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Tale of two loop models

Q-state Potts model

@ (Q)-state spins; interactions have Sg permutation symmetry.
@ Equivalent loop model on medial lattice [Baxter-Kelland-Wu 1976].
@ Respects fixed orientation of lattice edges: U(n) symmetry.
@ Related to integrable 6-vertex model and Temperley-Lieb algebra.

@ Sp commutes with partition algebra %, (Q), descending to
Potts—Temperley—Lieb algebra P7Z5,(v/Q) in d = 2.

O(n) model
@ Vector spins € R"; interactions have O(n) symmetry.
@ Equivalent loop model in d = 2 after modification [Nienhuis 1982].
@ Related to integrable 19-vertex model and Motzkin algebra.

@ O(n) commutes with Brauer algebra %, (n), descending to
unoriented Jones—Temperley—Lieb algebra u 7% ,(n) in d = 2.




O(n) model [Nienhuis 1982]

loop weight n _
Vertex weights 1 and K

1 K K K
All configurations can be built by a transfer matrix:
Ry :>—<+K>—<+K>—<+K2>—<+K2>—<+K2>—<+K2>—<+K2>—<

Define the partition function

Z(K, n) — Z K#monomersn#loops )

loops
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Z(K, n) — Z K#monomersn#loops )

loops

Monomer fugacity at the critical point:

K, = (21@)71/2,

where —2 < n < 2. Plus (minus) sign for the dilute (dense) phase.

Special cases:

@ n =1 dense: Site percolation

@ n =1 dilute: Ising model

@ n = 0 dilute: Self-avoiding walks

@ n = 2 either: Gaussian free field, XY model
Most of there are really logarithmic CFTs.

Our first objective is to understand the case of ‘generic’ n.



Conformal Field Theory of the O(n) model

Central charge
RB2>0,

c=13-63%—-68"2  with {
B2¢Q.

Conformal weight A and momentum P:
A=P PR Dpg=PRy—Phy. Pug=3(-sr+s7s).

Field content, with left- and right-moving conformal weights (A, A):

Name Notation | Parameters (A, A)

Degenerate V<‘Z,s> r=1,s€2N+1| (Apg), A, s))

Diagonal Ve PeC (P2 P2, P2 P2 )
Non-diagonal | V,, s reN“selz | (Aps)Dirs)




Interpretation of fields within the loop model:

Diagonal and non-diagonal fields

w(P) exp £s 347 bk

V<01’ 3) is the energy operator.

The dense O(n) model has a CFT limit iff V<‘.’|73> is irrelevant:

ROz >1 <= RBZ>1.
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Dream about correlation functions

Here e are V|, s) insertions, and x are Vp insertions.
Open curves define a combinatorial map on a Riemann surface.

Segal’s axioms: Three basic building blocks
1) Annulus with one insertion, 2) Disk with two insertions, 3) Pants.
The blocks are glued by integrating over eigenstates.



Progress this far

@ Fields related to irreps of affine Temperley-Lieb algebra, #7%(n).
@ Bijection between correlation functions and combinatorial maps.

@ Conformal symmetry enhanced to interchiral symmetry via Vg 3)"
@ Global O(n) symmetry in interplay with conformal symmetry.

First goal is to understand N < 4 points on the sphere.
@ N = 2 understood from critical exponents.
@ N = 3 conjecturally understood in all cases.
@ N = 4 from conformal bootstrap. Partial analytical control.

The talk summarises this progress.



Diagrammatic algebras

Partition algebra:

imaginary time

Generators:

A 1/ 2/ 3/ 4/ 5.1 6/ 7/ 8/

p= 1K L =L s TH ]

1<i<L—-1

1<i<lL 1<i<Ll—1



From this we can construct the TL generator:

i i1

DY V DY
€ = S5;{15iSi+15; 11 =
2 2

To get the periodic algebra /9% (n) we add:

S =)

Define also the pseudo-translation t of the 2r € N* through-lines:

D
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AIZ (n) is co-dimensional. A finite-dimensional quotient, the
unoriented Jones—Temperley—Lieb algebra u #5%,(n), is obtained by
replacing non-contractible loops by n and imposing

2" 1.

Uf<9§L(”)

The standard modules W((,L)) are irreps of u 7% (n), spanned by link

,S

patterns with 2r defects. E.g. for WS%:

AL E

We have

(t . e’”’s) wh —o.

(r:8)
The labels (r, s) carry over to the CFT.
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Conformal partition function on the torus

Obtained by Di Francesco-Saleur-Zuber in 1987.
Let g = €™/ with 7 the modulus, and 7(q) is the Dedekind function.

z9)(q) = Z Z Z Lirsy(n X(rs ()]

SE2N+1 reiN+selz

with the diagonal degenerate characters

2 2 2
q e — gt

X(r,s)(Q) = n(q)

and the non-diagonal characters

2 2
) q toghi-9

N _
)@ = TP
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Z X1s(q Z Zl—rs) X(rs (9)

se2N+1 res IN* se rZ
We have the Virasoro representations:

R1,s) = diagonal level-s degenerate rep. with character x 1 5(q) ,
Wr.s) = indecomposable rep. with character X?ﬂ,s)(q) + X?;,_s)(Q) ,

_ - N
Wr,s) iz o sgz Verma module with character x(; ¢(q) -

The multiplicities L, 5)(n) were obtained by Read-Saleur in 2001:

2r—1

1 -
L(r,s)(n) = (5r,1(5362z+1 + 5 Z em’r SX(Q,)/\r/(n) ,
r'=0

with polynomials x4(n) defined by

Xo(m=2 , xi(n)=n , nxg(n)=xg-1(n) + Xa+1(nN) .
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Global O(n) symmetry

This looks like Schur-Weyl duality.
Indeed we have both CFT and O(n) symmetry.

O(n) can be defined for n € C (Deligne category).
Under the global O(n) symmetry, primary operators transform in irreps:

[1: e , [20: LI , [11]: H, [5421] : |

Known dimensions and tensor products (Newell-Littlewood numbers).

Loop-model interpretation:
Each loop carries [1], the fundamental (defining) representation.
Empty space corresponds to [], the trivial representation.
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Z X<1s + Z ZLrs) X(rs q)

SE€2N+1 reiN*selz

The proper way to understand it is that the O(n) CFT has a space of
states (spectrum)

M= P lleRige @ P M@ Wiy

S€2N+1 re}N* selz

acted upon by O(n) x €, where € is conformal symmetry.

So dlmo(n) /\(r,s) = L(,’S)(n). And of course dlmo(n)[] =1.
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Introduce the formal alternating hook representations

t—1
At = Sicomoazl] + 3 (=1)[t — k, 14 .
k=0

We find then

2r—1
/\(r s) — 5r 1 586224-1 [] + emr s X@rynr N o ).
@rnr’

There exists an equivalent formula which makes clear that the
expansion coefficients of Young tableaux € N.
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Let us have a closer look:

10):[1]a
Aoy =12],
Aq,1y =[11],
Aoy =B+ 1],
A(%% = [21],
Neo) = [4]+ [22] + [211] + [2] +[],

Ny = 111+ [211] + [11]
Aoy = [31]+[22] + [1111] + [2] .

We also have e.g. [1] ® [1] = [2] + [11] + [].
This tells us how to decompose two loop lines on O(n) irreps.
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Consequences for correlation functions

Two-point functions are given by the conformal dimensions, up to
normalisation of the field.

Three-point functions are also fixed by global conformal invariance, up
to structure constants.

Four-point functions could be determined by differential equations, if
both V§ , and V{ ,, were present, but we only have the former!

Therefore we need the conformal bootstrap.

But we can do better than usual for two reasons:
° V<°1’ 5 generates an interchiral symmetry.
@ We can exploit the global O(n) symmetry.
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Consider a four-point function of non-diagonal primary fields, and its
s-channel decomposition into conformal blocks:

4
<H r,,s,> Z Ds(g1s + Z ZD(rs(g(rs .

i=1 SE2N+1 re N* SE,Z

The blocks are known from Zamolodchikov’s recursion relation.

Degenerate shift equations using V >determme D’S“ and zﬂ
So rewrite

4
<H V(fi,Si)> Ds, 75, + Z Z D(f»s)%fzs) ]
=1 re ;N selzn(—1,1]

in terms of interchiral blocks

Dirsij
% (r,s+))
Z D v (rs) T Z D Girs+)) -

sesp+2N SO jean (1)
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Solve then the crossing equations

>—< e
VGJ ves

s-channel t-channel u-channel

We know the spectrum. And we can constrain the solution space by
fixing the O(n) symmetry of the exchanged fields V.

In favourable cases this gives a unique (numerical) solution.

Conjecture: Each solutions to the crossing equations gives a valid
correlation function in the O(n) CFT.

We have computed the 30 correlation functions with 3%, r; = 2,3, 4.
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We have two ways to prove

@nAar’

2r—1
A(f s) = 5r16$€22+1 [] "' Z emr S X@rnar </\ 2r ) .

1st proof: Compute the torus partition function twisted by a non-trivial
group element of O(n). This produces the character A, s), not just its
dimension L, 5)(n) as in Read-Saleur (2001).

2nd proof: The commutant of O(n) on oS’LO(”) is the Brauer algebra,
9, (n), generated by e; and p;. Butin d = 2, it reduces to u 7% (n).

Hence we must compute the branching rules %, (n) | uf7%,(n).

This is a solvable combinatorial problem.
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Combinatorial maps

A (connected) combinatorial map is a (connected) graph, together with
a cyclic permutation of the half-edges around each vertex.
Monogons are forbidden.

V- QL

A map is weakly connected if it cannot be split into two non-trivial
maps (a sphere with 0 or 1 vertex).

—D->0

This map is not weakly connected (it should have ‘used’ the handle).
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Number of maps |/lgN r,)} and of weakly connected maps ) N (r)]-

Genus g, number of points N, vertex valencies 2r;.

gt

Signature of a planar map with four vertices:

R EE

M) > 0.

‘/104

NI
NI

A map M is weakly connected iff Vx € {s, t, u}, ox(
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For any N-point function of diagonal and non-diagonal fields, the
dimension of the space of solutions of conformal bootstrap equation

with spectra made only of non-diagonal fields is ‘/%QC’N(r,-)‘.

The critical limit of a loop model correlation function is a solution of the
conformal bootstrap equations.

The set of correlation functions is a basis of solutions of the
corresponding conformal bootstrap equations.
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Digression on the Barnes double gamma function

Recallc=13—-65°2—-632andset Q=5+ 3.
For x > 0 define I'3(x) through

ogrst) = [ & [ SRS L o/z—x]

t (1 —eB)(A —et/B) 2el t
and the shift equations

To(x+6) _ pB”2 Tolx4p7") _ poprt
R B O R Gl

Sometimes one defines also the upsilon function

]
Fs(x)Ms(Q—x)

Ts(x) =
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4-point functions of diagonal and non-diagonal fields

In addition to monomer weight K and bulk loop weight n, define vertex
weights w; (with i = 1,2, 3, 4) and channel weights wy (with x = s, t, u):

)
Wo
WS WS
W1 w
®) ®)

At most one of the loop types wy can exist in a given configuration.

In the lattice model, define C'°°P(L, ¢|K, n, w;, wy), with L the size and ¢
the separation between z;, zo and z3, z4 (in the s-channel).
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We find the s-channel decomposition

C|OOP(L7€|K7 n, wi, WX) = Z AW(L’K, n, w;, WX)<

Au(LIK, n, we) >‘
weS(L)

Amax(L|K, n, ws)

with (Aw)wes() the 47 (n) spectrum of transfer matrix eigenvalues.

Remarkable that only /7%, (n) eigenvalues participate here!

f(x)

Define ratios wrt different values of the weights: f(x : x’) = )

Even more remarkably, we find that
Ars)p (LIK 0wy, wy s wy) = D((rs,)s) (n, wi, wy : wy)

Here w = (r, s), p, where p labels states in the same module (r, s).
There is no dependence on p, L and K. Hence the amplitudes have
nothing to do with CFT and should be computable from /5% (n).

Looks like a Wigner-Eckart theorem, but lifted from QM to 4% (n).
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Reference 2- and 3-point structure constants

Omitting the known coordinate dependence, define:
(ViVa) = 612B1 ,  (ViVaV3) = Cios .

For non-diagonal fields, set:

rs
Bref (_) r_1 + + _1S ,
(r$) ™ 2sin ((frac(r) + s)) sin (x(r + B8-2s)) H B (5 prp )
C(rif,31)(f2752)(f3733) - H ﬁ:r_ < +5 |Z,6,I’,H— - ZIEIS’) .
€1,€2,€3=

For diag fields, set Vp = V(g 24p), SO C(rgfzﬁﬂ)(0725,,2)(0,25,33) = Cp, p, P,

When w; = 0, Cp, p, p, gives the probability that three points belong to
the same FK cluster [Delfino-Viti, 2013; Ikhlef-J-Saleur, 2016].
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Normalised 4-point structure constants

Cref Cref
p¥) _ (r1,51)(r2,82)(r,8) ~(r,5)(r3,53)("4,54) g
(rs) pref (r.s)
(r.s)
Combining analytical arguments with numerical bootstrap and transfer
matrices, we find that d((;() is a polynomial in n = —2 cos (732), with

s)
B-independent coefficients and deg,, d¥. < r(r—1).

(rs)
If the x-channel decomposition involves a diagonal field Vp, , then d((f)s)
is also polynomial in w(P).
If some V; = Vp, is diagonal, then d((;f)s) is polynomial in w; = w(F;).
The dependence on wy = w(Px) becomes polynomial after we

subtract a rational term that is needed for the 4-point function to be
holomorphic in P.
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Results on 3-point structure constants

Not clear how to factorise 4-point structure constants on 3-point ones,
since several fields can have the same dimension.

But we find that 3-point structure constants of combinatorial maps are

simply given by C'¢f

(r1,81)(r2,52)(r3,53)"

TM check for a dozen of cases.

E.g. C{?]:O)(LO)(LO) gives the probability that 3 points € same loop.

-‘- e . oooooq‘.-c-cli:’

L L
0.5 1.0 15 20

Xin Sun et al. have an unpublished proof of this one case (using CLE,).
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