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Plan of the talk

1. Abelian sandpile model and uniform spanning trees
2. Grassmannian algebra and fermionic Gaussian free field

3. Cumulants of observables of ASM and UST in terms of fermionic
GFF
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Example: ASM on A C Z2

Choose a site uniformly at random.

4 3 1 2
4 4 3 3
1 4 2 4




The configuration is unstable, so we topple...

4 3 1 2
4 5 3 3
1 4 2 4
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Toppling order does not matter!




Border acts as a sink.
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We obtain a unique stable configuration!

2 1 2 2
2 4 4 3
3 1 3 4
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Adding a particle produced an avalanche of size 5!

2 1 2 2
2 4 4 3
3 1 3 4

12



Introduction (Abelian sandpile model)

e G = (WU{s}, E) finite connected graph with graph Laplacian A,
wired boundary conditions

e configuration n: W — N, stable if Vv € W : n(v) < deg(v)

e dynamics: add a particle uniformly at random and topple, give each
neighbour one particle

e model can be described by a Markov chain

e unique stationary measure p, uniform on set of recurrent
configurations R for Markov chain

e Abelian group (R, ®)

e matrix tree theorem: |R| = det(—A) = |spanning trees onG]|

Questions: stationary measures, avalanche size distributions,
stabilization, odometer functions, scaling limits...?
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Connection to spanning trees: Dhar’s burning algorithm
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Grassmannian algebras and fermionic Gaussian free
field
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Grassmannian algebra and framework

e Grassmannian algebra: Q%" = R[{¢, ... ,&)a(}] the polynomial ring
generated by &1,..., 83|
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e Grassmannian algebra: Q%" = R[{¢, ... ,&)a(}] the polynomial ring
generated by &1,..., 83|

o F € Q" can be written as F = ZIC[2|/\\] a;&; where a; € R,
& =&, -...& for I ={h,...,ip}

e generators /s satisfy €2 =0 and &; - & ==& - &

e derivation:

—104_16/1'...5/&71'1' iat1 " v S If’a:
6@5/:{; ) Eivs &, J

else

e integration: [ Fd¢ :=0g,, ... 0 F
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fermionic Gaussian free field (fGFF)

Write now Q2" = R[{W,, ¥, v € A}].
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fermionic Gaussian free field (fGFF)

Write now Q2" = R[{W,, ¥, v € A}].

Definition
Let the state []a : Q2N — R, be defined by

[Fla = ] 94,0, exp((¥, —2AW))F.
veN

The fGFF is defined as the normalized state: (F)x = [F]a/[1]A
and [1]p = det(—A).

Wick's theorem: Let A be an m x m matrix with real coefficients, then

ﬁ O, 0w, exp((V, AV)) = det(A).

i=1
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o let F =W, U, then (WV\TI\,)/\ = Ga(v, v) where Gy, is the Green's
function with Dirichlet boundary conditions
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o let F =W, U, then (WV\TI\,)/\ = Ga(v, v) where Gy, is the Green's
function with Dirichlet boundary conditions

o let F=W, U, ¥, U, then

. B B Ga(v,v)  Ga(v,w)
<wvwv\UW\UW>A = det <G/\(W7 V) G/\(Wv W)>

= Ga(v, v)Ga(w, w) — G,%(v, w)

° <(wV‘I]V - <\vav>/\) (WW\TJW - <"UW‘I]W>/\)>A = _G/%(V7 W)
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Connections to DGFF

Remember the fGFF was defined as

1 —
(F)p = det A ‘g\aq,vawvexp(<\ll, —ANU))F.
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Connections to DGFF

Remember the fGFF was defined as

(F)p = m ‘g\aq,vawvexp(<\ll, —ANU))F.

The discrete GFF on A C Z9 is defined as by the density

1 A A .
pn(dg) = det(_AA)(%)dexp(@» —Ang)) gdaﬁl-
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Cumulants and correlation functions

e cumulant generating function for vector X = (X1, ..., X,)
tm

K(t) = log(E = > kn(X HJ!

meN" Jj=1
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e cumulant generating function for vector X = (X1, ..., X,)
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K(t) = log(E = >k H
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KX Xe) = 5 K1)
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K(Xiii € A) = 3 reneay (Il = DD e, E(TTiep Xi)
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Local observables

Probabilistic observables:

e height-1 field of the ASM: (h(v))vev,V C A and h(v) = 1¢,)=1}
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Local observables

Probabilistic observables:

e height-1 field of the ASM: (h(v))vev,V C A and h(v) = 1¢,)=1}
o degree field of the UST: (X(v)),ev where
X(V) deg( ) degT( ) ﬁ(v) Ze:e:(v,-) l{eeT}

Fermionic observables:

e fermionic field: X, deg(v) Zdeg VeV (v)Ve¥(v) and

Vo W(v) = V(v + &) — V(v)
e fermionic " corrector”: Y, = Hdeg( )(1 — Ve V(V)V¥(v))
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Height-1 field and UST’s

On the one hand we have that

e E(h(0))=P(f ¢ T,f # e), where e = (v, -)
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Height-1 field and UST’s

On the one hand we have that
e E(h(0))=P(f ¢ T,f # e), where e = (v, -)
e let wlog e = 1 = (1,0) then by inclusion-exclusion
Plep g Tyes ¢ Toeq ¢ T)
:IP’(el eT,e ¢ T,e3 ¢ T, ey ¢ T)

=Pl eT)-Y PleacT,ecT)+ > PleacT,gcT,geT)
i#1 i#j#1
—PleyeT,e0€T,e5€ T,e4€T)
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Height-1 field, UST’s and fGFF’s

and on the other
4 4

Yo = [ - Ve¥(0)Ve¥(0)) =[] - )
i=1 i=1
4
=1- Z aj + Z ajaj — Z ajajai + aiarazas
i=1 i#j i#j#k

and (use a? = 0)

Xo¥o = 3 3 VaW(0)Ve ¥(o) (Hu - ve,w(o)ve,ﬁv(o))>

i=1 i=1

4
- % (Z ai — Z ajaj + Z ajajak — 31323334)

i=1 i i #k
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Height-1 field, UST’s and fGFF’s

Connecting those two observations, together with (Bauerschmidt,
Crawford, Helmuth, Swan '21)

P(er € T) = (Ve W(0)Ve, ¥(0)),
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Height-1 field, UST’s and fGFF’s

Connecting those two observations, together with (Bauerschmidt,
Crawford, Helmuth, Swan '21)

P(er € T) = (Ve W(0)Ve, ¥(0)),

we obtain:
E(h(0)) = (Xo Yol -
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Results: Height-1 and degree field as fermionic observables

Theorem (2)
For some good set V C N\ we have that

1. Height-1 field of the ASM: E ([],cy h(v)) = ([T, ev Xv YV>/\
2. degree field of the UST: E (T],cy X(v)) = (IT,ev Xv)1-

25



Results: Height-1 and degree field as fermionic observables

Theorem (2)
For some good set V C N\ we have that

1. Height-1 field of the ASM: E ([],cy h(v)) = ([T, ev Xv YV>/\
2. degree field of the UST: E (T],cy X(v)) = (IT,ev Xv)1-

The height-1 field and the degree field can be expressed as squares of
local observables w.r.t. the fermionic Gaussian free field state in the
Grassmann algebra formalism!
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Ideas of the proof

Main ingredients:

1. (Bauerschmidt, Crawford, Helmuth, Swan '21)

P(SCT)= <va\u )WV eU(F~ )>

fes A
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Ideas of the proof

Main ingredients:

1. (Bauerschmidt, Crawford, Helmuth, Swan '21)

P(SCT)= <va\u )WV eU(F~ )>

fes A

2. (Caracciolo, Sokal, Sportiello '13) Wick's formula

= det(—Ap) det(Ms)
A

[H VAU (F)VU(F7)

fes

where Ms = (M(e, f))e.res and M(e, f) = VIV Gr(e, F7)
3. E(J[,cy h(v)) =P(e ¢ T for each edge incident to v)

26



Results: Cumulants of the height-1 field as a fermionic observ-

ables

Theorem (2)
For some good set V C A,

V| = n, we have that
K(X,Y,;veV)
=/ Y. KE) D sign(r) [[VIVE, G ()

E:|E,|>1,veV TESw(E) feE

where ¢, = —i for L=17% resp. ¢, = —% for L=T
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Results: Cumulants of the degree field as a fermionic observ-

ables

Theorem (3)
For some good set VV C A, |V/| = n, we have that

K(X,;v e V)
— W o
=& D, > L1 Vit Vaowy Galv, o(v))

Uescyc/(v) 7]:V_>{ely-~~7edeg(a)} veV

where ¢ = —% for L =179 resp. & = —% for L=T
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Results: Scaling limit of the cumulants of the height-1 field as

a fermionic observables

Let UCRY e>0and U. = U/eN L and v, the discrete approximation
of vin U,.

Theorem (4)
For some good set V C U,

V| = n, we have that
lim e " LKC(XEYE v € V)
e—0
n 1 2
== > > [T 950 25bwy8u(v:o(v)

0E€Seyc(V) n:V—{ei,...,€eq(0)/2} VEV

where d; = d for L =79 resp. d; =2 for L =T and explicit
formula for C;.

Special values: Czz = mP(h(0) =1) = % — % and

2 3

= (4+2) Bho)=1) 2



Results: Scaling limit of the cumulants of the degree field as a

fermionic observables

Let UCRY e>0and U. = U/eN L and v, the discrete approximation
of vin U,.

Theorem (5)
For some good set V C U, |V| = n, we have that

lim e ™UK(XE; v € V)

e—0

—_¢Cr 1) 5(2)
N _CL Z Z H 87](v)an(o(v))gu(vﬂ U(V))

0€Seyc(V) n:V—={ei,...,€eg(0)/2} VEV

where d; = d for L = Z9 resp. d; =2 for L =T and explicit
formula for C;.

. J

Special values: Cz = —% and Cp = —
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e we were able to find an explicit formula for the cumulants and its
scaling limit for the height-1 field and degree field in terms of
Grassmannian variables
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e cumulants for d = 2 already computed by Diirre '09, not linked to
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e in R? limit is conformally covariant with scale dimension 2, i.e. for
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e we were able to find an explicit formula for the cumulants and its
scaling limit for the height-1 field and degree field in terms of
Grassmannian variables

e the structure of the scaling limit is the same up to constants

e cumulants for d = 2 already computed by Diirre '09, not linked to
fGFF yet

e in R? limit is conformally covariant with scale dimension 2, i.e. for
f: U — U’ conformal isomorphism

ky(v:veV)=ky(v:vevV) H If'(v)|?
veV

e support conjecture of Ruelle that the height-1 field can be described
by a sympletic fermion theory (constants match); primary field of
Ruelle has form:

d = fg(azeazé + 0:00,0)
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Open questions and future work

e universality in the scaling limit, other graphs
e scaling limit of cumulants of higher heights and general observables

e construct a lattice symplectic fermion theory and match the
cumulants

e important work in this direction: ([Hongler, Kytdld and Viklund '23]
and [Adame-Carrillo, Behzad and Kytdla '24])

e other lattice models and lattice CFT's
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Thank you for your attention!
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