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Trace boundary conditions:
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We consider inhomogeneous partition functions: the u parameter is replaced with U ;= x,-/y/, with (i, j) being the
position of the vertex.
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Conic partition function

Goal. Compute the grand canonical partition function on the cone:

o0

Tw|x2) = Y vWIy(x:2)

N=0

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

= i Z o PEHN) — (T p)

N=0 states

[1]

Our problem involves an interacting system but Yang—Baxter integrable. We find a shuffle-exponential expression for T(v | x; z).

Theorem [AG, A Gunna "23]:

k

i A
T(v|x;z) = exps« —Z? Zl+-"+Zn+7Zo Li(x;...x;)

1
k>0

whereexp:A=14+A+1/21A*A+ 1/31A*A* A + --- and Li(x;...x;) is another “small” conic partition function (with two
types of paths) which has and explicit expression as a rational function in x;.
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Consider the vector space of symmetric rational functions: V= @ Q(g, 1)(x;.. .xk)cc"
k20

Multiplication of two elements F, G € V:

@ = @)y — 7'x)
FO ) * Gl = Y o F.x)Ggx) [ = il
OES 1/ SiXS) i€l .k (xj —x)(x; —qr7'x)

JEk+1..k+1

The shuffle algebra & is the subspace in V of elements of the form:

p(xy...x)

P(x,...x;) =
1 k ngi;&jsk(xi - qt—lxj)

pC.x gt .. ) =p(..x,qt7 %, gx..) =0

The commutative shuffle algebra is a subspace &/° C &/ such that:
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Let (p, p’, p") be a permutation of (g, 1, tq‘l).

Another example of elements of &/° is given by determinants:

[Izergin]

A third type of elements given by a symmetrization formula:
[Negut]
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(o — Px,')(x,' - p71¥;)

The simplest elements of &f° are the factorized elements: Ex;p) == H - - P=4q g
[Feigin—Odesski] 1iciee i~ @I — 197 1x)
Let (p, p', p") be a permutation of (g, ™!, tg™"). X
Another example of elements of &/° is given by determinants: H(x;p) :=f(x) det ————— (@) is composed of simple factors
[Izergin] 1<ijj<k (X; — p'xj)(xj —-p'x) which fix the poles s.t.: H, € o/°

- - o RO (5 - gx)05 — 171
A third type of elements given by a symmetrization formula: S(x) == ¢ (g, 0 Z c — k —
[Negut] ves, H}’_‘;l‘ (1 _ qt‘lx/+l/x/) \Sidk (5 = x)(x; — gt71x;)

Lemma: The generating functions of Ei(x; p), H,(x; p) are equal to shuffle-exponentials:

00 -1 r+1 00 1 where: . .
EWv|p) = Z v"'Ek(x;p) = expx < Z ( r) d,.v’S,.(x)), Hv|p) = Z kak(x;p) = expx < Z 7d,v’S,(x)> d, = 1=p =gy

1—qgr (1 —p)
k=0 >0 k=0 >0 a(1=p
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Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
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0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =
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Lemma: T)(x) = T)(x;...xy) € &°
Remove empty vertex
0 0 0 0
PR, o g
Proof: 0 o™
1) T(x;...xy) is a symmetric function in x’s. 0 = 0%
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Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
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A, loops of colour 1

Ty(i2) = ) 2T,
>

A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.
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Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
A

A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.
0 0 0

N n|a'y
2) Wheel conditions. Set (x;, X,, x3) = (gt %, x, %) lirzr},l yliIquA 01 =g —g0) %X o “’;‘J—J—*— =0
.vl_hq X Z_' ¢




Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
A, loops of colour 1

Ty(x2) = ) 2Ty
>
A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

2) Wheel conditions. Set (x|, Xy, X3) = (qt_lx, x,t %)




Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials = zé"zf'---zj”:

Ty(x;2) = Z ziTl(x)
A

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

2) Wheel conditions. Set (x|, Xy, X3) = (qt_lx, x,t %)

3) Proof of lim T(e*!xy, ..., ¥lx, X, |, ..., Xy) = k < o0 is similar in spirit.

e—0

T),(x) is the partition function with fixed
loop content:
Ay loops of colour 1

A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
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Computing 7,
Consider the case of paths of single colour (six vertex case n = 1)

Tyxi202) = ). 2y o Zg @ Wyl gx) | a)
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Consider the case of paths of single colour (six vertex case n = 1)

Ti(x; 29, 21) i= 2 Zg, "

ae{0...1}V

Zg | Wy(x; qx) | @)

Wy y)

=Y la)pl ¢ -

N

ap 0
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ay
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Computing 7,

0
Consider the case of paths of single colour (six vertex case n = 1) o
0
Tyxi202) = ). 2y o Zg @ Wyl gx) | a) Wyxiy) = 3 la)(pl + -
aef0...1)V ap 0~

X
Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
WN(x; VP, = WN(...le,x,-...;y)

W, x;y) = F, Wy VFa (x satisfies: — —
N( )’) N(y) N( )’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.
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0

Consider the case of paths of single colour (six vertex case n = 1) o
03
Tyxi202) = ). 2y o Zg @ Wyl gx) | a) Wyxiy) = 3 la)(pl + -
aef0...1)V ap 0~

X
Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
W W6 )P, = Wl Xy %o 3 Y)
Wa(x;y) = Fy()Wy(x; y)F,;l(x) satisfies: M M
PiW(x;y) = Wi - Y1 Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

Statement 2 Denote by D(x; y) the domain wall partition functions, then:

X; — IX;
TN _ H i j (1KON-ky
W(ON’klk)(x’ y) - X — X; X vv(()kalk) ()C, }’)
1<i<j<N 1 J
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0 0
Consider the case of paths of single colour (six vertex case n = 1) ; n Y
o
Tp(x;20,21) 1= 2 gy gl Wyl gx) | @) Wy y) = Y [a)(p] -
ae{0...1}V ap 0 Y
a ... oy

Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
Wy )P = Wyl Xy, X3 )

W, x;y) = F, Wy VFa (x satisfies: — —
N( )’) N(y) N( )’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

0O 0 O 0
Statement 2 Denote by D(x; y) the domain wall partition functions, then:

0 1

—_ ) X; — IX; 0 1

(10N ¥), _ i i (10N, kgN—ky
W(()kalk)(x’ y) - I I S X vv(()kalk) ()C, y) W(IN(,);( k)(x, y) =0 0
X, —X (ON—k1k)
1<i<j<N 1 J 0 0
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Wa(x;y) = Fy()Wy(x; y)F,;l(x) satisfies: M M
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This implies that computing one matrix element of WN is enough to recover all of them.
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Computing 7,

0 .. 0
Consider the case of paths of single colour (six vertex case n = 1) ; n Y
0« 2
Tp(x;20,21) 1= 2 gy gl Wyl gx) | @) Wy y) = Y [a)(p] -
ac{0...1}V ap 0 Y By
a ... oy

Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
Wy )P = Wyl Xy, X3 )

W, x;y) = F, Wy VFa (x satisfies: — —
N( )’) N(y) N( )’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

Statement 2 Denote by D(x; y) the domain wall partition functions, then:

X; — IX; -
TRy S n i (1koN-Hy . TkoN—Hy, Yi X .
W(ON*"I")(X’ V)= X — X: X W(ON*kl") @) W/((()N_W))(x, y) = l l X D(xl-"xk’ YN—k+1-+
I<i<j<N 7t 7 ek Vi 1x;
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Computing 7,
After simple algebra we get:

N—k_k a _t_l)k

0 2 (1——qt_1)ka(t_l) * EN_k(tq_l)

N
Ti(x; 29, 21) = Z g

k=0




Computing 7,

After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2) = Z %9 % mHk(t )*Ey_i(tg™")
k=0 q

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

ok P
T(v|x;z) = exp« —27 zf+ T z(l)‘ Li(x...x)

k>0
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After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2)) = ZZO S t—l)ka(t )* Ey_(tq™")
k=0 9

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

ok P
T(v|x;z) = exp« —27 zf+ T z(l)‘ Li(x...x)

k>0

The coloured case follows the same logic.




Computing 7,

After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2) = Z %9 % mHk(t )*Ey_i(tg™")
k=0 q

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

k_ sk
qg -t
- Zo ) Li(xy. )

k
v
T(V|X;Z) = €XPx —27 Zf‘l‘
k>0

The coloured case follows the same logic.
Including supersymmetric Boltzmann weights leads to a model with mixtures of “bosonic” and “fermionic” paths. In this case:

k

k
qg —t
1 Zg Lk(xl...xk)

v
T(v|x;z) = expx —Z— —wE— e — w2
k>0

where w; count fermionic paths.




T(x; w) as a mixed Macdonald Cauchy kernel




T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of Uq(slllm) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = exp. < Z% (wh+ -+ wh) Lk(xl...xk)>

k>0




T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = exp. < Z% (wh+ o+ wk) Lk(xl...xk)>

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):

T(x;w) = Z P,(W)F,(x)
2




T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = expx (Z% (Wi +wk) Lk(xl...xk))

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):
T(w) = ) P(w)F,x)
yl
F, is the “Macdonald function” of &/°. Using rep theory of & [Feigin—Tsymbaliuk *09, Schiffmann—Vasserot, ’09] we can derive:
eV (FA) ocf/’l"b

where ev,,;,(x;) = content of i-th box of diagram of u/v.




T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = expx (Z% (Wi +wk) Lk(xl...xk)>

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):
T(w) = ) P(w)F,x)
yl
F, is the “Macdonald function” of &/°. Using rep theory of & [Feigin—Tsymbaliuk *09, Schiffmann—Vasserot, ’09] we can derive:
eV (FA) o<f/’1"b

where ev,,;,(x;) = content of i-th box of diagram of u/v.

Proposition [AG, A Gunna ’23]:

eVl (T(x; w)) = const PM/U(W)
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Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have ev 2, 1y1)(X1, X,) = (¢, 1 and




Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have ev(z 1)1y(x;, X,) = (¢, t~1 and

0 0 0 0 0 0 0 0
Pa,1y/y (w1, ws) oc | © +° wi +|° +° wj
0 J 0 0 J 0
\
0 0 0 0 0 0 0 0
+1° + 0 + " - wiws
0 ® 0 0 O 0
\ .

2 (1—t)(24 g+t 4+ 2qt)

2
x w wiwy + w
1 =2 1wz + W




