Fermionic Gaussian free field and connection to random lattice models

joint work with L. Chiarini (U Dur), A. Cipriani (UCL) and A. Rapoport (UU)

Wioletta M. Ruszel

Workshop IV: Vertex Models: Algebraic and Probabilistic Aspects of Universality - 21st May 2024

Mathematical Institute - Utrecht University - The Netherlands

Plan of the talk

- 1. Abelian sandpile model and uniform spanning trees
- 2. Grassmannian algebra and fermionic Gaussian free field
- 3. Cumulants of observables of ASM and UST in terms of fermionic $\ensuremath{\mathsf{GFF}}$

 introduced by Bak, Tang and Wiesenfeld (1987) as a toy model displaying self-organized criticality

- introduced by Bak, Tang and Wiesenfeld (1987) as a toy model displaying self-organized criticality
- SOC: model drives itself into a critical state (power laws) without fine-tuning any parameter

- introduced by Bak, Tang and Wiesenfeld (1987) as a toy model displaying self-organized criticality
- SOC: model drives itself into a critical state (power laws) without fine-tuning any parameter
- Rich model: connections to spanning trees, Abelian groups, Tutte polynomials, chip-firing game, log-conformal field theories

- introduced by Bak, Tang and Wiesenfeld (1987) as a toy model displaying self-organized criticality
- SOC: model drives itself into a critical state (power laws) without fine-tuning any parameter
- Rich model: connections to spanning trees, Abelian groups, Tutte polynomials, chip-firing game, log-conformal field theories

Many contributions: Athreya, Bak, Chiarini, Cipriani, Dhar, Dürre, Fey, Frometa, Hazra, Jara, Járai, Levine, Maes, Majumdar, Meester, Murugan, Pegden, Piroux, Poncelet, Rapoport, Peres, Redig, Ruelle, Saada, Smart, Tang, Werning, Wiesenfeld...

Example: ASM on $\Lambda \subset \mathbb{Z}^2$

Choose a site uniformly at random.

4	3	1	2
4	4	3	3
1	4	2	4
2	3	4	2

The configuration is unstable, so we topple...

4	3	1	2
4	5	3	3
1	4	2	4
2	3	4	2

4

4	4	1	2
5	1	4	3
1	5	2	4
2	3	4	2

4	4	1	2
5	1	4	3
1	5	2	4
2	3	4	2

Toppling order does not matter!

Border acts as a sink.

7

1	5	1	2
2	2	4	3
2	5	2	4
2	3	4	2

2	1	2	2
2	3	4	3
2	5	2	4
2	3	4	2

2	1	2	2
2	4	4	3
3	1	3	4
2	4	4	2

We obtain a unique stable configuration!

2	4	4	2
3	1	3	4
2	4	4	3
2	1	2	2

Adding a particle produced an avalanche of size 5!

2	1	2	2
2	4	4	3
3	1	3	4
2	4	4	2

- $G = (W \cup \{s\}, E)$ finite connected graph with graph Laplacian Δ , wired boundary conditions
- configuration $\eta: W \to \mathbb{N}$, stable if $\forall v \in W: \eta(v) \leq \deg(v)$
- dynamics: add a particle uniformly at random and topple, give each neighbour one particle
- model can be described by a Markov chain
- unique stationary measure μ , uniform on set of recurrent configurations $\mathcal R$ for Markov chain
- Abelian group (\mathcal{R}, \oplus)
- matrix tree theorem: $|\mathcal{R}| = \det(-\Delta) = |\mathsf{spanning}|$ trees on G|

Questions: stationary measures, avalanche size distributions, stabilization, odometer functions, scaling limits...?

Connection to spanning trees: Dhar's burning algorithm

Grassmannian algebras and fermionic Gaussian free field

• Grassmannian algebra: $\Omega^{2\Lambda} = \mathbb{R}[\{\xi_1, \dots, \xi_{2|\Lambda|}\}]$ the polynomial ring generated by $\xi_1, \dots, \xi_{2|\Lambda|}$

- Grassmannian algebra: $\Omega^{2\Lambda} = \mathbb{R}[\{\xi_1, \dots, \xi_{2|\Lambda|}\}]$ the polynomial ring generated by $\xi_1, \dots, \xi_{2|\Lambda|}$
- $F \in \Omega^{2\Lambda}$ can be written as $F = \sum_{I \subset [2|\Lambda|]} a_I \xi_I$ where $a_I \in \mathbb{R}$, $\xi_I = \xi_{i_1} \cdot \ldots \cdot \xi_{i_p}$ for $I = \{i_1, \ldots, i_p\}$

- Grassmannian algebra: $\Omega^{2\Lambda} = \mathbb{R}[\{\xi_1, \dots, \xi_{2|\Lambda|}\}]$ the polynomial ring generated by $\xi_1, \dots, \xi_{2|\Lambda|}$
- $F \in \Omega^{2\Lambda}$ can be written as $F = \sum_{I \subset [2|\Lambda|]} a_I \xi_I$ where $a_I \in \mathbb{R}$, $\xi_I = \xi_{i_1} \cdot \ldots \cdot \xi_{i_p}$ for $I = \{i_1, \ldots, i_p\}$
- generators $\xi_i's$ satisfy $\xi_i^2=0$ and $\xi_i\cdot\xi_j=-\xi_j\cdot\xi_i$

- Grassmannian algebra: $\Omega^{2\Lambda} = \mathbb{R}[\{\xi_1, \dots, \xi_{2|\Lambda|}\}]$ the polynomial ring generated by $\xi_1, \dots, \xi_{2|\Lambda|}$
- $F \in \Omega^{2\Lambda}$ can be written as $F = \sum_{I \subset [2|\Lambda|]} a_I \xi_I$ where $a_I \in \mathbb{R}$, $\xi_I = \xi_{i_1} \cdot \ldots \cdot \xi_{i_p}$ for $I = \{i_1, \ldots, i_p\}$
- generators $\xi_i's$ satisfy $\xi_i^2=0$ and $\xi_i\cdot\xi_j=-\xi_j\cdot\xi_i$
- derivation:

$$\partial_{\xi_j} \xi_I = \begin{cases} (-1)^{\alpha - 1} \xi_{i_1} \cdot \dots \cdot \xi_{i_{\alpha - 1}} \cdot 1 \cdot \xi_{i_{\alpha + 1}} \cdot \dots \cdot \xi_{i_p} & \text{if } i_{\alpha} = j \\ 0 & \text{else} \end{cases}$$

- Grassmannian algebra: $\Omega^{2\Lambda} = \mathbb{R}[\{\xi_1, \dots, \xi_{2|\Lambda|}\}]$ the polynomial ring generated by $\xi_1, \dots, \xi_{2|\Lambda|}$
- $F \in \Omega^{2\Lambda}$ can be written as $F = \sum_{I \subset [2|\Lambda|]} a_I \xi_I$ where $a_I \in \mathbb{R}$, $\xi_I = \xi_{i_1} \cdot \ldots \cdot \xi_{i_p}$ for $I = \{i_1, \ldots, i_p\}$
- generators $\xi_i's$ satisfy $\xi_i^2=0$ and $\xi_i\cdot\xi_j=-\xi_j\cdot\xi_i$
- derivation:

$$\partial_{\xi_j} \xi_I = \begin{cases} (-1)^{\alpha - 1} \xi_{i_1} \cdot \dots \cdot \xi_{i_{\alpha - 1}} \cdot 1 \cdot \xi_{i_{\alpha + 1}} \cdot \dots \cdot \xi_{i_p} & \text{if } i_{\alpha} = j \\ 0 & \text{else} \end{cases}$$

• integration: $\int Fd\xi := \partial_{\xi_{2|\Lambda|}} \dots \partial_{\xi_1} F$

fermionic Gaussian free field (fGFF)

Write now $\Omega^{2\Lambda}=\mathbb{R}[\{\Psi_{\nu}, \bar{\Psi}_{\nu}; \nu\in\Lambda\}].$

fermionic Gaussian free field (fGFF)

Write now $\Omega^{2\Lambda} = \mathbb{R}[\{\Psi_{\nu}, \bar{\Psi}_{\nu}; \nu \in \Lambda\}].$

Definition

Let the state $[\cdot]_{\Lambda}: \Omega^{2|\Lambda|} \to \mathbb{R}$, be defined by

$$[F]_{\Lambda} = \prod_{\nu \in \Lambda} \partial_{\bar{\Psi}_{\nu}} \partial_{\Psi_{\nu}} \exp(\langle \Psi, -\Delta_{\Lambda} \bar{\Psi} \rangle) F.$$

The fGFF is defined as the normalized state: $\langle F \rangle_{\Lambda} = [F]_{\Lambda}/[1]_{\Lambda}$ and $[1]_{\Lambda} = \det(-\Delta)$.

fermionic Gaussian free field (fGFF)

Write now $\Omega^{2\Lambda} = \mathbb{R}[\{\Psi_{\nu}, \bar{\Psi}_{\nu}; \nu \in \Lambda\}].$

Definition

Let the state $[\cdot]_{\Lambda}: \Omega^{2|\Lambda|} \to \mathbb{R}$, be defined by

$$[F]_{\Lambda} = \prod_{\nu \in \Lambda} \partial_{\bar{\Psi}_{\nu}} \partial_{\Psi_{\nu}} \exp(\langle \Psi, -\Delta_{\Lambda} \bar{\Psi} \rangle) F.$$

The fGFF is defined as the normalized state: $\langle F \rangle_{\Lambda} = [F]_{\Lambda}/[1]_{\Lambda}$ and $[1]_{\Lambda} = \det(-\Delta)$.

Wick's theorem: Let A be an $m \times m$ matrix with real coefficients, then

$$\prod_{i=1}^m \partial_{ar{\Psi}_i} \partial_{\Psi_i} \exp(\langle \Psi, A ar{\Psi} \rangle) = \det(A).$$

• let $F = \Psi_{\nu}\bar{\Psi}_{\nu}$ then $\langle \Psi_{\nu}\bar{\Psi}_{\nu}\rangle_{\Lambda} = G_{\Lambda}(\nu,\nu)$ where G_{Λ} is the Green's function with Dirichlet boundary conditions

- let $F = \Psi_{\nu}\bar{\Psi}_{\nu}$ then $\langle \Psi_{\nu}\bar{\Psi}_{\nu}\rangle_{\Lambda} = G_{\Lambda}(\nu,\nu)$ where G_{Λ} is the Green's function with Dirichlet boundary conditions
- let $F = \Psi_{\nu} \bar{\Psi}_{\nu} \Psi_{w} \bar{\Psi}_{w}$ then

- let $F = \Psi_{\nu}\bar{\Psi}_{\nu}$ then $\langle \Psi_{\nu}\bar{\Psi}_{\nu}\rangle_{\Lambda} = G_{\Lambda}(\nu,\nu)$ where G_{Λ} is the Green's function with Dirichlet boundary conditions
- let $F = \Psi_v \bar{\Psi}_v \Psi_w \bar{\Psi}_w$ then

$$\langle \Psi_{\nu} \bar{\Psi}_{\nu} \Psi_{w} \bar{\Psi}_{w} \rangle_{\Lambda} = \det \begin{pmatrix} G_{\Lambda}(\nu, \nu) & G_{\Lambda}(\nu, w) \\ G_{\Lambda}(w, \nu) & G_{\Lambda}(w, w) \end{pmatrix}$$

= $G_{\Lambda}(\nu, \nu) G_{\Lambda}(w, w) - G_{\Lambda}^{2}(\nu, w)$

- let $F = \Psi_{\nu}\bar{\Psi}_{\nu}$ then $\langle \Psi_{\nu}\bar{\Psi}_{\nu}\rangle_{\Lambda} = G_{\Lambda}(\nu,\nu)$ where G_{Λ} is the Green's function with Dirichlet boundary conditions
- let $F = \Psi_{\nu} \bar{\Psi}_{\nu} \Psi_{w} \bar{\Psi}_{w}$ then

$$\langle \Psi_{\nu} \bar{\Psi}_{\nu} \Psi_{w} \bar{\Psi}_{w} \rangle_{\Lambda} = \det \begin{pmatrix} G_{\Lambda}(\nu, \nu) & G_{\Lambda}(\nu, w) \\ G_{\Lambda}(w, \nu) & G_{\Lambda}(w, w) \end{pmatrix}$$

= $G_{\Lambda}(\nu, \nu) G_{\Lambda}(w, w) - G_{\Lambda}^{2}(\nu, w)$

$$\bullet \ \langle \left(\Psi_{\nu}\bar{\Psi}_{\nu}-\langle\Psi_{\nu}\bar{\Psi}_{\nu}\rangle_{\Lambda}\right)\left(\Psi_{w}\bar{\Psi}_{w}-\langle\Psi_{w}\bar{\Psi}_{w}\rangle_{\Lambda}\right)\rangle_{\Lambda}=-G_{\Lambda}^{2}(\nu,w)$$

Connections to DGFF

Remember the fGFF was defined as

$$\langle F \rangle_{\Lambda} = \frac{1}{\det(-\Delta_{\Lambda})} \prod_{\nu \in \Lambda} \partial_{\bar{\Psi}_{\nu}} \partial_{\Psi_{\nu}} \exp(\langle \Psi, -\Delta_{\Lambda} \bar{\Psi} \rangle) F.$$

Connections to DGFF

Remember the fGFF was defined as

$$\langle F \rangle_{\Lambda} = \frac{1}{\det(-\Delta_{\Lambda})} \prod_{\nu \in \Lambda} \partial_{\bar{\Psi}_{\nu}} \partial_{\Psi_{\nu}} \exp(\langle \Psi, -\Delta_{\Lambda} \bar{\Psi} \rangle) F.$$

The discrete GFF on $\Lambda \subset \mathbb{Z}^d$ is defined as by the density

$$\mu_{\Lambda}(d\phi) = \frac{1}{\sqrt{\det(-\Delta_{\Lambda})(2\pi)^{d}}} \exp(\langle \phi, -\Delta_{\Lambda} \phi \rangle) \prod_{i \in \Lambda} d\phi_{i}.$$

Cumulants and correlation functions

• cumulant generating function for vector $\mathbf{X} = (X_1, \dots, X_n)$

$$\mathcal{K}(\mathbf{t}) = \log(\mathbb{E}(e^{\mathbf{t}\mathbf{X}})) = \sum_{m \in \mathbb{N}^n} k_m(\mathbf{X}) \prod_{j=1}^n \frac{t_j^m}{m_j!}$$

Cumulants and correlation functions

• cumulant generating function for vector $\mathbf{X} = (X_1, \dots, X_n)$

$$\mathcal{K}(\mathbf{t}) = \log(\mathbb{E}(e^{\mathbf{t}\mathbf{X}})) = \sum_{m \in \mathbb{N}^n} k_m(\mathbf{X}) \prod_{j=1}^n \frac{t_j^m}{m_j!}$$

• joint cumulant of X_1, \ldots, X_n :

$$\mathcal{K}(X_1,\ldots,X_n)=\frac{\partial^n}{\partial t_1\ldots\partial t_n}\mathcal{K}(\mathbf{t})|_{t_1=\ldots=t_n=0}$$

taking $m = (1, \ldots, 1)$

Cumulants and correlation functions

• cumulant generating function for vector $\mathbf{X} = (X_1, \dots, X_n)$

$$\mathcal{K}(\mathbf{t}) = \log(\mathbb{E}(e^{\mathbf{t}\mathbf{X}})) = \sum_{m \in \mathbb{N}^n} k_m(\mathbf{X}) \prod_{j=1}^n \frac{t_j^m}{m_j!}$$

• joint cumulant of X_1, \ldots, X_n :

$$\mathcal{K}(X_1,\ldots,X_n)=\frac{\partial^n}{\partial t_1\ldots\partial t_n}\mathcal{K}(\mathbf{t})|_{t_1=\ldots=t_n=0}$$

taking $m = (1, \ldots, 1)$

• Example: $\mathcal{K}(X_i, X_j) = Cov(X_i, X_j)$

Cumulants and correlation functions

• cumulant generating function for vector $\mathbf{X} = (X_1, \dots, X_n)$

$$\mathcal{K}(\mathbf{t}) = \log(\mathbb{E}(e^{\mathbf{t}\mathbf{X}})) = \sum_{m \in \mathbb{N}^n} k_m(\mathbf{X}) \prod_{j=1}^n \frac{t_j^m}{m_j!}$$

• joint cumulant of X_1, \ldots, X_n :

$$\mathcal{K}(X_1,\ldots,X_n)=\frac{\partial^n}{\partial t_1\ldots\partial t_n}\mathcal{K}(\mathbf{t})|_{t_1=\ldots=t_n=0}$$

taking $m = (1, \ldots, 1)$

- Example: $\mathcal{K}(X_i, X_j) = Cov(X_i, X_j)$
- $\mathcal{K}(X_i; i \in A) = \sum_{\pi \in \Pi(A)} (|\pi| 1)! (-1)^{|\pi| 1} \prod_{B \in \pi} \mathbb{E}(\prod_{i \in B} X_i)$

Probabilistic observables:

• height-1 field of the ASM: $(h(v))_{v \in V}, V \subset \Lambda$ and $h(v) = 1_{\{\eta(v)=1\}}$

Probabilistic observables:

- height-1 field of the ASM: $(h(v))_{v \in V}, V \subset \Lambda$ and $h(v) = 1_{\{\eta(v)=1\}}$
- degree field of the UST: $(\mathcal{X}(v))_{v \in V}$ where $\mathcal{X}(v) = \frac{1}{\deg(v)} \deg_T(v) = \frac{1}{\deg(v)} \sum_{e: e = (v, \cdot)} 1_{\{e \in T\}}$

Probabilistic observables:

- height-1 field of the ASM: $(h(v))_{v \in V}, V \subset \Lambda$ and $h(v) = 1_{\{\eta(v)=1\}}$
- degree field of the UST: $(\mathcal{X}(v))_{v \in V}$ where $\mathcal{X}(v) = \frac{1}{\deg(v)} \deg_T(v) = \frac{1}{\deg(v)} \sum_{e: e = (v, \cdot)} 1_{\{e \in T\}}$

Fermionic observables:

• fermionic field: $X_{\nu} = \frac{1}{\deg(\nu)} \sum_{i=1}^{\deg(\nu)} \nabla_{e_i} \Psi(\nu) \nabla_{e_i} \bar{\Psi}(\nu)$ and

$$\nabla_{e_i} \Psi(v) = \Psi(v + e_i) - \Psi(v)$$

Probabilistic observables:

- height-1 field of the ASM: $(h(v))_{v \in V}, V \subset \Lambda$ and $h(v) = 1_{\{\eta(v)=1\}}$
- degree field of the UST: $(\mathcal{X}(v))_{v \in V}$ where $\mathcal{X}(v) = \frac{1}{\deg(v)} \deg_T(v) = \frac{1}{\deg(v)} \sum_{e: e = (v, \cdot)} 1_{\{e \in T\}}$

Fermionic observables:

• fermionic field: $X_{\nu} = \frac{1}{\deg(\nu)} \sum_{i=1}^{\deg(\nu)} \nabla_{e_i} \Psi(\nu) \nabla_{e_i} \bar{\Psi}(\nu)$ and

$$abla_{e_i}\Psi(v)=\Psi(v+e_i)-\Psi(v)$$

• fermionic "corrector": $Y_{\nu} = \prod_{i=1}^{\deg(\nu)} (1 - \nabla_{e_i} \Psi(\nu) \nabla_{e_i} \bar{\Psi}(\nu))$

Height-1 field and UST's

On the one hand we have that

•
$$\mathbb{E}(h(o)) = \mathbb{P}(f \notin T, f \neq e)$$
, where $e = (v, \cdot)$

Height-1 field and UST's

On the one hand we have that

- $\mathbb{E}(h(o)) = \mathbb{P}(f \notin T, f \neq e)$, where $e = (v, \cdot)$
- let wlog $e = e_1 = (1,0)$ then by inclusion-exclusion

$$\begin{split} &\mathbb{P}(e_2 \notin \mathcal{T}, e_3 \notin \mathcal{T}, e_4 \notin \mathcal{T}) \\ &= \mathbb{P}(e_1 \in \mathcal{T}, e_2 \notin \mathcal{T}, e_3 \notin \mathcal{T}, e_4 \notin \mathcal{T}) \\ &= \mathbb{P}(e_1 \in \mathcal{T}) - \sum_{i \neq 1} \mathbb{P}(e_1 \in \mathcal{T}, e_i \in \mathcal{T}) + \sum_{i \neq j \neq 1} \mathbb{P}(e_1 \in \mathcal{T}, e_i \in \mathcal{T}, e_j \in \mathcal{T}) \\ &- \mathbb{P}(e_1 \in \mathcal{T}, e_2 \in \mathcal{T}, e_3 \in \mathcal{T}, e_4 \in \mathcal{T}) \end{split}$$

Height-1 field, UST's and fGFF's

and on the other

$$Y_o = \prod_{i=1}^4 (1 - \nabla_{e_i} \Psi(o) \nabla_{e_i} \bar{\Psi}(o)) = \prod_{i=1}^4 (1 - a_i)$$

$$= 1 - \sum_{i=1}^4 a_i + \sum_{i \neq j} a_i a_j - \sum_{i \neq j \neq k} a_i a_j a_k + a_1 a_2 a_3 a_4$$

and (use $a_i^2 = 0$)

$$X_{o}Y_{o} = \frac{1}{4} \sum_{i=1}^{4} \nabla_{e_{i}} \Psi(o) \nabla_{e_{i}} \bar{\Psi}(o) \cdot \left(\prod_{i=1}^{4} (1 - \nabla_{e_{i}} \Psi(o) \nabla_{e_{i}} \bar{\Psi}(o)) \right)$$

$$= \frac{1}{4} \left(\sum_{i=1}^{4} a_{i} - \sum_{i \neq j} a_{i} a_{j} + \sum_{i \neq j \neq k} a_{i} a_{j} a_{k} - a_{1} a_{2} a_{3} a_{4} \right)$$

Height-1 field, UST's and fGFF's

Connecting those two observations, together with (Bauerschmidt, Crawford, Helmuth, Swan '21)

$$\mathbb{P}(e_1 \in \mathcal{T}) = \left\langle
abla_{e_1} \Psi(o)
abla_{e_1} ar{\Psi}(o)
ight
angle_{\Lambda}$$

Height-1 field, UST's and fGFF's

Connecting those two observations, together with (Bauerschmidt, Crawford, Helmuth, Swan '21)

$$\mathbb{P}(e_1 \in \mathcal{T}) = \left\langle
abla_{e_1} \Psi(o)
abla_{e_1} ar{\Psi}(o)
ight
angle_{\Lambda}$$

we obtain:

$$\mathbb{E}(h(o)) = \langle X_o Y_o \rangle_{\Lambda}.$$

Results: Height-1 and degree field as fermionic observables

Theorem (2)

For some good set $V \subset \Lambda$ we have that

- 1. Height-1 field of the ASM: $\mathbb{E}\left(\prod_{v \in V} h(v)\right) = \left\langle\prod_{v \in V} X_v Y_v\right\rangle_{\Lambda}$ 2. degree field of the UST: $\mathbb{E}\left(\prod_{v \in V} \mathcal{X}(v)\right) = \left\langle\prod_{v \in V} X_v\right\rangle_{\Lambda}$.

Results: Height-1 and degree field as fermionic observables

Theorem (2)

For some good set $V \subset \Lambda$ we have that

- 1. Height-1 field of the ASM: $\mathbb{E}\left(\prod_{v \in V} h(v)\right) = \left\langle\prod_{v \in V} X_v Y_v\right\rangle_{\Lambda}$ 2. degree field of the UST: $\mathbb{E}\left(\prod_{v \in V} \mathcal{X}(v)\right) = \left\langle\prod_{v \in V} X_v\right\rangle_{\Lambda}$.

The height-1 field and the degree field can be expressed as squares of local observables w.r.t. the fermionic Gaussian free field state in the Grassmann algebra formalism!

Ideas of the proof

Main ingredients:

1. (Bauerschmidt, Crawford, Helmuth, Swan '21)

$$\mathbb{P}(S \subset T) = \left\langle \prod_{f \in S} \nabla_f \Psi(f^-) \nabla_f \bar{\Psi}(f^-) \right\rangle_{\Lambda}$$

Ideas of the proof

Main ingredients:

1. (Bauerschmidt, Crawford, Helmuth, Swan '21)

$$\mathbb{P}(S \subset T) = \left\langle \prod_{f \in S} \nabla_f \Psi(f^-) \nabla_f \bar{\Psi}(f^-) \right\rangle_{\Lambda}$$

2. (Caracciolo, Sokal, Sportiello '13) Wick's formula

$$\left[\prod_{f\in S} \nabla_f \Psi(f^-) \nabla_f \bar{\Psi}(f^-)\right]_{\Lambda} = \det(-\Delta_{\Lambda}) \det(M_S)$$

where
$$M_S = (M(e, f))_{e, f \in S}$$
 and $M(e, f) = \nabla_e^{(1)} \nabla_f^{(2)} G_{\Lambda}(e^-, f^-)$

Ideas of the proof

Main ingredients:

1. (Bauerschmidt, Crawford, Helmuth, Swan '21)

$$\mathbb{P}(S \subset T) = \left\langle \prod_{f \in S} \nabla_f \Psi(f^-) \nabla_f \bar{\Psi}(f^-) \right\rangle_{\Lambda}$$

2. (Caracciolo, Sokal, Sportiello '13) Wick's formula

$$\left[\prod_{f\in S} \nabla_f \Psi(f^-) \nabla_f \bar{\Psi}(f^-)\right]_{\Lambda} = \det(-\Delta_{\Lambda}) \det(M_S)$$

where
$$M_S = (M(e, f))_{e, f \in S}$$
 and $M(e, f) = \nabla_e^{(1)} \nabla_f^{(2)} G_{\Lambda}(e^-, f^-)$

3. $\mathbb{E}(\prod_{v \in V} h(v)) = \mathbb{P}(e \notin T \text{ for each edge incident to } v)$

Results: Cumulants of the height-1 field as a fermionic observables

Theorem (2)

For some good set $V \subset \Lambda$, |V| = n, we have that

$$\begin{split} &\mathcal{K}\big(X_{v}Y_{v};v\in V\big)\\ &=c_{L}^{n}\sum_{E:|E_{v}|\geq 1,v\in V}\mathcal{K}(E)\sum_{\tau\in S_{co}(E)}sign(\tau)\prod_{f\in E}\nabla_{f}^{(1)}\nabla_{\tau(f)}^{(2)}G_{\Lambda}(f^{-},\tau(f)^{-}) \end{split}$$

where
$$c_L=-rac{1}{2d}$$
 for $L=\mathbb{Z}^d$ resp. $c_L=-rac{1}{6}$ for $L=\mathbb{T}$

Results: Cumulants of the degree field as a fermionic observables

Theorem (3)

For some good set $V \subset \Lambda$, |V| = n, we have that

$$\begin{split} \mathcal{K}\big(X_{v}; v \in V\big) \\ &= -\tilde{c}_{L}^{n} \sum_{\sigma \in \mathcal{S}_{cycl}(V)} \sum_{\eta: V \to \{e_{1}, \dots, e_{\mathsf{deg}(o)}\}} \prod_{v \in V} \nabla_{\eta(v)}^{(1)} \nabla_{\eta(\sigma(v))}^{(2)} \mathcal{G}_{\Lambda}(v, \sigma(v)) \end{split}$$

where
$$\tilde{c}_L = -\frac{1}{2d}$$
 for $L = \mathbb{Z}^d$ resp. $\tilde{c}_L = -\frac{1}{6}$ for $L = \mathbb{T}$

Results: Scaling limit of the cumulants of the height-1 field as a fermionic observables

Let $U \subset \mathbb{R}^d$, $\epsilon > 0$ and $U_{\epsilon} = U/\epsilon \cap L$ and v_{ϵ} the discrete approximation of v in U_{ϵ} .

Theorem (4)

For some good set $V \subset U$, |V| = n, we have that

$$\lim_{\epsilon \to 0} \epsilon^{-n \cdot d_{L}} \mathcal{K}(X_{v}^{\epsilon} Y_{v}^{\epsilon}; v \in V) \\
= -C_{L}^{n} \sum_{\sigma \in S_{cycl}(V)} \sum_{\eta: V \to \{e_{1}, \dots, e_{deg(o)}/2\}} \prod_{v \in V} \partial_{\eta(v)}^{(1)} \partial_{\eta(\sigma(v))}^{(2)} g_{U}(v, \sigma(v))$$

where $d_L = d$ for $L = \mathbb{Z}^d$ resp. $d_L = 2$ for $L = \mathbb{T}$ and explicit formula for C_L .

Special values:
$$C_{\mathbb{Z}^2}=\pi \mathbb{P}(h(o)=1)=\frac{2}{\pi^2}-\frac{4}{\pi^3}$$
 and $C_{\mathbb{T}}=\left(\frac{1}{18}+\frac{1}{\sqrt{3}\pi}\right)^{-1}\mathbb{P}(h(o)=1)$

Results: Scaling limit of the cumulants of the degree field as a fermionic observables

Let $U\subset\mathbb{R}^d$, $\epsilon>0$ and $U_\epsilon=U/\epsilon\cap L$ and v_ϵ the discrete approximation of v in U_ϵ .

Theorem (5)

For some good set $V \subset U$, |V| = n, we have that

$$\begin{split} &\lim_{\epsilon \to 0} \epsilon^{-n \cdot d_L} \mathcal{K} \big(X_{v}^{\epsilon}; v \in V \big) \\ &= - \tilde{C}_L^n \sum_{\sigma \in S_{\text{cycl}}(V)} \sum_{\eta : V \to \{e_1, \dots, e_{\text{deg}(o)}/2\}} \prod_{v \in V} \partial_{\eta(v)}^{(1)} \partial_{\eta(\sigma(v))}^{(2)} g_U(v, \sigma(v)) \end{split}$$

where $d_L = d$ for $L = \mathbb{Z}^d$ resp. $d_L = 2$ for $L = \mathbb{T}$ and explicit formula for \tilde{C}_L .

Special values: $ilde{\mathcal{C}}_{\mathbb{Z}^2} = -rac{1}{d}$ and $ilde{\mathcal{C}}_{\mathbb{T}} = -rac{1}{2}$

 we were able to find an explicit formula for the cumulants and its scaling limit for the height-1 field and degree field in terms of Grassmannian variables

- we were able to find an explicit formula for the cumulants and its scaling limit for the height-1 field and degree field in terms of Grassmannian variables
- the structure of the scaling limit is the same up to constants

- we were able to find an explicit formula for the cumulants and its scaling limit for the height-1 field and degree field in terms of Grassmannian variables
- the structure of the scaling limit is the same up to constants
- cumulants for d=2 already computed by Dürre '09, not linked to fGFF yet
- in \mathbb{R}^2 limit is conformally covariant with scale dimension 2, i.e. for $f:U\to U'$ conformal isomorphism

$$k_U(v:v\in V) = k_{U'}(v:v\in V)\prod_{v\in V} |f'(v)|^2$$

- we were able to find an explicit formula for the cumulants and its scaling limit for the height-1 field and degree field in terms of Grassmannian variables
- the structure of the scaling limit is the same up to constants
- cumulants for d=2 already computed by Dürre '09, not linked to fGFF yet
- in \mathbb{R}^2 limit is conformally covariant with scale dimension 2, i.e. for $f:U\to U'$ conformal isomorphism

$$k_U(v:v\in V) = k_{U'}(v:v\in V)\prod_{v\in V} |f'(v)|^2$$

 support conjecture of Ruelle that the height-1 field can be described by a sympletic fermion theory (constants match); primary field of Ruelle has form:

$$\Phi = -\frac{C}{2} (\partial_z \theta \partial_{\bar{z}} \bar{\theta} + \partial_{\bar{z}} \bar{\theta} \partial_z \theta)$$

Open questions and future work

- universality in the scaling limit, other graphs
- scaling limit of cumulants of higher heights and general observables
- construct a lattice symplectic fermion theory and match the cumulants
- important work in this direction: ([Hongler, Kytölä and Viklund '23] and [Adame-Carrillo, Behzad and Kytölä '24])
- other lattice models and lattice CFT's

References

- L. Chiarini, A. Cipriani, W.M.R., A. Rapoport, Fermionic Gaussian free field structure in the Abelian sandpile model and uniform spanning tree, arxiv:2309.08349, 2023
- M. Dürre, Conformal covariance of the Abelian sandpile height one field,
 Stoch. Proc. Appl. Volume 119, Issue 9, 2009
- R. Bauerschmidt, N. Crawford, T. Helmuth, and A. Swan, Random Spanning Forests and Hyperbolic Symmetry, Commun. Math. Phys., 381(3):1223–1261, 2021
- S. Caracciolo, A. D. Sokal, and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians, Adv. Appl. Math., 50(4):474–594, Apr. 2013
- C. Hongler, K. Kytölä, F. Viklund, Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure, Commun. Math. Phys. 395, 1-58, 2022
- D.Adame-Carrillo, D. Behzad, K. Kytölä, Fock space of local fields of the discrete GFF and its scaling limit bosonic CFT, arxiv: 2404.15490, 2024

Thank you for your attention!