Skew RSK dynamics

```
T. Sasamoto
```

(Joint works with T. Imamura, M. Mucciconi, T. Scrimshaw)

23 Mar 2024 @ IPAM
Refs: Forum of Mathematics Pi (2023) e27 1-101, arXiv: 2204.08420, arXiv: 2406(?).*****

0. Stochastic 6-vertex model

Stochastic 6-vertex model

- Continuous time limit is ASEP.
- Stochastic 5 -vertex model with $\delta_{1,2}=0,1$ is a TASEP.

Q: Are 6-vertex models (or some aspects of them) free fermionic?
TASEP? ASEP? $\Delta=\frac{1}{2}$?
Jimbo "There is a huge gap between free fermion models and integrable but non-free fermion models."

Plan

1. TASEP (or stochastic 5 -vertex model), RSK and Schur measure, and $T=0$ free fermion
2. KPZ models (or stochastic higher-spin 6 vertex model) and q-Whittaker measure
Relation between q-Whittaker and periodic Schur measures
\Rightarrow Relation between KPZ models and $T>0$ free fermion!
3. Bijection by skew RSK dynamics
4. Ideas of proof
5. Column skew RSK dynamics (connection to BBS)

1. TASEP, RSK and Schur measure, and $T=0$ free fermion

TASEP

$N(t)$: Integrated current at $(0,1)$ upto time t from step i.c.

Step i.c.

$N(t) \sim h(0, t):$ height

Mapping to combinatorics

2000 Johansson

Waiting times $w_{i j}$: iid geo (r)

$$
\left.\begin{array}{l}
G_{N}=\underset{\substack{\text { up-right paths from } \\
(1,1) \operatorname{to}(N, N)}}{\max }\left(\sum_{(i, j)} w_{i, j}\right) \\
\text { on a path }
\end{array}\right]
$$

RSK

Robinson-Shensted-Knuth correspondence: Bijection between $N \times M \mathbb{N}$-matrices and pairs of semi-standard tablueaux (SST)

RSK algorithm
Insertion and bumping

Schur function and its Cauchy identity

- Schur function (Combinatorial definition)

$$
s_{\lambda}(a)=\sum_{T \in \operatorname{SST}(\lambda)} a^{T}, a^{T}=\prod_{i} a_{i}^{\# i} \text { in } T
$$

- By RSK, one can prove its Cauchy identity.

$$
\sum_{\lambda \in \mathcal{P}} s_{\lambda}(a) s_{\lambda}(b)=\prod_{i=1}^{N} \prod_{j=1}^{N} \frac{1}{1-a_{i} b_{j}} \quad(=: Z)
$$

- General a_{i}, b_{j} corresponds to $w_{i j}$ with geo $\left(a_{i} b_{j}\right)$

Current distribution

- By restricting the sum and noting $G_{N}=\lambda_{1}$, we have

$$
\mathbb{P}\left[G_{N} \leq u\right]=\frac{1}{Z} \sum_{\lambda, \lambda_{1} \leq u} s_{\lambda}(a) s_{\lambda}(b)
$$

- Schur measure

$$
\frac{1}{Z} s_{\lambda}(a) s_{\lambda}(b)
$$

By Jacobi-Trudi formula $s_{\lambda}(x)=\operatorname{det}\left(\phi_{n}\left(x_{m}\right)\right)$, the Schur measure is a DPP (determinantal point process) associated with $T=0$ free fermion.

- 2000 Baik Rains

Symmetrized version: $P=Q$

2. KPZ models and q-Whittaker measure

- KPZ models: such as ASEP, q-TASEP, stochastic HS6VM.

2011 Borodin-Corwin, 2016 Borodin-Bufetov-Wheeler, 2021

Bufetov-Mucciconi-Petrov
Related to q-Whittaker (or Hall-Littewood) measure.

- Geometric q-PushTASEP(2015 Matveev-Petrov) is related to the q-Whittaker measure of the form

$$
\frac{1}{Z} b_{\mu}(q) P_{\mu}(a) P_{\mu}(b), \quad b_{\mu}(q)=\prod_{i \geq 1} \frac{1}{(q ; q)_{\mu_{i}-\mu_{i+1}}}
$$

where $a=\left(a_{1}, \cdots, a_{N}\right), b=\left(b_{1}, \cdots, b_{M}\right)$.
The N th particle position at time M is related to μ_{1} as $X_{N}(M) \stackrel{d}{=} \mu_{1}+N$. Note: No single det formula for P_{μ}.

Periodic Schur measure

- Periodic Schur measure (2007 Borodin, 2018 Betea-Bouttier)

$$
\frac{1}{Z} \sum_{\rho \in \mathcal{P}, \rho(\subset \lambda)} q^{|\rho|^{\prime}} s_{\lambda / \rho}(a) s_{\lambda / \rho}(b)
$$

- Its shift mixed version $\left(\lambda_{i} \rightarrow \lambda_{i}+S\right)$ with

$$
\mathbb{P}(S=\ell)=\frac{t^{\ell} q^{\ell^{2} / 2}}{(q ; q)_{\infty} \theta\left(-t q^{1 / 2}\right)}, \quad \ell \in \mathbb{Z}, \text { for } t>0
$$

with $\theta(x)=(x ; q)_{\infty}(q / x ; q)_{\infty}$, is a DPP associated with $T>0$ free fermion and hence

$$
\mathbb{P}\left(\lambda_{1}+S \leq n\right)=\operatorname{det}(1-K)_{\ell^{2}(\mathbb{Z})}
$$

where K is a free fermion kernel at $T>0$.

Relation between q-Whittaker and periodic Schur

- Theorem: $\mu_{1}: q$-Whittaker, λ_{1} : periodic Schur

$$
\mathbb{E}\left[1 /\left(-t q^{\frac{1}{2}+n-\mu_{1}} ; q\right)_{\infty}\right]=\mathbb{P}\left(\lambda_{1}+S \leq n\right)
$$

Connection between q-Whittaker \& periodic Schur measures

- This is equivalent to the following identity

$$
\begin{aligned}
& \sum_{\ell=0}^{N} \frac{q^{\ell}}{(q ; q)_{\ell}} \sum_{\mu: \mu_{1}=N-\ell} b_{\mu}(q) P_{\mu}(a) P_{\mu}(b)=\sum_{\lambda, \rho \cdot \lambda_{1}=N} q^{|\rho|} s_{\lambda / \rho}(a) s_{\lambda / \rho}(b) \\
& \quad \text { where } b_{\mu}(q)=\prod_{i \geq 1} \frac{1}{\left(q ; q \mu_{i}-\mu_{i+1}\right.} . \\
& \quad \text { We found a bijective proof of this! }
\end{aligned}
$$

4. Bijection by skew RSK dynamics

Skew Schur function

$$
s_{\lambda / \rho}(x)=\sum_{T \in \operatorname{SST}(\lambda / \rho)} x^{T}
$$

				1	
		2	3	4	
1	3	5			
2					

where SST is the set of skew semistandard tableaux.

RHS of the identity is related to a pair (P, Q). Try to find a bijection from (P, Q) to something which is related to q-Whittaker function!

Sqeezing: $(P, Q) \rightarrow\left(P_{1}, Q_{1}\right)$

Skew RSK map

Internal insertion (Sagan-Stanley 1990)

			1
	2	3	4
1	3	5	

\leadsto

			1
		3	4
1	3	5	
2			

			1
		3	4
1	2	5	
			$\leftarrow 3$

			1
		3	4
1	2	5	
	3	3	

Operation ι_{2}
$\left(\begin{array}{|l|l|l|l}\hline & & & 1 \\ \hline & 2 & 3 & 4 \\ \hline 1 & 3 & 5\end{array}, \begin{array}{|l|l|l|l}\hline & & & 2 \\ \hline 2 & 1 & 3 & 3 \\ \hline 2 & 2 & 5 & \\ \hline 3 & \end{array}\right) \xrightarrow{\iota_{2}}\left(\begin{array}{|l|l|l|l|}\hline & & & 1 \\ \hline & & 3 & 4 \\ \hline 1 & 2 & 5 & \\ \hline 2 & 3 & & \\ \hline\end{array}, \begin{array}{|l|l|l|l}\hline & & & 1 \\ \hline & & 2 & 2 \\ \hline 1 & 1 & 4 & \\ \hline 2 & 5 & \end{array}\right)$

Skew RSK map: $\operatorname{RSK}(P, Q)=\iota_{2}^{N}(P, Q)$

Skew RSK dynamics

Iterating skew RSK maps: $\left(P_{t+1}, Q_{t+1}\right)=\mathbf{R S K}\left(P_{t}, Q_{t}\right)$

Asymptotic tableaux and their shape

$V, W \in \operatorname{VST}(\mu)$: "vertically strict tableaux" (VST) of same shape μ with elements increasing only in each column.

$$
\text { Similar to Box-Ball systems! (1990 Takahashi Satsuma, } 2012 \text { IKT) }
$$

Combinatorial formula for q-Whittaker function

- q-Whittaker function (e.g. 2012 Schilling Tingley)

$$
P_{\mu}(x)=\sum_{V \in \operatorname{VST}(\mu)} q^{H(V)} x^{V} \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 2 & 3 \\
\hline 2 & 5 & 3 & \\
\hline 3 & & &
\end{array}
$$

where H is energy function (e.g. 1997 Nakayashiki Yamada). In a way $H(V)$ measures how a VST V is far away from a semistandard tableaux. Note: P_{μ} tends to s_{μ} when $q \rightarrow 0$.

- Recall the identity

$$
\sum_{\ell=0}^{N} \frac{q^{\ell}}{(q ; q)_{\ell}} \sum_{\mu: \mu_{1}=N-\ell} b_{\mu}(q) P_{\mu}(a) P_{\mu}(b)=\sum_{\lambda, \rho: \lambda_{1}=N} q^{|\rho|} s_{\lambda / \rho}(a) s_{\lambda / \rho}(b)
$$

- How do $H(V)$ and $b(\mu)$ appear?

Bijection $\Upsilon:(P, Q) \leftrightarrow(V, W, \kappa, \nu)$

(P, Q) : A pair of skew SSTs with same shape λ / ρ
ν : partition obtained by "squeezing" (P, Q) to (P_{1}, Q_{1}).
(V, W) : A pair of VSTs with same shape μ

$$
\kappa \in \mathcal{K}(\mu)=\left\{\kappa=\left(\kappa_{1}, \ldots, \kappa_{\mu_{1}}\right) \in \mathbb{N}_{0}^{\mu_{1}}: \kappa_{i} \geq \kappa_{i+1} \text { if } \mu_{i}^{\prime}=\mu_{i+1}^{\prime}\right\}
$$

Theorem: There is a bijection Υ with weight preserving property

$$
|\rho|=H(V)+H(W)+|\kappa|+|\nu|
$$

Note $\sum_{\kappa \in \mathcal{K}(\mu)} q^{|\kappa|}=b_{\mu}(q), \mathbb{P}\left[\nu_{1}=\ell\right]=\frac{q^{\ell}}{(q ; q)_{\ell}}(q ; q)_{\infty}$.

A remark: Cauchy identities for three polynomials

Schur

$$
\sum_{\lambda \in \mathcal{P}} s_{\lambda}(a) s_{\lambda}(b)=\prod_{i=1}^{N} \prod_{j=1}^{N} \frac{1}{1-a_{i} b_{j}}
$$

q-Whittaker

$$
\sum_{\mu \in \mathcal{P}} P_{\mu}(a) Q_{\mu}(b)=\prod_{i=1}^{N} \prod_{j=1}^{N} \frac{1}{\left(a_{i} b_{j} ; q\right)_{\infty}}
$$

Skew Schur

$$
\sum_{\substack{\lambda, \rho \in \mathcal{P} \\ \rho \subset \lambda}} q^{|\rho|} s_{\lambda / \rho}(a) s_{\lambda / \rho}(b)=\frac{1}{(q ; q)_{\infty}} \prod_{i=1}^{N} \prod_{j=1}^{N} \frac{1}{\left(a_{i} b_{j} ; q\right)_{\infty}}
$$

Our bijection gives the first bijective proof of the Cauchy identity for q-Whittaker polynomials.

Symmetrized version

Littlewood identity for Schur function ($P=Q$ in RSK)

$$
\sum_{\lambda: \lambda^{\prime} \text { is even }} s_{\lambda}(x)=\prod_{1 \leq i<j \leq n}^{n} \frac{1}{1-x_{i} x_{j}}
$$

Setting $P=Q$ in skew RSK dynamics, one can prove
Theorem: (2006 Warnaar)
with

$$
\sum_{\mu} b_{\mu}(q ; z) P_{\mu}\left(x ; q^{2}\right)=\prod_{i=1}^{n} \frac{1}{\left(z x_{i} ; q\right)_{\infty}} \prod_{1 \leq i<j \leq n} \frac{1}{\left(x_{i} x_{j} ; q^{2}\right)_{\infty}}
$$

where

$$
b_{\mu}(q ; z)=\prod_{i=2,4,6 \ldots} \frac{\left[q z^{2}+1\right]_{q^{2}}^{\mu_{i}-\mu_{i+1}}}{\left(q^{2} ; q^{2}\right)_{\mu_{i}-\mu_{i+1}}} \prod_{i=1,3,5, \ldots} \frac{z^{\mu_{i}-\mu_{i+1}}}{(q ; q)_{\mu_{i}-\mu_{i+1}}}
$$

$$
[A+B]_{p}^{k}=\sum_{j=0}^{k} A^{j} B^{k-j}\binom{k}{j}_{p}, \quad\binom{k}{j}_{p}=\frac{(p ; p)_{k}}{(p ; p)_{j}(p ; p)_{k-j}}
$$

A refined identity for the symmetrized version

Putting conditions on the length of the first rows gives an identity for restricted Littewood sums for q-Whittaker and skew Schur.

Theorem:

$$
\sum_{\ell=0}^{k} g_{\ell}(z, q) \sum_{\mu: \mu_{1}=k-\ell} b_{\mu}(q ; z) P_{\mu}\left(x ; q^{2}\right)=\sum_{\lambda, \rho: \lambda_{1}=k} z^{\operatorname{odd}\left(\lambda^{\prime}\right)+\operatorname{odd}\left(\rho^{\prime}\right)} q^{|\rho|} s_{\lambda / \rho}(x)
$$

where

$$
g_{\ell}(z, q)=\left[q z^{2}+q^{2}\right]_{q^{2}}^{\ell} /\left(q^{2} ; q^{2}\right)_{\ell}
$$

This is useful for studying KPZ models in half-space.

4. Ideas of proof

- Proving properties of skew RSK dynamics based on its rules is difficult.
- Original Robinson's algorithm, which maps a permutation to a canonical one, can be understood as an application of crystal symmetry.
- We can use (affine) crystal to study skew RSK dynamics and prove our theorem. For a canonical object, skew RSK dynamics is linearized.

Affine Crystal for VST

$\operatorname{VST}(\mu)$ is identified with $B^{\mu_{1}^{\prime}, 1} \otimes B^{\mu_{2}^{\prime}, 1} \otimes \cdots \otimes B^{\mu_{\mu_{1}}^{\prime}, 1}$, the Kirillov-Reschetikhin crystals of type $A^{(1)}$.
Kashiwara operators: $\widetilde{e}_{i}, \widetilde{f}_{i}$ with $i=1, \cdots, n-1$ and

$$
\widetilde{e}_{0}=\operatorname{pr}^{-1} \circ \widetilde{e}_{1} \circ \operatorname{pr}, \widetilde{f}_{0}=\operatorname{pr}^{-1} \circ \widetilde{f}_{1} \circ \mathrm{pr}
$$

where pr is the promotion operator.

Kashiwara operators

$i \neq 0$ on words ("signature rule")

$$
\begin{aligned}
& \pi=\quad 4232123143321241233 \\
& \text {)()) ((()) ((} \\
& \widetilde{e}_{2}(\pi)=4232123143321241223 \\
& \widetilde{f}_{2}(\pi)=4232133143321241233
\end{aligned}
$$

For tableaux, use the column reading words.
e_{0} : on a single column tableau, replace the 1 -cell with an n-cell
and reorder.

$$
\left.\begin{array}{l}
\frac{1}{3} \\
\frac{3}{4} \\
\frac{5}{4}
\end{array}\right] \xrightarrow{\widetilde{e}_{0}}\left[\begin{array}{l}
\frac{3}{4} \\
\frac{5}{5} \\
6
\end{array} .\right.
$$

On VST, use $\operatorname{pr}\left(b_{1} \otimes \cdots \otimes b_{N}\right)=\operatorname{pr}\left(b_{1}\right) \otimes \cdots \otimes \operatorname{pr}\left(b_{N}\right)$.

Example of affine crystal graph

Edge \xrightarrow{i} is \widetilde{f}_{i}. Blue arrows are 0-Demazure arrows.
Here energy is $H=\# \widetilde{f_{0}}-\# \widetilde{e}_{0}$.

Leading map for VST

Affine bicrystal structure for (V, W)

$$
\widetilde{e}_{i} \times \mathbf{1}, \quad \mathbf{1} \times \widetilde{e}_{i}, \quad \widetilde{f}_{i} \times \mathbf{1}, \quad \mathbf{1} \times \widetilde{f}_{i} .
$$

$$
(V, W) \xrightarrow{\mathcal{L}_{V} \times \mathcal{L}_{W}}(Y, Y)
$$

where

$$
\begin{aligned}
\mathcal{L}_{V} & =\widetilde{e}_{2} \circ \widetilde{e}_{3} \circ \widetilde{e}_{4} \circ \widetilde{e}_{1} \circ \widetilde{e}_{2} \circ \widetilde{e}_{3} \circ \widetilde{e}_{1} \circ \widetilde{e}_{2}, \\
\mathcal{L}_{W} & =\widetilde{e}_{3} \circ \widetilde{e}_{4} \circ \widetilde{e}_{1} \circ \widetilde{f}_{0} \circ \widetilde{f}_{4} \circ \widetilde{f}_{3} \circ \widetilde{f}_{1}^{2} \circ \widetilde{e}_{2} \circ \widetilde{e}_{1}^{3} \circ \widetilde{e}_{2}
\end{aligned}
$$

Note $H(V)=0, H(W)=1$.

Affine Crystal for (P, Q)

Affine bicrystal structure for (V, W) can be lifted to (P, Q).

$$
\begin{array}{ll}
\widetilde{E}_{0}^{(2)}=\iota_{2} \circ\left(\mathbf{1} \times \widetilde{e}_{1}\right) \circ \iota_{2}^{-1}, & \widetilde{F}_{0}^{(2)}=\iota_{2} \circ\left(\mathbf{1} \times \widetilde{f}_{1}\right) \circ \iota_{2}^{-1}, \\
\widetilde{E}_{0}^{(1)}=\iota_{1} \circ\left(\widetilde{e}_{1} \times \mathbf{1}\right) \circ \iota_{1}^{-1}, & \widetilde{F}_{0}^{(1)}=\iota_{1} \circ\left(\widetilde{f}_{1} \times \mathbf{1}\right) \circ \iota_{1}^{-1} .
\end{array}
$$

This is consistent with the projection $(P, Q) \rightarrow(V, W)$.
Theorem: Skew RSK map commute with $\widetilde{E}_{i}^{(\epsilon)}, \widetilde{F}_{i}^{(\epsilon)}$ for all $i=0,1, . ., n-1$ and $\epsilon=1,2$.

Leading map and leading tableaux

By replacing $\widetilde{e}_{i}, \widetilde{f}_{i}$ by $\widetilde{E}_{i}^{(\epsilon)}, \widetilde{F}_{i}^{(\epsilon)}, \epsilon=1,2$, one can define \mathcal{L}, which sends (P, Q) to a pair of "leading tableaux" (T, T), where whenever T has $k i$-cells at row r, then it has at least k ($i-1$)-cells at row $r-1$ for all r and $i=2,3, \ldots$.

$$
(P, Q) \xrightarrow{\mathcal{L}}(T, T)
$$

Example

Note that the change of \# empty boxs $=H(V)+H(W)$.

Finding κ

Prop. There is a bijection $\operatorname{LdT}(\mu) \longleftrightarrow \mathcal{K}(\mu) \times \mathcal{P}$

$$
\begin{aligned}
& T=\begin{array}{|l|l|lll}
\hline & & 1 & 1 \\
\hline & 1 & 1 & 1 \\
\hline & 1 & 2 & 1 \\
\hline & 3 & 3 \\
\hline & 4 & 4 \\
\hline 3 & \\
\hline
\end{array} \\
& \left(\begin{array}{llllllll}
0 & 2 & 1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots
\end{array}\right)=\left(\begin{array}{cccccccc}
0 & 1+1 & 1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots
\end{array}\right) \\
& \kappa=((1),(3),(2,1)) \quad \nu=\square
\end{aligned}
$$

This completes the construction of the bijection.
Can define $T=T(\mu, \kappa ; \nu)$.

Proof: Linearization

Map \mathcal{L} commutes with RSK map and linearizes it.

Theorem: If $T=T(\mu, \kappa ; \nu)$, then $T^{\prime}=T\left(\mu, \kappa+\mu^{\prime} ; \nu\right)$.

5. Column skew RSK

IMS+Scrimshaw 2024+

- Horizontally weak tableaux (HWT) instead of VST
- Modified Hall-Littlewood polynomials
- The standard Box-Ball system appears
- KKR(Kerov-Kirillov-Reshetikhin) bijection linearizes the cRSK dynamics
- Needed to prove a new property of a crystal

Example

...0000000200000000000 … ...0000000200000000000...
...0000220000000000000... ...0000220000000000000...
$\cdots 1130000000000000000 \cdots \cdots 1330000000000000000 \cdots$

...0000000022000000000... ...0000000022000000000...
...0000002000000000000 … ...0000002000000000000...
$\cdots 0001130000000000000 \cdots \cdots 0001330000000000000 \cdots$

...00000000002200000000000000000220000000...
$\ldots 0000000120000000000 \cdots$... $\cdot 0000000230000000000$...
$\cdots 0000001300000000000 \cdots \underset{\downarrow}{ } \cdots 0000001300000000000 \cdots$
$\cdots 0000000000002220000 \cdots \cdots 0000000000002220000 \cdots$
$\ldots 0000000001100000000 \cdots \cdots 0000000001300000000 \cdots$
$\cdots 0000000030000000000 \cdots, \cdots 0000000030000000000 \cdots$
... $0000000000000002220 \cdots . . .0000000000000002220$...
... 0000000000011000000 0000000000013000000 ...
$\ldots 0000000003000000000 \cdots . . .0000000003000000000$...
HWTs

$$
H_{1}=\begin{aligned}
& 222 \\
& 11 \\
& 3
\end{aligned} \quad H_{2}=\begin{aligned}
& 222 \\
& 13 \\
& 3 .
\end{aligned}
$$

Theorem.

Theorem. There exists a bijection:
$\bigsqcup_{\lambda, \rho} \operatorname{SST}(\lambda / \rho, m) \times \operatorname{SST}(\lambda / \rho, n) \Leftrightarrow\left(\bigsqcup_{\mu} \operatorname{HWT}(\mu, m) \times \operatorname{HWT}(\mu, n) \times \tilde{\mathcal{K}}(\mu)\right) \times \mathcal{P}$
with
$\tilde{\mathcal{K}}(\mu)=\left\{\kappa=\left(\kappa_{1}, \cdots, \kappa_{\ell(\mu)}\right) \in \mathbb{Z}_{\geq 0}^{\ell(\mu)}: \kappa_{i} \geq \kappa_{i+1}\right.$ if $\left.\mu_{i}=\mu_{i+1}\right\}$.
Furthermore for each correspondence $(P, Q) \mapsto\left(H_{1}, H_{2}, \tilde{\kappa}, \nu\right)$, let λ / ρ and μ be the shape of (P, Q) and $\left(H_{1}, H_{2}\right)$ respectively.
Then we have

$$
\begin{aligned}
& |\rho|=D\left(H_{1}\right)+D\left(H_{2}\right)+|\tilde{\kappa}|+|\nu| \\
& \ell(\lambda)=\ell(\mu)+\ell(\nu)
\end{aligned}
$$

where $D(H)$ is the energy of the HWT H.

Modified Hall-Littlewood function

The modified Hall-Littlewood polynomials are defined by

$$
H_{\mu}(x ; q)=\sum_{\lambda} K_{\lambda, \mu}(q) s_{\lambda}(x),
$$

where $K_{\lambda, \mu}(q)$ is the Kostka-Foulkes polynomial.
The Cauchy identity for $H_{\mu}(x ; q)$ is

$$
\sum_{\mu} \frac{1}{c_{\mu}(q)} H_{\mu}(x ; q) H_{\mu}(y ; q)=\prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}
$$

where $c_{\mu}(q)=\prod_{i=1}^{\mu_{1}}(q ; q)_{m_{i}}$ and $m_{i}, i=1,2, \cdots$ is defined by $\mu=1^{m_{1}} 2^{m_{2}} \cdots$. This can be proved in a bijective manner.

Restricted Cauchy sum identity

Theorem.

$$
\sum_{\substack{\mu, \nu \\ \ell(\mu)+\ell(\nu)=k}} \frac{q^{|\nu|}}{c_{\mu}(q)} H_{\mu}(x ; q) H_{\mu}(y ; q)=\sum_{\substack{\lambda, \rho \\ \ell(\lambda)=k}} q^{|\lambda / \rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)
$$

for $k=0,1,2, \cdots$.

With our column skew RSK, this identity can proved in a bijective manner. The refined identity may be proved in a few different ways

On the proof

- Basic Ideas are similar to the previous case but some differences.
- Leading map transforms tableaux to the one with only 1's, which can be identified with particle configuration on \mathbb{Z}.
- Time evolution is identical to Box and Ball system (BBS), which can be linearlized by KKR algorithm.
- Demazure crystal does not exist but one can prove some necessary properties of affine crystals related to our column skew RSK.

	00000000000000		00000000000000	
	000000000000		000000000000	
	000000000455		000000000445	
$P=$	0000000005 000000044		0000000005	, $n=5$
Example	000003		000003	
	000		000	
	002		003	
Leading tableau	0000000000	00111		
	$\mathrm{Ld}=0000000111$			
	$\mathrm{Ld}=000001$			
	001			

Corresponding BBS configuration:
001001011100111

Summary

- Stochastic vertex models are related to q-Whittaker measures, which are not free fermionic.

We have found a bijective relation to the periodic Schure measure, which is free fermionic.

- This was achieved by our skew RSK dynamics.

The proof uses the theory of (affine) crystal.

- We have introduced a column version of skew RSK dynamics.

It shows a direct connection to BBS.

Free fermion and its correlation kernel

- A free fermion is a quantum many (infinite) particle system for which each one particle state $\phi_{n}(x)\left(n \geq 1\right.$, energy $\left.\epsilon_{n}\right)$ can be either occupied or empty (Pauli principle).
- At $T=0$, for N particles, the ground state filling $n=1, \ldots, N$ is realized. The pdf of particle positions is

$$
\frac{1}{Z}\left(\operatorname{det}\left(\phi_{n}\left(x_{m}\right)\right)_{n, m=1}^{N}\right)^{2}
$$

Correlations and gap dist. are (Fredholm) deteterminants with the kernel $K(x, y)=\sum_{n=1}^{N} \phi_{n}(x) \phi_{n}(y)$.

- For $T>0$, state n is filled with prob $\frac{1}{1+e^{\beta\left(\mu-\epsilon_{n}\right)}}, \beta=\frac{1}{k_{B} T}$ (Fermi-Dirac factor). Kernel is $K(x, y)=\sum_{n=1}^{\infty} \frac{\phi_{n}(x) \phi_{n}(y)}{1+e^{\beta\left(\mu-\epsilon_{n}\right)}}$.
- Both cases are determinantal point process (DPP).

