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0. Stochastic 6-vertex model

Stochastic 6-vertex model

• Continuous time limit is ASEP.

• Stochastic 5-vertex model with δ1,2 = 0, 1 is a TASEP.

Q: Are 6-vertex models (or some aspects of them) free fermionic?

TASEP? ASEP? ∆ = 1
2?

Jimbo ”There is a huge gap between free fermion models and

integrable but non-free fermion models.”
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Plan

1. TASEP (or stochastic 5-vertex model), RSK and Schur

measure, and T = 0 free fermion

2. KPZ models (or stochastic higher-spin 6 vertex model) and

q-Whittaker measure

Relation between q-Whittaker and periodic Schur measures

⇒ Relation between KPZ models and T > 0 free fermion!

3. Bijection by skew RSK dynamics

4. Ideas of proof

5. Column skew RSK dynamics (connection to BBS)
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1. TASEP, RSK and Schur measure, and T = 0 free

fermion

TASEP

· · · ⇒

1− r

⇒

1− r

· · ·

(0 < r < 1)

-3 -2 -1 0 1 2 3
N(t): Integrated current at (0, 1) upto time t from step i.c.

N(t) ∼ h(0, t): height

Step i.c.
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Mapping to combinatorics

2000 Johansson

-

6

1 2 1

1 2 0

2 1 0

(1, 1)

(N,N)

· · ·

...

i

j

Waiting times wij : iid geo(r)

GN = max
up-right paths from

(1,1)to(N,N)

( ∑
(i,j)

on a path

wi,j

)

P[N(t) ≥ N ] = P[GN ≤ t]

Trajectories
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RSK

Robinson-Shensted-Knuth correspondence: Bijection between

N ×M N-matrices and pairs of semi-standard tablueaux (SST)
1 0 2

0 2 0

1 1 0

⇔
1 1 1 2 2 3 3

1 3 3 2 2 1 2

⇔
RSK algorithm

Insertion and bumping

6



Schur function and its Cauchy identity

• Schur function (Combinatorial definition)

sλ(a) =
∑

T∈SST(λ)

aT , aT =
∏
i

a#i in T
i

• By RSK, one can prove its Cauchy identity.

∑
λ∈P

sλ(a)sλ(b) =
N∏
i=1

N∏
j=1

1

1− aibj
(=: Z)

• General ai, bj corresponds to wij with geo(aibj)
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Current distribution

• By restricting the sum and noting GN = λ1, we have

P[GN ≤ u] =
1

Z

∑
λ,λ1≤u

sλ(a)sλ(b)

• Schur measure
1

Z
sλ(a)sλ(b)

By Jacobi-Trudi formula sλ(x) = det(ϕn(xm)), the Schur

measure is a DPP (determinantal point process) associated

with T = 0 free fermion.

• 2000 Baik Rains

Symmetrized version: P = Q
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2. KPZ models and q-Whittaker measure

• KPZ models: such as ASEP, q-TASEP, stochastic HS6VM.

2011 Borodin-Corwin, 2016 Borodin-Bufetov-Wheeler, 2021

Bufetov-Mucciconi-Petrov

Related to q-Whittaker (or Hall-Littewood) measure.

• Geometric q-PushTASEP(2015 Matveev-Petrov) is related to

the q-Whittaker measure of the form

1

Z
bµ(q)Pµ(a)Pµ(b), bµ(q) =

∏
i≥1

1

(q; q)µi−µi+1

where a = (a1, · · · , aN ), b = (b1, · · · , bM ).

The N th particle position at time M is related to µ1 as

XN (M)
d
= µ1 +N . Note: No single det formula for Pµ.
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Periodic Schur measure

• Periodic Schur measure (2007 Borodin, 2018 Betea-Bouttier)

1

Z

∑
ρ∈P,ρ(⊂λ)

q|ρ|sλ/ρ(a)sλ/ρ(b)

• Its shift mixed version (λi → λi + S) with

P(S = ℓ) =
tℓqℓ

2/2

(q; q)∞θ(−tq1/2)
, ℓ ∈ Z, for t > 0

with θ(x) = (x; q)∞(q/x; q)∞, is a DPP associated with

T > 0 free fermion and hence

P (λ1 + S ≤ n) = det (1−K)ℓ2(Z)

where K is a free fermion kernel at T > 0.

10



Relation between q-Whittaker and periodic Schur

• Theorem: µ1: q-Whittaker, λ1: periodic Schur

E
[
1/(−tq

1
2
+n−µ1 ; q)∞

]
= P(λ1 + S ≤ n)

Connection between q-Whittaker & periodic Schur measures

• This is equivalent to the following identity

N∑
ℓ=0

qℓ

(q; q)ℓ

∑
µ:µ1=N−ℓ

bµ(q)Pµ(a)Pµ(b) =
∑

λ,ρ:λ1=N

q|ρ|sλ/ρ(a)sλ/ρ(b)

where bµ(q) =
∏

i≥1
1

(q;q)µi−µi+1
.

We found a bijective proof of this!
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4. Bijection by skew RSK dynamics
Skew Schur function

sλ/ρ(x) =
∑

T∈SST(λ/ρ)

xT
1

2 3 4
1 3 5
2

where SST is the set of skew semistandard tableaux.

RHS of the identity is related to a pair (P,Q). Try to find a

bijection from (P,Q) to something which is related to q-Whittaker

function!

Sqeezing: (P,Q)→ (P1, Q1)

ν =
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Skew RSK map

Internal insertion (Sagan-Stanley 1990)

Operation ι2

Skew RSK map: RSK(P,Q) = ιN2 (P,Q)
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Skew RSK dynamics
Iterating skew RSK maps: (Pt+1, Qt+1) = RSK(Pt, Qt)

Asymptotic tableaux and their shape

µ =

V,W ∈ VST(µ): ”vertically strict tableaux” (VST) of same shape

µ with elements increasing only in each column.

Similar to Box-Ball systems! (1990 Takahashi Satsuma, 2012 IKT)
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Combinatorial formula for q-Whittaker function

• q-Whittaker function (e.g. 2012 Schilling Tingley)

Pµ(x) =
∑

V ∈VST(µ)

qH(V )xV 1 2 2 3
2 5 3
3

where H is energy function (e.g. 1997 Nakayashiki Yamada).

In a way H(V ) measures how a VST V is far away from a

semistandard tableaux. Note: Pµ tends to sµ when q → 0.

• Recall the identity

N∑
ℓ=0

qℓ

(q; q)ℓ

∑
µ:µ1=N−ℓ

bµ(q)Pµ(a)Pµ(b) =
∑

λ,ρ:λ1=N

q|ρ|sλ/ρ(a)sλ/ρ(b)

• How do H(V ) and b(µ) appear?
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Bijection Υ : (P,Q)↔ (V,W, κ, ν)

(P,Q): A pair of skew SSTs with same shape λ/ρ

ν: partition obtained by ”squeezing” (P,Q) to (P1, Q1).

(V,W ): A pair of VSTs with same shape µ

κ ∈ K(µ) = {κ = (κ1, . . . , κµ1) ∈ Nµ1
0 : κi ≥ κi+1 if µ′

i = µ′
i+1}

Theorem: There is a bijection Υ with weight preserving property

|ρ| = H(V ) +H(W ) + |κ|+ |ν|

Note
∑

κ∈K(µ)

q|κ| = bµ(q), P[ν1 = ℓ] = qℓ

(q;q)ℓ
(q; q)∞.
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A remark: Cauchy identities for three polynomials
Schur ∑

λ∈P
sλ(a)sλ(b) =

N∏
i=1

N∏
j=1

1

1− aibj

q-Whittaker ∑
µ∈P

Pµ(a)Qµ(b) =
N∏
i=1

N∏
j=1

1

(aibj ; q)∞

Skew Schur∑
λ,ρ∈P
ρ⊂λ

q|ρ|sλ/ρ(a)sλ/ρ(b) =
1

(q; q)∞

N∏
i=1

N∏
j=1

1

(aibj ; q)∞

Our bijection gives the first bijective proof of the Cauchy identity

for q-Whittaker polynomials.
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Symmetrized version
Littlewood identity for Schur function (P = Q in RSK)∑

λ:λ′is even

sλ(x) =
n∏

1≤i<j≤n

1

1− xixj

Setting P = Q in skew RSK dynamics, one can prove

Theorem: (2006 Warnaar)∑
µ

bµ(q; z)Pµ(x; q
2) =

n∏
i=1

1

(zxi; q)∞

∏
1≤i<j≤n

1

(xixj ; q2)∞

where

bµ(q; z) =
∏

i=2,4,6...

[qz2 + 1]
µi−µi+1

q2

(q2; q2)µi−µi+1

∏
i=1,3,5,...

zµi−µi+1

(q; q)µi−µi+1

with

[A+B]kp =

k∑
j=0

AjBk−j

(
k

j

)
p

,

(
k

j

)
p

=
(p; p)k

(p; p)j(p; p)k−j
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A refined identity for the symmetrized version

Putting conditions on the length of the first rows gives an identity

for restricted Littewood sums for q-Whittaker and skew Schur.

Theorem:

k∑
ℓ=0

gℓ(z, q)
∑

µ:µ1=k−ℓ

bµ(q; z)Pµ(x; q
2) =

∑
λ,ρ:λ1=k

zodd(λ
′)+odd(ρ′)q|ρ|sλ/ρ(x)

where

gℓ(z, q) = [qz2 + q2]ℓq2/(q
2; q2)ℓ

This is useful for studying KPZ models in half-space.
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4. Ideas of proof

• Proving properties of skew RSK dynamics based on its rules is

difficult.

• Original Robinson’s algorithm, which maps a permutation to a

canonical one, can be understood as an application of crystal

symmetry.

• We can use (affine) crystal to study skew RSK dynamics and

prove our theorem. For a canonical object, skew RSK

dynamics is linearized.
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Affine Crystal for VST

VST(µ) is identified with Bµ′
1,1 ⊗Bµ′

2,1 ⊗ · · · ⊗Bµ′
µ1

,1, the

Kirillov-Reschetikhin crystals of type A(1).

Kashiwara operators: ẽi, f̃i with i = 1, · · · , n− 1 and

ẽ0 = pr−1 ◦ ẽ1 ◦ pr, f̃0 = pr−1 ◦ f̃1 ◦ pr

where pr is the promotion operator.
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Kashiwara operators

i 6= 0 on words (”signature rule”)

For tableaux, use the column reading words.

e0: on a single column tableau, replace the 1-cell with an n-cell

and reorder.

On VST, use pr(b1 ⊗ · · · ⊗ bN ) = pr(b1)⊗ · · · ⊗ pr(bN ).
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Example of affine crystal graph

Edge
i−→ is f̃i. Blue arrows are 0-Demazure arrows.

Here energy is H = #f̃0 −#ẽ0.
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Leading map for VST

Affine bicrystal structure for (V,W )

ẽi × 1, 1× ẽi, f̃i × 1, 1× f̃i.

(V,W )
LV ×LW−−−−−−−−−−→ (Y, Y )

Example

where

LV = ẽ2 ◦ ẽ3 ◦ ẽ4 ◦ ẽ1 ◦ ẽ2 ◦ ẽ3 ◦ ẽ1 ◦ ẽ2,

LW = ẽ3 ◦ ẽ4 ◦ ẽ1 ◦ f̃0 ◦ f̃4 ◦ f̃3 ◦ f̃ 2
1 ◦ ẽ2 ◦ ẽ 3

1 ◦ ẽ2

Note H(V ) = 0,H(W ) = 1.
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Affine Crystal for (P,Q)

Affine bicrystal structure for (V,W ) can be lifted to (P,Q).

Ẽ
(2)
0 = ι2 ◦ (1× ẽ1) ◦ ι−1

2 , F̃
(2)
0 = ι2 ◦ (1× f̃1) ◦ ι−1

2 ,

Ẽ
(1)
0 = ι1 ◦ (ẽ1 × 1) ◦ ι−1

1 , F̃
(1)
0 = ι1 ◦ (f̃1 × 1) ◦ ι−1

1 .

This is consistent with the projection (P,Q)→ (V,W ).

Theorem: Skew RSK map commute with Ẽ
(ϵ)
i , F̃

(ϵ)
i for all

i = 0, 1, .., n− 1 and ϵ = 1, 2.
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Leading map and leading tableaux

By replacing ẽi, f̃i by Ẽ
(ϵ)
i , F̃

(ϵ)
i , ϵ = 1, 2, one can define L, which

sends (P,Q) to a pair of ”leading tableaux” (T, T ), where

whenever T has k i-cells at row r, then it has at least k

(i− 1)-cells at row r − 1 for all r and i = 2, 3, . . . .

(P,Q)
L−−−−−→ (T, T )

Example

Note that the change of # empty boxs = H(V ) +H(W ).
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Finding κ
Prop. There is a bijection LdT(µ)←→ K(µ)× P

This completes the construction of the bijection.

Can define T = T (µ, κ; ν).
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Proof: Linearization

Map L commutes with RSK map and linearizes it.

Theorem: If T = T (µ, κ; ν), then T ′ = T (µ, κ+ µ′; ν).
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5. Column skew RSK

IMS+Scrimshaw 2024+

• Horizontally weak tableaux (HWT) instead of VST

• Modified Hall-Littlewood polynomials

• The standard Box-Ball system appears

• KKR(Kerov-Kirillov-Reshetikhin) bijection linearizes the cRSK

dynamics

• Needed to prove a new property of a crystal
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Example

↓

↓

↓

↓

HWTs
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Theorem.
Theorem. There exists a bijection:⊔

λ,ρ

SST(λ/ρ,m)× SST(λ/ρ, n)⇔

(⊔
µ

HWT(µ,m)×HWT(µ, n)× K̃(µ)

)
× P

with

K̃(µ) = {κ = (κ1, · · · , κℓ(µ)) ∈ Zℓ(µ)
≥0 : κi ≥ κi+1 if µi = µi+1}.

Furthermore for each correspondence (P,Q) 7→ (H1,H2, κ̃, ν), let

λ/ρ and µ be the shape of (P,Q) and (H1,H2) respectively.

Then we have

|ρ| = D(H1) +D(H2) + |κ̃|+ |ν| ,
ℓ(λ) = ℓ(µ) + ℓ(ν),

where D(H) is the energy of the HWT H.
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Modified Hall-Littlewood function

The modified Hall–Littlewood polynomials are defined by

Hµ(x; q) =
∑
λ

Kλ,µ(q)sλ(x),

where Kλ,µ(q) is the Kostka–Foulkes polynomial.

The Cauchy identity for Hµ(x; q) is∑
µ

1

cµ(q)
Hµ(x; q)Hµ(y; q) =

m∏
i=1

n∏
j=1

1

(xiyj ; q)∞
,

where cµ(q) =
∏µ1

i=1(q; q)mi and mi, i = 1, 2, · · · is defined by

µ = 1m12m2 · · · . This can be proved in a bijective manner.
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Restricted Cauchy sum identity

Theorem.∑
µ,ν

ℓ(µ)+ℓ(ν)=k

q|ν|

cµ(q)
Hµ(x; q)Hµ(y; q) =

∑
λ,ρ

ℓ(λ)=k

q|λ/ρ|sλ/ρ(x)sλ/ρ(y),

for k = 0, 1, 2, · · · .

With our column skew RSK, this identity can proved in a bijective

manner. The refined identity may be proved in a few different ways
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On the proof

• Basic Ideas are similar to the previous case but some

differences.

• Leading map transforms tableaux to the one with only 1’s,

which can be identified with particle configuration on Z.

• Time evolution is identical to Box and Ball system (BBS),

which can be linearlized by KKR algorithm.

• Demazure crystal does not exist but one can prove some

necessary properties of affine crystals related to our column

skew RSK.
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Leading map

Example

Leading tableau

Corresponding BBS configuration:

001001011100111
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Summary

• Stochastic vertex models are related to q-Whittaker measures,

which are not free fermionic.

We have found a bijective relation to the periodic Schure

measure, which is free fermionic.

• This was achieved by our skew RSK dynamics.

The proof uses the theory of (affine) crystal.

• We have introduced a column version of skew RSK dynamics.

It shows a direct connection to BBS.
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Free fermion and its correlation kernel
• A free fermion is a quantum many (infinite) particle system

for which each one particle state ϕn(x) (n ≥ 1, energy ϵn)

can be either occupied or empty (Pauli principle).

• At T = 0, for N particles, the ground state filling

n = 1, . . . , N is realized. The pdf of particle positions is
1

Z

(
det(ϕn(xm))Nn,m=1

)2
Correlations and gap dist. are (Fredholm) deteterminants with

the kernel K(x, y) =
∑N

n=1 ϕn(x)ϕn(y).

• For T > 0, state n is filled with prob 1
1+eβ(µ−ϵn) , β = 1

kBT

(Fermi-Dirac factor). Kernel is K(x, y) =
∑∞

n=1
ϕn(x)ϕn(y)

1+eβ(µ−ϵn) .

• Both cases are determinantal point process (DPP).
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