Perfect t-embeddings of Hexagon

Marianna Russkikh

University of Notre Dame

joint with T. Berggren and M. Nicoletti.

Dimer model

A dimer cover of a planar bipartite graph is a set of edges with the property: every vertex is contained in exactly one edge of the set.

(On the square lattice / honeycomb lattice it can be viewed as a tiling of a domain on the dual lattice by dominos / lozenges.)

Weighted dimers

Weight function on edges:

 $\nu: E \to \mathbb{R}_{>0}$

Associated weight of a dimer cover:

$$\nu(m) = \prod_{e \in m} \nu(e)$$

Partition function:

$$Z=\sum_{m\in M}\nu(m)$$

Probability measure on dimer coverings:

$$\mu(m) = \frac{1}{Z}\nu(m)$$

An example for 2×3 graph:

$$\begin{array}{c}
 b_{1} \quad \nu_{21} \quad w_{2} \quad \nu_{23} \quad b_{3} \\
 \nu_{11} \quad \nu_{22} \quad \nu_{33} \\
 \nu_{12} \quad \nu_{32} \quad \nu_{32} \\
 \nu_{11} \quad b_{2} \quad w_{3}
\end{array}$$

$$\begin{array}{c}
 \nu(m) = \nu_{12} \cdot \nu_{21} \cdot \nu_{33} \\
 + \nu_{23} \cdot \nu_{32} \cdot \nu_{11}
\end{array}$$

$$+\nu_{11}\cdot\nu_{22}\cdot\nu_{33}$$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Kasteleyn matrix

Complex Kasteleyn signs: $au_i \in \mathbb{C}, \ | au_i| = 1,$

$$\frac{\tau_1}{\tau_2} \cdot \frac{\tau_3}{\tau_4} \cdot \ldots \cdot \frac{\tau_{2k-1}}{\tau_{2k}} = (-1)^{(k+1)}$$

A (Percus–)Kasteleyn matrix K is a weighted, signed adjacency matrix whose rows index the white vertices and columns index the black vertices: $K(w, b) = \tau_{wb} \cdot \nu(wb)$.

- [Percus'69, Kasteleyn'61]: $Z = |\det K| = \sum_{m \in M} \nu(m)$
- The local statistics for the measure μ on dimer configurations can be computed using **the inverse Kasteleyn matrix**.

Hexagon (uniformly weighted)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Lozenge tilings of hexagon

▲□▶▲□▶▲□▶▲□▶ ▲□ ◇ ◇ ◇

Uniformly distributed lozenge tilings of the hexagon

・・

Height function

Lozenge tilings can be viewed as orthogonal projection onto the plane $\{x + y + z = 0\}$ of stepped surfaces (polygonal surfaces in \mathbb{R}^3 whose faces are squares in the 2-skeleton of \mathbb{Z}^3)

Dimer height function on vertices:

The height function is equal to $\sqrt{3}$ times the distance from the surface to the plane {x + y + z = 0}

Height function: along each edge not covered by a lozenge the height changes by ± 1 , increases by 1 if this edge has a black face on its left, and decreases by 1 otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

The key questions: the large-scale behavior of

(a) the limit shape of the height function,
(b) fluctuations of the height function.

Intuition:

(a) Law of Large Numbers(b) Central Limit Theorem

Limit shape

• [Cohn–Kenyon–Propp, 2000]:

The local density of each type of edge converges to a deterministic limit. **Equivalently:** random profiles δh^{δ} concentrate near a surface (with given boundary) that maximizes a certain entropy functional.

Fluctuations

- The GFF is a random generalized function (distribution) on a domain D ⊂ C, a 2-dimensional analogue of a Brownian bridge.
- [Kenyon-Okounkov '05] conjectured it to appear universally in tiling models.

Gaussian Free Field

The Gaussian Free Field is not a random function, but a random distribution.

[1d analog: Brownian Bridge]

The Gaussian free field Φ on \mathcal{D} is the random distribution such that pairings with test functions $\int_{\mathcal{D}} f \Phi$ are jointly Gaussian with covariance

$$\operatorname{Cov}\left(\int_{\mathcal{D}}f_{1}\Phi,\int_{\mathcal{D}}f_{2}\Phi\right)=\int_{\mathcal{D}\times\mathcal{D}}f_{1}(z)G(z,w)f_{2}(w).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

Results

Theorem (Berggren, Nicoletti, R. '24) *Construction and exact (double integral) formula of a perfect t-embedding of the uniformly weighted hexagon.*

Theorem (Berggren, Nicoletti, R. '24)

Perfect t-embeddings of the uniformly weighted hexagon converge to a maximal surface in the Minkowski space $\mathbb{R}^{2,1}$.

⇒ convergence of height fluctuations to the Gaussian free field in the conformal parametrization of this surface.

Perfect t-embeddings

< ロ > < 団 > < 三 > < 三 > < 三 > の < ()

Embeddings of a dimer graph

- Kenyon, Lam, Ramassamy, R. 'Coulomb gauge'
- · Chelkak, Laslier, R.
 - 't-embedding'

Weighted dimers and gauge equivalence

Weight function $\nu: E(\mathcal{G}) \to \mathbb{R}_{>0}$

Probability measure on dimer covers:

$$\mu(m) = \frac{1}{Z} \prod_{e \in m} \nu(e)$$

Definition

Two weight functions ν_1, ν_2 are said to be gauge equivalent if there are two functions $F : B \to \mathbb{R}$ and $G : W \to \mathbb{R}$ such that for any edge *bw*, $\nu_1(bw) = F(b)G(w)\nu_2(bw)$.

Gauge equivalent weights define the same probability measure μ .

Definition: t-embedding

 \mathcal{T}

 K_T is a Kasteleyn matrix.

[Chelkak, Laslier, R.]

- ${\mathcal T}$ is embedding of ${\mathcal G}^*$ such that
 - 1) **lengths** are gauge equivalent to (given) dimer weights
 - 2) angles at (inner) vertices are balanced:

$$\sum_{f \text{ white}} \theta(f, \mathbf{v}) = \sum_{f \text{ black}} \theta(f, \mathbf{v}) = \pi.$$

Rmk: (2) \implies Kasteleyn sign condition.

Origami map

t-embedding $\mathcal{T}(\mathcal{G}^*)$:

- 1) **lengths** are gauge equivalent to (given) dimer weights
- 2) angles at vertices are balanced:

$$\sum_{f \text{ white}} \theta(f, v) = \sum_{f \text{ black}} \theta(f, v) = \pi.$$

[Chelkak, Laslier, R.]

To get an origami map $\mathcal{O}(\mathcal{G}^*)$ from $\mathcal{T}(\mathcal{G}^*)$ one can fold the plane along every edge of the embedding.

t-embeddings: $(\mathcal{T}, \mathcal{O}) \subset \mathbb{R}^{2+2}$ $|\mathcal{O}(z) - \mathcal{O}(z')| \leq |\mathcal{T}(z) - \mathcal{T}(z')|$

discrete space-like surfaces in Minkowski space \mathbb{R}^{2+2}

Definition: Coulomb gauge

[Kenyon, Lam, Ramassamy, R.]

A pair of functions $F : B \to \mathbb{C}$ and $G : W \to \mathbb{C}$ are called Coulomb gauge functions if

$$[K_{\mathbb{R}}F](b) = 0 \quad \text{for all } b \in B \smallsetminus \partial B,$$

$$[GK_{\mathbb{R}}](w) = 0 \quad \text{for all } w \in W \smallsetminus \partial W,$$

where ∂B and ∂W are boundary black and white vertices of \mathcal{G} .

One can define a t-realisation $\mathcal{T} = \mathcal{T}_{(F, G)}$ together with the associated origami map $\mathcal{O} = \mathcal{O}_{(F, G)}$ by setting

$$d\mathcal{T}(bw^*) := F(b)K_{\mathbb{R}}(b,w)G(w),$$

$$d\mathcal{O}(bw^*) := F(b)K_{\mathbb{R}}(b,w)\overline{G(w)}.$$

Rmk: Note that Kasteleyn sign condition implies the angle condition only modulo 2π .

General setup

Theorem (Kenyon, Lam, Ramassamy, R. '19) *t-embeddings* exist at least in the following cases:

If G^δ is a bipartite finite graph with outer face of degree 4.
 If G^δ is a biperiodic bipartite graph.

Scaling limit results: [Chelkak, Laslier, R. '20-21]

- New discrete complex analysis techniques on t-embeddings developed
- Perfect t-embeddings reveal the relevant conformal structure of the Dimer model

[Kenyon, Lam, Ramassamy, R. '19]:

T-embeddings of \mathcal{G}^* are preserved under elementary transformations of \mathcal{G} . Elementary transformations preserving the dimer measure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 回 ● ● ●

Perfect t-embeddings

Definition [Chelkak, Laslier, R.] Perfect t-embeddings:

- outer face is tangental (not necessary convex)
- outgoing edges = bisectors

General setup

Theorem (Chelkak, Laslier, R. '21)

Assume \mathcal{G}^{δ} are perfectly t-embedded.

- a) Technical assumptions on faces
- b) The origami maps converge to a maximal surface in the Minkowski space $\mathbb{R}^{2,1}$

⇒ convergence to the Gaussian free field in the conformal parametrization of this surface.

Rmk: Existence of perfect t-embeddings remains an open question.

Perfect t-embedding of Hexagon

Reduced hexagon

・ロト・白ア・・川下・・日・ シット・

Perfect t-embedding of the hexagon

Theorem (Berggren, Nicoletti, R. '24) Define Coulomb gauge functions $F : B \to \mathbb{C}$ and $G : W \to \mathbb{C}$ by

$$egin{aligned} &F(b):=e^{i2\pi/3}K_{\mathbb{R}}^{-1}(w_2,b)+K_{\mathbb{R}}^{-1}(w_3,b)+e^{-i2\pi/3}K_{\mathbb{R}}^{-1}(w_1,b),\ &G(w):=-K_{\mathbb{R}}^{-1}(w,b_1)+e^{i\pi/3}K_{\mathbb{R}}^{-1}(w,b_2)+e^{-i\pi/3}K_{\mathbb{R}}^{-1}(w,b_3). \end{aligned}$$

Then $\mathcal{T} = \mathcal{T}_{(F,G)}$ is a perfect t-embedding of $(H'_n)^*$.

Perfect t-embedding of the hexagon

$$F(b) = e^{i2\pi/3} K_{\mathbb{R}}^{-1}(w_2, b) + K_{\mathbb{R}}^{-1}(w_3, b) + e^{-i2\pi/3} K_{\mathbb{R}}^{-1}(w_1, b),$$

$$G(w) = -K_{\mathbb{R}}^{-1}(w, b_1) + e^{i\pi/3} K_{\mathbb{R}}^{-1}(w, b_2) + e^{-i\pi/3} K_{\mathbb{R}}^{-1}(w, b_3).$$

$$d\mathcal{T}(bw^*) = F(b)K_{\mathbb{R}}(b,w)G(w),$$

$$d\mathcal{O}(bw^*) = F(b)K_{\mathbb{R}}(b,w)\overline{G(w)}.$$

- [Petrov '12]: Inverse Kasteleyn matrix of the uniformly weighted hexagon admits a double integral formula.
- This provides us with expressions of \mathcal{T}_n and \mathcal{O}_n in terms of double integrals.
- The integral expression allows for asymptotic analysis using a classical stepest descent analysis

Theorem (Berggren, Nicoletti, R. '24)

Given a compact set $\mathcal{K} \subset$ Hex, there exist positive $N_{\mathcal{K}}$, $C_{\mathcal{K}}$ and $\varepsilon_{\mathcal{K}}$ which only depend on \mathcal{K} , such that for all pairs of vertices $v \sim v'$ of the dual graph $(H'_n)^*$ such that both $\mathcal{T}_n(v), \mathcal{T}_n(v') \in \mathcal{K}$ we have

$$\frac{1}{nC_{\mathcal{K}}} \leq |\mathcal{T}_n(v') - \mathcal{T}_n(v)| \leq \frac{C_{\mathcal{K}}}{n}$$

for all $n > N_{\mathcal{K}}$.

In addition the angles of the faces of the perfect t-embedding inside \mathcal{K} are contained in $(\varepsilon_{\mathcal{K}}, \pi - \varepsilon_{\mathcal{K}})$ for all $n > N_{\mathcal{K}}$.

Perfect t-embeddings of the hexagon

Theorem (Berggren, Nicoletti, R. '24) The pair $(\mathcal{T}_n, \mathcal{O}_n) \rightarrow (z, \vartheta(z))$, as $n \rightarrow \infty$, where $(z, \vartheta(z)) \in \mathbb{R}^2 \times \mathbb{R}$ is the graph of a maximal surface in $\mathbb{R}^{2,1}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● の Q ()

The scaling limit of dimer fluctuations in homogeneous hexagon via the intrinsic conformal structure of a Lorentz-minimal surface.

Theorem (Berggren, Nicoletti, R. '24)

Let \mathcal{T}_n be the sequence of perfect t-embeddings of the reduced uniformly weighted hexagon H'_n , with corresponding origami maps \mathcal{O}_n . All assumptions of the main theorem of [CLR'21] hold for the sequence \mathcal{T}_n .