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Dimer model
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A dimer cover of a planar bipartite graph is a set of edges with the
property: every vertex is contained in exactly one edge of the set.

(On the square lattice / honeycomb lattice it can be viewed as a
tiling of a domain on the dual lattice by dominos / lozenges.)



Weighted dimers

Weight function on edges:
v:E — Ry

Associated weight of a dimer cover:
v(m) = ]] v(e)
ecm
Partition function:

Z=">Y v(m)
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Probability measure on dimer coverings:

u(m) = Zv(m)

An example for 2x 3 graph:
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Kasteleyn matrix

Complex Kasteleyn signs:

T1
&—oO
T3
Tj - C, 7-l| T 1’ face of degree 2k /TZAI
O L

T T3 . To2k—1 _ (_1)(k—i—1)

A (Percus—)Kasteleyn matrix K is a weighted, signed adjacency
matrix whose rows index the white vertices and columns index the
black vertices: K(w, b) = 1y - v(wb).

o [Percus'69, Kasteleyn'61]: Z = |det K| =)

e The local statistics for the measure 1 on dimer configurations
can be computed using the inverse Kasteleyn matrix.
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Hexagon

(uniformly weighted)
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Lozenge tilings of hexagon



Uniformly distributed lozenge tilings of the hexagon




Height function

Lozenge tilings can be viewed as
orthogonal projection onto the plane
{x+ y+ z =0} of stepped surfaces
(polygonal surfaces in R® whose faces are
squares in the 2-skeleton of Z3)

Dimer height function on vertices:
The height function is equal to V/3 times
the distance from the surface to the
plane {x +y +z =0}

Height function: along each edge not covered
by a lozenge the height changes by +1,
increases by 1 if this edge has a black face on
its left, and decreases by 1 otherwise.
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Height function

The key questions: the large-scale behavior of

(a) the limit shape of the height function,
(b) fluctuations of the height function.

Intuition:
(a) Law of Large Numbers
(b) Central Limit Theorem



Limit shape
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e [Cohn—Kenyon—Propp, 2000]:

The local density of each type of edge converges to a

random profiles §h°

concentrate near a surface (with given boundary) that

deterministic limit. Equivalently
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Fluctuations

Uniform lozenge tilings and GFF

larger liquid
—~—> region
>
[ Petrov]
Theorem As mesh goes to zero, D =

Fluctuations of height =
Gaussian Free Field on D with
zero boundary conditions.

e The GFF is a random generalized
function (distribution) on a domain
D C C, a 2-dimensional analogue
of a Brownian bridge.

e [Kenyon-Okounkov '05]

conjectured it to appear universally
in tiling models.



Gaussian Free Field

The Gaussian Free Field is not a
random function, but a random
distribution.

[1d analog: Brownian Bridge]

The Gaussian free field ® on D is the random distribution such

that pairings with test functions fD f® are jointly Gaussian with
covariance

Cov (/D f1<b,/Df2<b> :/DXD fi(2)G(z, w)h(w).

A. Kassel



Results

Theorem (Berggren, Nicoletti, R. '24)

Construction and exact (double integral) formula of a perfect
t-embedding of the uniformly weighted hexagon.

Theorem (Berggren, Nicoletti, R. '24)

Perfect t-embeddings of the uniformly weighted hexagon converge
to a maximal surface in the Minkowski space R*!.

= convergence of height fluctuations to the Gaussian free field in
the conformal parametrization of this surface.



Perfect t-embeddings



Embeddings of a dimer graph
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- Kenyon, Lam, Ramassamy, R.
‘Coulomb gauge’

« Chelkak, Laslher, R
't-embedding’




Weighted dimers and gauge equivalence

Weight function v : E(G) — R

Probability measure on dimer covers:

u(m) = 2 [T v(e)
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Definition
Two weight functions 1, 1, are said to be gauge equivalent if
there are two functions F : B— R and G : W — R such that for

any edge bw, vi(bw) = F(b)G(w)va(bw).

Gauge equivalent weights define the same probability measure .



Definition: t-embedding
W D

O—

K7 is a Kasteleyn matrix.

[Chelkak, Laslier, R.]

T is embedding of G* such that

1) lengths are gauge equivalent to
(given) dimer weights

2) angles at (inner) vertices are balanced:

doo(fv)= ) o(f,v)=m.

f white f black

Rmk: (2) = Kasteleyn sign condition.



Origami map

t-embedding 7(G*): [Chelkak, Laslier, R.]

To get an origami map O(G*) from T(G*)
one can fold the plane along every edge of
the embedding.

ngle condition
> black = >~ white

= local consistency

1) lengths are gauge equivalent to

(given) dimer weights
2) angles at vertices are balanced:

Zefv Zefv—ﬂ

f white f black

origami map

' - 242
t-embeddings: (7,0) C R discrete space-like surfaces in
0(z) - O(Z)| < [T(2) = T(Z)] Minkowski space R**2



Kasteleyn weights
T — (G,Ky), where Z Kr(w, b) = Z Kr(w,b) =0
b w

Then K7 is a Kasteleyn matrix.

Kasteleyn sign condition -—> angle condition

[[prlib) e (C1)kHR, 3 white=m mod 2r



Glw )/g F(b) Kpg (v b))
”

T — (G,Ky), where Z Kr(w, b) = Z Kr(w,b) =0
b w >
(6) Kr) _/\ Uy F(é,)(z K,R(W,L)G(w))

Kasteleyn weights

Then Ky is a Kasteleyn matrix. Ky (w,b) = F(b) Ky (w,b) Glw)
T ' = R W w

Kasteleyn sign condition -—> angle condition

11 KKT?‘EVVZ;[D}D)) S (—1)k+1R_|_ > white =7 mod 27



Definition: Coulomb gauge
[Kenyon, Lam, Ramassamy, R.]

A pair of functions F: B—-Cand G: W — C
are called Coulomb gauge functions if

[KrF](b) =0 forall be B\ 0B,
[GKr](w) =0 forall we W~ OW,

where B and W are boundary black and white vertices of G.

One can define a t-realisation 7" = 7, ) together with the associated
origami map O = O(r ¢) by setting

dT(bw*) = F(b)KR(b,W)ﬂ,

dO(bw*) = F(b)Kr(b,w)G(w).

Rmk: Note that Kasteleyn sign condition implies the angle condition
only modulo 2.



General setup

Theorem (Kenyon, Lam, Ramassamy, R. '19)
t-embeddings exist at least in the following cases:

> If G° is a bipartite finite graph with outer face of degree 4.
» If GO is a biperiodic bipartite graph.

Scaling limit results: [Chelkak, Laslier, R. '20-21]

» New discrete complex analysis techniques on t-embeddings
developed

» Perfect t-embeddings reveal the relevant conformal structure
of the Dimer model



Elementary transformations preserving the dimer measure

V1

[Kenyon, Lam, Ramassamy, R. '19]: )
T-embeddings of G* are preserved %_u(

under elementary transformations of G. 1

e

(up—u)(uz—u)

A =13+ iy

(up—1u)(uz—a)

(ug—u)(ug—u) (ug—u)(ug—u)
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double edges

spider move
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Perfect t-embeddings

Definition [Chelkak, Laslier, R.] Perfect t-embeddings:
» outer face is tangental (not necessary convex)

» outgoing edges = bisectors



General setup

~
_
£
é <
===
\‘ ~
\::\§ -
N
N
N

7

; / |
/////////// J‘ | ‘w /’ \‘ |
/ /]
/

[
//! \‘\\\\

/ \ \
[T

Theorem (Chelkak, Laslier, R. '21)
Assume G° are perfectly t-embedded.

a) Technical assumptions on faces

b) The origami maps converge to a maximal surface in the
Minkowski space R%*

= convergence to the Gaussian free field in the conformal
parametrization of this surface.

Rmk: Existence of perfect t-embeddings remains an open question.



Perfect t-embedding of Hexagon



Reduced hexagon




Perfect t-embedding of the hexagon

Theorem (Berggren, Nicoletti, R. '24)
Define Coulomb gauge functions F : B — C and G : W — C by

F(b) := ™ 3K (wa, b) + Kt (ws, b) + e 2™/ 3K5 1 (wy, b),
G(w) = —Kz(w, b1) + e™ 3K (w, by) + e ™3 K (w, bs).

Then T = T(F c) is a perfect t-embedding of (Hy)*.



Perfect t-embedding of the hexagon

F(b) = e 3K (wa, b) + K5t (ws, b) + e 2™ 3K 1 (wy, b),
G(w) = =Kzt (w, by) + ™ 3K (w, by) + e ™ 3K (w, bs).

dT(bw*) = F(b)Kr(b, w)G(w),
dO(bw*) = F(b)Kr(b, w)G(w).

e [Petrov '12]: Inverse Kasteleyn matrix of the uniformly weighted
hexagon admits a double integral formula.

e This provides us with expressions of 7, and O, in terms of double
Integrals.

e The integral expression allows for asymptotic analysis using a
classical stepest descent analysis



Rigidity condition

Theorem (Berggren, Nicoletti, R. '24)

Given a compact set IC C Hex, there exist positive Nx, Cxc and i
which only depend on IC, such that for all pairs of vertices v ~ v’
of the dual graph (H))* such that both T,(v), T,(v') € K we have

LTV~ T(v)] < Cr

nCx n

for all n > Ni.

In addition the angles of the faces of the perfect t-embedding
inside IC are contained in (exc, ™ — exc) for all n > Ni.



Perfect t-embeddings of the hexagon

Theorem (Berggren, Nicoletti, R. '24)

The pair (Tn,On) — (z,9(z)), as n — oo, where
(z,9(z)) € R? x R is the graph of a maximal surface in R*1.



The scaling limit of dimer fluctuations in homogeneous hexagon
via the intrinsic conformal structure of a Lorentz-minimal surface.

Theorem (Berggren, Nicoletti, R. '24)

Let T, be the sequence of perfect t-embeddings of the reduced
uniformly weighted hexagon H/,, with corresponding origami

maps Op. All assumptions of the main theorem of [CLR'21] hold
for the sequence T,.



