Exact three and four-point correlation functions in the $O(n)$ loop model

Jesper Lykke Jacobsen 1,2,3
${ }^{1}$ 'Ecole Normale Supérieure, Paris
${ }^{2}$ Sorbonne Université, Paris
${ }^{3}$ Commisariat à l'Energie Atomique, Saclay

Vertex Models: Algebraic and Probabilistic Aspects of Universality, Institute for Pure and Applied Mathematics, 22/05/2024

Collaborators:
L. Gräns-Samuelsson (Microsoft), R. Nivesvivat (Beijing), S. Ribault (Saclay), P. Roux (ENS), H. Saleur (Saclay)

Tale of two loop models

Q-state Potts model

- Q-state spins; interactions have S_{Q} permutation symmetry.
- Equivalent loop model on medial lattice [Baxter-Kelland-Wu 1976].
- Respects fixed orientation of lattice edges: $U(n)$ symmetry.
- Related to integrable 6-vertex model and Temperley-Lieb algebra.
- S_{Q} commutes with partition algebra $\mathscr{P}_{L}(Q)$, descending to Potts-Temperley-Lieb algebra $P \mathscr{S L}_{2 L}(\sqrt{Q})$ in $d=2$.

$O(n)$ model

- Vector spins $\in \mathbb{R}^{n}$; interactions have $O(n)$ symmetry.
- Equivalent loop model in $d=2$ after modification [Nienhuis 1982].
- Related to integrable 19-vertex model and Motzkin algebra.
- $O(n)$ commutes with Brauer algebra $\mathscr{B}_{L}(n)$, descending to unoriented Jones-Temperley-Lieb algebra $u \mathscr{F} \mathscr{S}_{L}(n)$ in $d=2$.

$O(n)$ model [Nienhuis 1982]

loop weight n

Vertex weights 1 and K

All configurations can be built by a transfer matrix:

Define the partition function

$$
Z(K, n)=\sum_{\text {loops }} K^{\# \text { monomers }} n^{\# \text { loops }}
$$

$$
Z(K, n)=\sum_{\text {loops }} K^{\# \text { monomers }} n^{\# \text { loops }}
$$

Monomer fugacity at the critical point:

$$
K_{\mathrm{c}}=(2 \pm \sqrt{2-n})^{-1 / 2}
$$

where $-2 \leq n \leq 2$. Plus (minus) sign for the dilute (dense) phase. Special cases:

- $n=1$ dense: Site percolation
- $n=1$ dilute: Ising model
- $n=0$ dilute: Self-avoiding walks
- $n=2$ either: Gaussian free field, XY model

Most of there are really logarithmic CFTs.
Our first objective is to understand the case of 'generic' n.

Conformal Field Theory of the $O(n)$ model

Central charge

$$
c=13-6 \beta^{2}-6 \beta^{-2} \quad \text { with } \quad\left\{\begin{array}{l}
\Re \beta^{2}>0 \\
\beta^{2} \notin \mathbb{Q}
\end{array}\right.
$$

Conformal weight Δ and momentum P :
$\Delta=P^{2}-P_{(1,1)}^{2}, \quad \Delta_{(r, s)}=P_{(r, s)}^{2}-P_{(1,1)}^{2}, \quad P_{(r, s)}=\frac{1}{2}\left(-\beta r+\beta^{-1} s\right)$.
Field content, with left- and right-moving conformal weights $(\Delta, \bar{\Delta})$:

Name	Notation	Parameters	$(\Delta, \bar{\Delta})$
Degenerate	$V_{\langle r, s\rangle}^{d}$	$r=1 ; s \in 2 \mathbb{N}+1$	$\left(\Delta_{(r, s)}, \Delta_{(r, s)}\right)$
Diagonal	V_{P}	$P \in \mathbb{C}$	$\left(P^{2}-P_{(1,1)}^{2}, P^{2}-P_{(1,1)}^{2}\right)$
Non-diagonal	$V_{(r, s)}$	$r \in \frac{1}{2} \mathbb{N}^{*} ; s \in \frac{1}{r} \mathbb{Z}$	$\left(\Delta_{(r, s)}, \Delta_{(-r, s)}\right)$

Interpretation of fields within the loop model:
Diagonal and non-diagonal fields

$w(P)$

$\exp \frac{i}{2} s \sum_{k=1}^{2 r} \theta_{k}$
$V_{\langle 1,3\rangle}^{d}$ is the energy operator.
The dense $O(n)$ model has a CFT limit iff $V_{\langle 1,3\rangle}^{d}$ is irrelevant:

$$
\Re \Delta_{(1,3)}>1 \Longleftrightarrow \Re \beta^{-2}>1 .
$$

Dream about correlation functions

Here • are $V_{(r, s)}$ insertions, and \times are V_{P} insertions.
Open curves define a combinatorial map on a Riemann surface.
Segal's axioms: Three basic building blocks

1) Annulus with one insertion, 2) Disk with two insertions, 3) Pants.

The blocks are glued by integrating over eigenstates.

Progress this far

- Fields related to irreps of affine Temperley-Lieb algebra, $\mathscr{A} \mathscr{T L}_{L}(n)$.
- Bijection between correlation functions and combinatorial maps.
- Conformal symmetry enhanced to interchiral symmetry via $V_{\langle 1,3\rangle}^{d}$.
- Global $O(n)$ symmetry in interplay with conformal symmetry.

First goal is to understand $N \leq 4$ points on the sphere.

- $N=2$ understood from critical exponents.
- $N=3$ conjecturally understood in all cases.
- $N=4$ from conformal bootstrap. Partial analytical control.

The talk summarises this progress.

Diagrammatic algebras

Partition algebra:
imaginary time
space
Generators:

$$
\begin{aligned}
& \rho=||X||, s=|1| I| |, s_{n}=||ต|| \mid \\
& 1 \leq i \leq L-1 \\
& 1 \leq i \leq L \\
& 1 \leq i \leq L-1
\end{aligned}
$$

From this we can construct the TL generator:

$$
e_{i}=s_{i+\frac{1}{2}} s_{i} s_{i+1} s_{i+\frac{1}{2}}=\prod_{\ldots}^{\cdots} \underbrace{i+e^{i+1}}]_{\ldots}^{\cdots}]
$$

To get the periodic algebra $\mathscr{A S L}_{L}(n)$ we add:

Define also the pseudo-translation t of the $2 r \in \mathbb{N}^{*}$ through-lines:

$\mathscr{A} \mathscr{L}_{L}(n)$ is ∞-dimensional. A finite-dimensional quotient, the unoriented Jones-Temperley-Lieb algebra $u \mathscr{F} \mathscr{L}_{L}(n)$, is obtained by replacing non-contractible loops by n and imposing

$$
t_{u \mathscr{G} \mathscr{\mathscr { I }}_{L}(n)} 1
$$

The standard modules $W_{(r, s)}^{(L)}$ are irreps of $u \mathscr{\mathscr { T }} \mathscr{L}_{L}(n)$, spanned by link patterns with $2 r$ defects. E.g. for $W_{(1, s)}^{(10)}$:

We have

$$
\left(t-e^{\pi i s}\right) W_{(r, s)}^{(L)}=0
$$

The labels (r, s) carry over to the CFT.

Conformal partition function on the torus

Obtained by Di Francesco-Saleur-Zuber in 1987.
Let $q=e^{2 \pi i \tau}$ with τ the modulus, and $\eta(q)$ is the Dedekind function.

$$
Z^{O(n)}(q)=\sum_{s \in 2 \mathbb{N}+1} \chi_{\langle 1, s\rangle}(q)+\sum_{r \in \frac{1}{2} \mathbb{N}^{*}} \sum_{s \in \frac{1}{r} \mathbb{Z}} L_{(r, s)}(n) \chi_{(r, s)}^{N}(q)
$$

with the diagonal degenerate characters

$$
\chi_{\langle r, s\rangle}(q)=\left|\frac{q^{P_{(r, s)}^{2}}-q^{P_{(r,-s)}^{2}}}{\eta(q)}\right|^{2}
$$

and the non-diagonal characters

$$
\chi_{(r, s)}^{N}(q)=\frac{q^{P_{(r, s)}^{2}} \bar{q}_{(r,-s)}^{2}}{|\eta(q)|^{2}}
$$

$$
Z^{O(n)}(q)=\sum_{s \in 2 \mathbb{N}+1} \chi_{\langle 1, s\rangle}(q)+\sum_{r \in \frac{1}{2} \mathbb{N}^{*}} \sum_{s \in \frac{1}{r} \mathbb{Z}} L_{(r, s)}(n) \chi_{(r, s)}^{N}(q)
$$

We have the Virasoro representations:
$\mathscr{R}_{\langle 1, s\rangle}=$ diagonal level-s degenerate rep. with character $\chi_{\langle 1, s\rangle}(q)$,
$\mathscr{W}_{(r, s)} \underset{r, s \in \mathbb{N}^{*}}{=}$ indecomposable rep. with character $\chi_{(r, s)}^{N}(q)+\chi_{(r,-s)}^{N}(q)$,
$\mathscr{W}_{(r, s)}{ }_{r \notin \mathbb{Z}^{*}}=\stackrel{\text { or } s \notin \mathbb{Z}^{*}}{ }$ Verma module with character $\chi_{(r, s)}^{N}(q)$.
The multiplicities $L_{(r, s)}(n)$ were obtained by Read-Saleur in 2001:

$$
L_{(r, s)}(n)=\delta_{r, 1} \delta_{s \in 2 \mathbb{Z}+1}+\frac{1}{2 r} \sum_{r^{\prime}=0}^{2 r-1} e^{\pi i r^{\prime} s} x_{(2 r) \wedge r^{\prime}}(n)
$$

with polynomials $x_{d}(n)$ defined by

$$
x_{0}(n)=2 \quad, \quad x_{1}(n)=n \quad, \quad n x_{d}(n)=x_{d-1}(n)+x_{d+1}(n)
$$

Global $O(n)$ symmetry

This looks like Schur-Weyl duality.
Indeed we have both CFT and $O(n)$ symmetry.
$O(n)$ can be defined for $n \in \mathbb{C}$ (Deligne category).
Under the global $O(n)$ symmetry, primary operators transform in irreps:

$$
\text { []: •, [2]: } \square, \quad[11]: ~ \square, \quad[5421]: \square .
$$

Known dimensions and tensor products (Newell-Littlewood numbers).
Loop-model interpretation:
Each loop carries [1], the fundamental (defining) representation.
Empty space corresponds to [], the trivial representation.

$$
Z^{O(n)}(q)=\sum_{s \in 2 \mathbb{N}+1} \chi_{\langle 1, s\rangle}(q)+\sum_{r \in \frac{1}{2} \mathbb{N}^{*}} \sum_{s \in \frac{1}{r} \mathbb{Z}} L_{(r, s)}(n) \chi_{(r, s)}^{N}(q)
$$

The proper way to understand it is that the $O(n)$ CFT has a space of states (spectrum)

$$
\mathcal{S}^{O(n)}=\bigoplus_{s \in 2 \mathbb{N}+1}[] \otimes \mathscr{R}_{\langle 1, s\rangle} \oplus \bigoplus_{r \in \frac{1}{2} \mathbb{N}^{*}} \bigoplus_{s \in \frac{1}{r} \mathbb{Z}} \Lambda_{(r, s)} \otimes \mathscr{W}_{(r, s)}
$$

acted upon by $O(n) \times \mathfrak{C}$, where \mathfrak{C} is conformal symmetry. So $\operatorname{dim}_{O(n)} \Lambda_{(r, s)}=L_{(r, s)}(n)$. And of course $\operatorname{dim}_{O(n)}[]=1$.

Introduce the formal alternating hook representations

$$
\Lambda_{t}=\delta_{t \equiv 0 \bmod 2}[]+\sum_{k=0}^{t-1}(-1)^{k}\left[t-k, 1^{k}\right]
$$

We find then

$$
\Lambda_{(r, s)}=\delta_{r, 1} \delta_{s \in 2 \mathbb{Z}+1}[]+\frac{1}{2 r} \sum_{r^{\prime}=0}^{2 r-1} e^{\pi i r^{\prime} s} x_{(2 r) \wedge r^{\prime}}\left(\Lambda_{\frac{2 r}{(2 r) \wedge r^{\prime}}}\right) .
$$

There exists an equivalent formula which makes clear that the expansion coefficients of Young tableaux $\in \mathbb{N}$.

Let us have a closer look:

$$
\begin{aligned}
& \Lambda_{\left(\frac{1}{2}, 0\right)}=[1], \\
& \Lambda_{(1,0)}=[2], \\
& \Lambda_{(1,1)}=[11], \\
& \Lambda_{\left(\frac{3}{2}, 0\right)}=[3]+[111], \\
& \Lambda_{\left(\frac{3}{2}, \frac{2}{3}\right)}=[21], \\
& \Lambda_{(2,0)}=[4]+[22]+[211]+[2]+[], \\
& \Lambda_{\left(2, \frac{1}{2}\right)}=[31]+[211]+[11], \\
& \Lambda_{(2,1)}=[31]+[22]+[1111]+[2] .
\end{aligned}
$$

We also have e.g. $[1] \otimes[1]=[2]+[11]+[]$.
This tells us how to decompose two loop lines on $O(n)$ irreps.

Consequences for correlation functions

Two-point functions are given by the conformal dimensions, up to normalisation of the field.

Three-point functions are also fixed by global conformal invariance, up to structure constants.

Four-point functions could be determined by differential equations, if both $V_{\langle 1, s\rangle}^{d}$ and $V_{\langle r, 1\rangle}^{d}$ were present, but we only have the former!
Therefore we need the conformal bootstrap.
But we can do better than usual for two reasons:

- $V_{\langle 1,3\rangle}^{d}$ generates an interchiral symmetry.
- We can exploit the global $O(n)$ symmetry.

Consider a four-point function of non-diagonal primary fields, and its s-channel decomposition into conformal blocks:

$$
\left\langle\prod_{i=1}^{4} V_{(r, s, s)}\right\rangle=\sum_{s \in 2 \mathbb{N}+1} D_{s} \mathscr{G}_{\langle 1, s\rangle}^{D}+\sum_{r \in \frac{1}{2} \mathbb{N} \mathbb{*}} \sum_{s \in \frac{1}{r} \mathbb{Z}} D_{(r, s)} \mathscr{G}_{(r, s)} .
$$

The blocks are known from Zamolodchikov's recursion relation.
Degenerate shift equations using $V_{\langle 1,3\rangle}^{d}$ determine $\frac{D_{(r, s+1)}}{D_{(r, s-1)}}$ and $\frac{D_{s+1}}{D_{s-1}}$. So rewrite

$$
\left\langle\prod_{i=1}^{4} V_{\left(r i, s_{i}\right)}\right\rangle=D_{s_{0}} \mathscr{H}_{s_{0}}+\sum_{r \in \frac{1}{2} \mathbb{N}^{*}} \sum_{s \in \frac{1}{r} \mathbb{Z} \cap(-1,1]} D_{(r, s)} \mathscr{H}_{(r, s)},
$$

in terms of interchiral blocks

$$
\mathscr{H}_{s_{0}}=\sum_{s \in s_{0}+2 \mathbb{N}} \frac{D_{s}}{D_{s_{0}}} \mathscr{Y}_{1, s\rangle}^{D}, \quad \mathscr{H}_{(r, s)}=\sum_{j \in 2 \mathbb{N}} \frac{D_{(r, s+j)}}{D_{(r, s)}} \mathscr{S}_{(r, s+j)} .
$$

Solve then the crossing equations

We know the spectrum. And we can constrain the solution space by fixing the $O(n)$ symmetry of the exchanged fields V.

In favourable cases this gives a unique (numerical) solution.
Conjecture: Each solutions to the crossing equations gives a valid correlation function in the $O(n)$ CFT.
We have computed the 30 correlation functions with $\sum_{i=1}^{4} r_{i}=2,3,4$.

Proofs

We have two ways to prove

$$
\Lambda_{(r, s)}=\delta_{r, 1} \delta_{s \in 2 \mathbb{Z}+1}[]+\frac{1}{2 r} \sum_{r^{\prime}=0}^{2 r-1} e^{\pi i r^{\prime} s} x_{(2 r) \wedge r^{\prime}}\left(\Lambda_{\frac{2 r}{(2 r) \wedge r^{\prime}}}\right)
$$

1st proof: Compute the torus partition function twisted by a non-trivial group element of $O(n)$. This produces the character $\Lambda_{(r, s)}$, not just its dimension $L_{(r, s)}(n)$ as in Read-Saleur (2001).

2nd proof: The commutant of $O(n)$ on $\mathcal{S}_{L}^{O(n)}$ is the Brauer algebra, $\mathscr{B}_{L}(n)$, generated by e_{i} and p_{i}. But in $d=2$, it reduces to $u \mathscr{G} \mathscr{S}_{L}(n)$. Hence we must compute the branching rules $\mathscr{B}_{L}(n) \downarrow u \mathscr{J} \mathscr{L}_{L}(n)$. This is a solvable combinatorial problem.

Combinatorial maps

A (connected) combinatorial map is a (connected) graph, together with a cyclic permutation of the half-edges around each vertex. Monogons are forbidden.

A map is weakly connected if it cannot be split into two non-trivial maps (a sphere with 0 or 1 vertex).

This map is not weakly connected (it should have 'used' the handle).

Number of maps $\left|\mathscr{M}_{g, N}\left(r_{i}\right)\right|$ and of weakly connected maps $\left|\mathscr{M}_{g, N}^{c}\left(r_{i}\right)\right|$. Genus g, number of points N, vertex valencies $2 r_{i}$.

$$
\left|M_{0,4}^{c}\right|=\left\lfloor\sum_{i=1}^{4} r_{i}^{2}-\frac{1}{2}\right\rfloor
$$

Signature of a planar map with four vertices:

$$
\sigma_{s}=1
$$

A map M is weakly connected iff $\forall x \in\{s, t, u\}, \sigma_{x}(M)>0$.

Conjectures

For any N-point function of diagonal and non-diagonal fields, the dimension of the space of solutions of conformal bootstrap equation with spectra made only of non-diagonal fields is $\left|\mathscr{M}_{g, N}^{c}\left(r_{i}\right)\right|$.

The critical limit of a loop model correlation function is a solution of the conformal bootstrap equations.

The set of correlation functions is a basis of solutions of the corresponding conformal bootstrap equations.

Digression on the Barnes double gamma function

Recall $\boldsymbol{C}=13-6 \beta^{2}-6 \beta^{-2}$ and set $Q=\beta+\beta^{-1}$.
For $\Re x>0$ define $\Gamma_{\beta}(x)$ through

$$
\log \Gamma_{\beta}(x)=\int_{0}^{\infty} \frac{\mathrm{d} t}{t}\left[\frac{\mathrm{e}^{-x t}-\mathrm{e}^{-Q t / 2}}{\left(1-\mathrm{e}^{-\beta t}\right)\left(1-\mathrm{e}^{-t / \beta}\right)}-\frac{(Q / 2-x)^{2}}{2 \mathrm{e}^{t}}-\frac{Q / 2-x}{t}\right]
$$

and the shift equations

$$
\frac{\Gamma_{\beta}(x+\beta)}{\Gamma_{\beta}(x)}=\sqrt{2 \pi} \frac{\beta^{\beta x-\frac{1}{2}}}{\Gamma(\beta x)} \quad, \quad \frac{\Gamma_{\beta}\left(x+\beta^{-1}\right)}{\Gamma_{\beta}(x)}=\sqrt{2 \pi} \frac{\beta^{\frac{1}{2}-\beta^{-1} x}}{\Gamma\left(\beta^{-1} x\right)} .
$$

Sometimes one defines also the upsilon function

$$
\Upsilon_{\beta}(x)=\frac{1}{\Gamma_{\beta}(x) \Gamma_{\beta}(Q-x)}
$$

4-point functions of diagonal and non-diagonal fields

In addition to monomer weight K and bulk loop weight n, define vertex weights w_{i} (with $i=1,2,3,4$) and channel weights w_{x} (w ith $x=s, t, u$):

At most one of the loop types w_{x} can exist in a given configuration. In the lattice model, define $C^{\text {loop }}\left(L, \ell \mid K, n, w_{i}, w_{x}\right)$, with L the size and ℓ the separation between z_{1}, z_{2} and z_{3}, z_{4} (in the s-channel).

We find the s-channel decomposition
$C^{\text {loop }}\left(L, \ell \mid K, n, w_{i}, w_{x}\right)=\sum_{\omega \in S(L)} A_{\omega}\left(L \mid K, n, w_{i}, w_{x}\right)\left(\frac{\Lambda_{\omega}\left(L \mid K, n, w_{s}\right)}{\Lambda_{\max }\left(L \mid K, n, w_{s}\right)}\right)^{\ell}$,
with $\left(\Lambda_{\omega}\right)_{\omega \in S(L)}$ the $\mathscr{A} \mathscr{S}_{L}(n)$ spectrum of transfer matrix eigenvalues.
Remarkable that only $\mathscr{A} \mathscr{\mathscr { L }}_{L}(n)$ eigenvalues participate here!
Define ratios wrt different values of the weights: $f\left(x: x^{\prime}\right)=\frac{f(x)}{f\left(x^{\prime}\right)}$.
Even more remarkably, we find that

$$
A_{(r, s), \rho}\left(L \mid K, n, w_{i}, w_{x}: w_{x}^{\prime}\right)=D_{(r, s)}^{(s)}\left(n, w_{i}, w_{x}: w_{x}^{\prime}\right) .
$$

Here $\omega=(r, s), \rho$, where ρ labels states in the same module (r, s). There is no dependence on ρ, L and K. Hence the amplitudes have nothing to do with CFT and should be computable from $\mathscr{A} \mathscr{F}_{L}(n)$.
Looks like a Wigner-Eckart theorem, but lifted from QM to $\mathscr{A} \mathscr{S L}_{L}(n)$.

Reference 2- and 3-point structure constants

Omitting the known coordinate dependence, define:

$$
\left\langle V_{1} V_{2}\right\rangle=\delta_{12} B_{1} \quad, \quad\left\langle V_{1} V_{2} V_{3}\right\rangle=C_{123} .
$$

For non-diagonal fields, set:

$$
\begin{gathered}
B_{(r, s)}^{\text {ref }}=\frac{(-)^{r s}}{2 \sin (\pi(\operatorname{frac}(r)+s)) \sin \left(\pi\left(r+\beta^{-2} s\right)\right)} \prod_{ \pm, \pm} \Gamma_{\beta}^{-1}\left(\beta \pm \beta r \pm \beta^{-1} s\right) \\
C_{\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)\left(r_{3}, s_{3}\right)}^{\text {ref }}=\prod_{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}= \pm} \Gamma_{\beta}^{-1}\left(\frac{\beta+\beta^{-1}}{2}+\frac{\beta}{2}\left|\sum_{i} \epsilon_{i} r_{i}\right|+\frac{\beta^{-1}}{2} \sum_{i} \epsilon_{i} s_{i}\right) .
\end{gathered}
$$

For diag fields, set $V_{P}=V_{(0,2 \beta P)}$, so $C_{\left(0,2 \beta P_{1}\right)\left(0,2 \beta P_{2}\right)\left(0,2 \beta P_{3}\right)}^{\text {ref }}=C_{P_{1}, P_{2}, P_{3}}$.
When $w_{i} \equiv 0, C_{P_{1}, P_{2}, P_{3}}$ gives the probability that three points belong to the same FK cluster [Delfino-Viti, 2013; Ikhlef-J-Saleur, 2016].

Normalised 4-point structure constants

$$
D_{(r, s)}^{(x)}=\frac{C_{\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)(r, s)}^{\mathrm{ref}} C_{(r, s)\left(r_{3}, s_{3}\right)\left(r_{4}, s_{4}\right)}^{\mathrm{ref}}}{B_{(r, s)}^{\mathrm{ref}}} d_{(r, s)}^{(x)}
$$

Combining analytical arguments with numerical bootstrap and transfer matrices, we find that $d_{(r, s)}^{(x)}$ is a polynomial in $n=-2 \cos \left(\pi \beta^{2}\right)$, with β-independent coefficients and $\operatorname{deg}_{n} d_{(r, s)}^{(x)} \leq r(r-1)$.
If the x-channel decomposition involves a diagonal field $V_{P_{x}}$, then $d_{(r, s)}^{(x)}$ is also polynomial in $w(P)$.
If some $V_{i}=V_{P_{i}}$ is diagonal, then $d_{(r, s)}^{(x)}$ is polynomial in $w_{i}=w\left(P_{i}\right)$.
The dependence on $w_{x}=w\left(P_{\chi}\right)$ becomes polynomial after we subtract a rational term that is needed for the 4 -point function to be holomorphic in P_{x}.

Results on 3-point structure constants

Not clear how to factorise 4-point structure constants on 3-point ones, since several fields can have the same dimension.

But we find that 3-point structure constants of combinatorial maps are simply given by $C_{\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)\left(r_{3}, s_{3}\right)}^{\text {ref }}$. TM check for a dozen of cases.
E.g. $C_{(1,0)(1,0)(1,0)}^{\text {ref }}$ gives the probability that 3 points \in same loop.

Xin Sun et al. have an unpublished proof of this one case (using CLE_{κ}).

