in the bulk (get's lazier as ¢
moves away from 1/2).

e Boundary behavior when Wt(l) =0.
@ Gambler’s ruin: Pairs reform after some random time T with

E[T] = oc.
@ Pair breaks up after a geometric amount of time with average
1
e(1—e)

Symmetric wrt e <> 1 — ¢
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Two-ball system

Simulation of inter-distance in 2-ball system with € = 0.5 over
5000 steps:
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Two-ball

The Stochastic Box-Ball System

system

5000 steps, € = 0.1:
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Two-ball system

5000 steps, € = 0.01:
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Three-ball system
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@ In the interior behaves as a lazy symmetric random walk.
@ On the boundaries we see remnants of the soliton behavior.
e W) =0: then 111 results in AW®) = +1.

This breakdown continues to hold for d-ball systems.
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Three-ball system

10000 steps, € = 0.5:

60 80 100
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Three-ball system

10000 steps, € = 0.1:
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Three-ball system

10000 steps, € = 0.9
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Three-ball system

10000 steps, € = 0.5:

60 80 100
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Scaling limit for the inter-distance process

Work in progress:

C_onsider the stochastic box-ball system with d balls. Let
W; = linear interpolation of Wj. Fix € € (0,1). Then we
conjecture

n71/2(Wnt)0§t§1 — semimartingale RBM

d—1
on Rzo )



The Stochastic Box-Ball System

The local time at the boundary
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Proposition (K.-Lyu 2024)

For each k =1,...,d — 1, the expected number of times
W) =0 in n steps is O(n'/?).

@ For a simple random walk on 7971 this is true.
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The local time at the boundary

Proposition (K.-Lyu 2024)

Foreach k =1,...,d — 1, the expected number of times
W) =0 in n steps is O(n'/?).

@ On our case, the remnant soliton behavior makes this
non-trivial.

,,,,,,,,,,,,,,,,,,,,,,,,,,

Hitting the vertical axis biases us towards the horizontal axis.
Need to control how many extra hits to the horizontal axis
this causes.
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The local time at the boundary

For the first pair of balls things are easy...

ol | e JL ] el | e
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o Couple the first two balls with a 2-ball system Z(1) using the
same coin flips f; and f.



The Stochastic Box-Ball System
The local time at the boundary

For the first pair of balls things are easy...
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@ Easy to check that the presence of balls to the right will only
serve to make W) increase faster than Z(1).
W >z for all k.
Immediately get
#{time W) spends at 0} < #{time Z(!) spends at 0}

LHS is O(n'/?) on average since Z() is a lazy symmetric
random walk.
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The local time at the boundary

Try the same thing with a different pair,

o LIl eIl ILIL eI el
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Couple W) and Z() using the same coin flips, f; and fiy1.
Unfortunately, presence of balls to the left can cause W() to
shrink faster than Z(). So it is no longer true that

W > 7O for all k.
However, we will see that we have

#{time W) spends at 0} < #{time Z() spends at 0} +#{extra hits}.
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The local time at the boundary

Try the same thing with a different pair,

o LI eIl ILILIelLI el
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@ Let T7 be the first time a pair forms within the balls to the
left.

o During the interval [0, T1] we have W() > z(1),

@ After T; there is some time ~; until the left balls are all
singletons again.

e From T; onward we can no longer guarantee W) > z(1).
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The local time at the boundary

Let T, be the first time after T; + ~1 that a pair forms in the balls
to the left.

@ During the interval (T1 + 71, T»] the increment is
well-behaved. That is,

AW > Az(>0)

during this time interval.

o If at any point W() > Z() then this will be true for the

remainder of the interval. In particular, this will be true when
Z() — 0.

@ Need to count the extra hits before this point.
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The local time at the boundary

The increment is well-behaved: AW > A7)
o W =0 only if Z) is at a running minimum.

height « - -~ -~ R A e R i e R R

Ti+m time

@ Will only hit each level a geometric number of times.

e Difference in starting height is at most (i — 1) - 71.
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The local time at the boundary

We can control how much things deviates from the coupled 2-ball
system on the interval [T; + 71, T2):
#{steps for which W) = 0} < #{steps for which Z{) = 0}

+ #{extra hits when Z() > w()}

with . .
#{extra hits when Z() > W)} bounded by

a sum of geometric random variables.
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The local time at the boundary

@ Break our steps into excursions:

[0, TA]JU(T1, Ti+n)s - o, (Tm=1+vMm=1, TM]U(Trm, Tm+vm]

@ Each excursion behaves as before.
E[#{steps for which w) = 0}] < E[#{steps for which z0) = 0}]

O(nl/z)

M

+E[Z #{extra hits in interval i}]
i=1

<C on average

< E[#{steps for which Z() = 0}] + CE[M]

by induction E[M] = O(n'/?).
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The stochastic box-ball system

Work in progress:

Consider the stochastic box-ball system with 3-balls. Let
W; = linear interpolation of Wj. Fix e € (0,1). Then we
conjecture

”_1/2(Wnt)g§t§1 — semimartingale RBM

on R2,.
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SRBM for the inter-distance process

Preliminary Skorokhod decomposition:

reflection
matrix
~ =
W= X + R Y
~—~ ~—~
interior pushing
process process

@ In the limit the interior the process behaves like a Brownian
motion X.

@ At the boundary there is an instantaneous reflection into the
interior governed by the 2 x 2 reflection matrix.

@ The pushing process Y is 2-dimensional process,
non-decreasing, Y can only increase when W() = 0.
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Theorems of Dai-Williams (1995), Williams (1998), and
Kang-Williams (2007) give sufficient conditions for when a
sequence of processes (W", X" Y™), W" = X" + RY", converge
to an SRBM as n — oc.
@ Main difficulty for us: Reflection matrix
@ For these theorems the reflection matrix is deterministic and
the reflections on each axis must point into the interior, not
along the boundary.
@ In the inter-distance process, the reflection is random
(depends on the coin flips), some reflections push along the
boundary (remnant of the soliton behavior).
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SRBM for the inter-distance process

Let AY() = 1(W() = 0). Reflection matrix for the inter-distance
process is determined by:

RAY = AW — AX
Suppose that W) = 0. Compare AW and AX:

, for flips 010 and 110

second column of R: Ry, =

O =B ~= O

, for flips 011 and 111

The reflection depends on the sequence of coin flips.
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SRBM for the inter-distance process

Let AY() = 1(W() = 0). Reflection matrix for the inter-distance
process is determined by:

RAY = AW — AX
Suppose that W) = 0. Compare AW and AX:

, for flips 010 and 110

second column of R: Ry, =

O =B ~= O

, for flips 011 and 111

For 010 and 110 the reflection point along the boundary.
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SRBM for the inter-distance process

Let R be the average reflection matrix.

R’2=(1—€)(1;€>

o ldea: Replace R by R, show that the error goes to zero after
the scaling.

o Let 5 = (R — R)AY, the error from this replacement.

@ Our new Skorohod decomposition:

W=X+RY+ >
k

N——

error term
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SRBM for the inter-distance process

Let R be the average reflection matrix.

R’zZ(lf)(1;6>

o ldea: Replace R by R, show that the error goes to zero after
the scaling.

@ Note along each boundary the choice of reflection direction is
an iid random variable.

@ By central limit theorem:

!\25(2’!\ O((#{times W@ = 0})1/2) = O(n'/*)

O(n1/2)

e Since we will eventually scale everything by n=1/2, this will
vanish.
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SRBM for the inter-distance process

Remaining issue:

@ Close to the origin the increment changes

001

AW : 011

100,110
010,111

o Additional error whenever we hit this spot on the boundary.

@ Need to show that the number of hits is o(n'/?) so it vanishes
after scaling.

e For a 2d SRW: #{hits to origin} ~ log n.
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SRBM for the inter-distance process

Plot of log #{hits to origin in 3-ball system by time n} (blue) and
log n'/? (dashed).
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Thank You!
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