Shuffle algebras and lattice paths

IPAM workshop ‘“Vertex Models: Algebraic and Probabilistic Aspects of Universality”

Alexandr Garbali, University of Melbourne, May 2024

Based on works with Paul Zinn-Justin and Ajeeth Gunna

Overview

Lattice paths

Partition functions

An algebraic tool

Computation of partition functions

Application to skew Macdonald polynomials

Lattice paths

Consider lattice paths on
square lattice

Lattice paths

Consider lattice paths on
square lattice

Lattice paths

Consider lattice paths on
square lattice

Lattice paths

Consider lattice paths on
square lattice

Lattice paths

Rules:
* Path starts at a bottom or left

boundary edge

» Path ends at a top or right edge

» Path makes unit steps at vertex:

straight

turning north

turning east
« Paths do not share edges

Consider lattice paths on
square lattice

Consider all lattice
paths with fixed
starting and ending
points.

Use 0/1 to denote
unoccupied/occupied
boundary edges

Lattice paths

Rules:
* Path starts at a bottom or left

boundary edge

» Path ends at a top or right edge

» Path makes unit steps at vertex:

straight

turning north

turning east
« Paths do not share edges

Lattice paths

Rules:
* Path starts at a bottom or left

Consider lattice paths on boundary edge
square lattice

» Path ends at a top or right edge

» Path makes unit steps at vertex:

straight

turning north

turning east
« Paths do not share edges

Consider all lattice o 1 1
paths with fixed

starting and ending
points. 0 1

Use 0/1 to denote
unoccupied/occupied 10 1
boundary edges

Lattice paths

Rules:
* Path starts at a bottom or left

Consider lattice paths on boundary edge
square lattice

» Path ends at a top or right edge

» Path makes unit steps at vertex:

straight

turning north

turning east
« Paths do not share edges

Consider all lattice o 1 1
paths with fixed

starting and ending

points. 0 1

Use 0/1 to denote
unoccupied/occupied 10 1
boundary edges

Coloured lattice paths

Consider coloured lattice
paths on square lattice

Coloured lattice paths

Consider coloured lattice
paths on square lattice

Coloured lattice paths

Consider coloured lattice
paths on square lattice

Coloured lattice paths

Consider coloured lattice
paths on square lattice

Coloured lattice paths

Rules:

| » Path starts at a bottom or left
boundary edge

» Path ends at a top or right edge

» Path makes unit steps:

straight

turning north

turning east
« Paths do not share edges

Consider coloured lattice
paths on square lattice

Consider all lattice
paths with fixed
starting and ending
points.

Use 0/1/2 to denote
none/red/green path
on boundary edges

Coloured lattice paths

Rules:

| » Path starts at a bottom or left
boundary edge

» Path ends at a top or right edge

» Path makes unit steps:

straight

turning north

turning east
« Paths do not share edges

Consider coloured lattice
paths on square lattice

Consider all lattice
paths with fixed
starting and ending
points.

Use 0/1/2 to denote
none/red/green path
on boundary edges

Coloured lattice paths

Rules:

» Path starts at a bottom or left
boundary edge

» Path ends at a top or right edge

» Path makes unit steps:

straight
turning north
turning east

« Paths do not share edges

‘7 + two more

Lattice paths: special boundary conditions

Lattice paths: special boundary conditions

Domain wall boundary conditions:

Lattice paths: special boundary conditions

Domain wall boundary conditions:

Lattice paths

Domain wall boundary conditions:

: special boundary conditions

Lattice paths

Domain wall boundary conditions:

: special boundary conditions

Lattice paths: special boundary conditions

Lattice paths: special boundary conditions

Trace boundary conditions: 0 0 o0
0 i
Z L% o0 J
Lk 0 k

Lattice paths: special boundary conditions

Trace boundary conditions: 0 0 o0 0 0 o0

0 i

join edges 0

Yuzzy o j - 0
ik 0 k 0
i j k

Lattice paths: special boundary conditions

Trace boundary conditions: 0 0 o0

0 0 0
0 i
Yuzzy o j - 0
ik 0 k 0
i j k

Lattice paths: special boundary conditions

Trace boundary conditions: 0 0 o0 0 0 o0

0

i
IEER [
ik 0 k 0

i j k

Picking coefficient of z,z, gives 32 configurations among which:

] |
| |

o T

Lattice paths: special boundary conditions

Trace boundary conditions:

jonedges O —T—T—T—"7 dressoncone

0
IEER [
Ljk 0 k 0
i j k

Picking coefficient of z,z, gives 32 configurations among which

o

"l

6

9

i

)

@

R

Lattice paths: special boundary conditions

Trace boundary conditions:

0
Z % %% o
ik

join edges

Picking coefficient of z,z, gives 32 configurations among which:

|

|

asl

)

éf‘o
R

The coefficients of zi3 produce domain wall boundaries for paths of colour i.

@

GRS

Lattice paths and partition functions

Lattice paths and partition functions

The rules for drawing lattice paths imply the following
local configurations where red and are any two

colours i and j (assume that i < j).

Lattice paths and partition functions

The rules for drawing lattice paths imply the following —’— —‘— |
local configurations where red and are any two |

colours i and j (assume that i < j). |

Lattice paths and partition functions

The rules for drawing lattice paths imply the following —’— —‘— |
local configurations where red and are any two |

colours i and j (assume that i < j). |

Introduce two parameters u, t € C.
To each local vertex assign Boltzmann weights:

Lattice paths and partition functions

The rules for drawing lattice paths imply the following —’— —‘— |
local configurations where red and are any two |

colours i and j (assume that i < j). |

Introduce two parameters u, t € C. 1—1 A-Hu t(1-w
To each local vertex assign Boltzmann weights:

1—u 1

1—tu 1—tu 1—tu 1—tu

Lattice paths and partition functions

The rules for drawing lattice paths imply the following —’— —‘— |
local configurations where red and are any two |

colours i and j (assume that i < j). |

Introduce two parameters u, t € C. 1—1 A-Hu t(1-w 1—u
To each local vertex assign Boltzmann weights: 1—tu 1—1tu 1—1tu 1—1tu

Fix boundary conditions on edges of N X N lattice.
Let @ be the set of all configurations.

The partition function Z is the sum over € weighted by
the product of local Boltzmann weights.

Lattice paths and partition functions

The rules for drawing lattice paths imply the following —’— —‘— |
local configurations where red and are any two |

colours i and j (assume that i < j). |

Introduce two parameters u, t € C. 1—1 A-Hu t(1-w 1—u
To each local vertex assign Boltzmann weights: 1—tu 1—1tu 1—1tu 1—1tu
ﬁ] ﬂN
Fix boundary conditions on edges of N X N lattice. .
Let € be the set of all configurations. a o
Zag =
The partition function Z is the sum over € weighted by ay Sy
the product of local Boltzmann weights.

Lattice paths and partition functions

The rules for drawing lattice paths imply the following
local configurations where red and are any two
colours i and j (assume that i < j).

Introduce two parameters u, t € C.
To each local vertex assign Boltzmann weights:

Fix boundary conditions on edges of N X N lattice.
Let @ be the set of all configurations.

The partition function Z is the sum over € weighted by
the product of local Boltzmann weights.

4
|

-+ -

1—1¢

(1—=1u

(1 —u)

1—u 1

1—tu

5
Zg.r =

1—tu

a

b

1—tu

by

N

1—tu

%

N
Po= Z Hw,-.,«(c)

Sy ce@ij=1

Example

Example

We consider inhomogeneous partition functions: the u parameter is replaced with U ;= x,-/yi, with (i, j) being the
position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with U ;= x,-/yi, with (i, j) being the
position of the vertex.

0
02,12 _
ZO2,12 - P el

Example

We consider inhomogeneous partition functions: the u parameter is replaced with U ;= x,-/y/, with (i, j) being the
position of the vertex.

0 1 0 1 0 — 1
zoe o _ +
0212 5 2 2 2 2 2 2

Example

We consider inhomogeneous partition functions: the u parameter is replaced with U ;= x,-/y/, with (i, j) being the
position of the vertex.

0 2 0 2 0 2
0= 1 0 1 0 J 1
Zz202 = _ +
0212 5 2 2 2 2 2 2
12 1 2 1 2
(L= Dxyyy (1= x/y,) 1 (1= x1/3,) (/3 = 1) (A = &%, 1y, 0y, %1y,

(1 - txl/yl) (1 - txz/yl) (1 - txl/yz) (1 - txz/yz) (1 - txl/yl) (1 - txz/yl) (1 —txl/yz) (1 —txz/yz)

R-matrix

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix:

v b

R(x/y) = %x: Z a*«»—d la,c){b,d|
a,b,c,d=0

c

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix:

y

R(xly) = % x

Forn = 1:
b
= Z a*«‘—d la,c){b.d| R(x/y) =
a,b,c,d=0
c

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix: Forn = 1:

b (= ox

y 0
. L R . y—tx
R(xly) = % r = Z a «&— d la,c)b,d]| R(x/y) = = %)
a,b.c,d=0 0):7 .

c

y—x
y—tx

1 -1y
())0
y—1ix

+00
e+t
o+ 4

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix: Forn = 1:

y b
Rxly) = {»A: > a%d la.c)(b.d| Rixly) =
a,b,c,d=0
Cc

Role of arrows: order of matrix multiplication follows the flow of arrows.

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix: Forn = 1:
: b
Rxly) = {» =) a «&» d lac)b.d| Rixly) =
a,b,c,d=0

c

Role of arrows: order of matrix multiplication follows the flow of arrows.

The R-matrix satisfies the Yang—Baxter equation:
R@I9Ry(2/0R, (/%) = Ry(yI0R, (2/0)Ry(2/)

where Iél(u) = Ié(u) ® I and Rz(u) =IQ® Ié(u)

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix: Forn = 1:

v b

R(xly) = %A: Z a*«‘»d la,c)(b,d| R(x/y) =
a,b,c,d=0

c

Role of arrows: order of matrix multiplication follows the flow of arrows.

The R-matrix satisfies the Yang—Baxter equation:
R@I9Ry(2/0R, (/%) = Ry(yI0R, (2/0)Ry(2/)

where Iél(u) = Ié(u) ® I and Rz(u) =IQ® Ié(u)

=)

Partition functions

Partition functions

We compute any partition function by multiplying R-matrices
and taking matrix elements.

Zy(xyy) = kN(xN/yl)kN—l(xN—l/yl)kN+l(xN/y2)'"IéN(xl/yN)

Partition functions

B B
We compute any partition function by multiplying R-matrices % '
and taking matrix elements. a, < 5,
Zn(x;y) = ROy /y DRy Gy 1 /DRy 41 Gy y2) - Ryy(x1 /yy) g 8y

N Iv

= (7| Zy(x.)| P, 5)

Partition functions

b B

We compute any partition function by multiplying R-matrices % w
and taking matrix elements. a &
Zp(x;y) = RyCen/yDRN_ 1 Ooy_ 1 /Y DRy 1 Gy /) -+ Ry(x, /) .

14l N

Let g € C. In the following we specialize: y; = gx;.

31

= (7| Zy(x.)| P, 5)

Partition functions

We compute any partition function by multiplying R-matrices

and taking matrix elements.

Zy(xyy) = kN(xN/yl)kN—l(xN—l/yl)kN+l(xN/y2)'"kN(xl/yN)

Let g € C. In the following we specialize: y; = gx;.

The conic partition function is a partial trace of Zy;:

Ty(x; zg...2,) == Z Zg,

ae{0...n}V

Zay

(0N, | Zy(x; gx) | OV, @)

In|

Py

14l

N

3

= (7| Zy(x.)| P, 5)

Partition functions

We compute any partition function by multiplying R-matrices
and taking matrix elements.

Zy(xyy) = kN(xN/yl)kN—l(xN—l/yl)kN+l(xN/y2)'"kN(xl/yN)

Let g € C. In the following we specialize: y; = gx;.

The conic partition function is a partial trace of Zy;:

TN(X; Zg-- 'Zn) = Z Za] ZaN(ON’ o | ZN(X; C]X) | ON’ a)

ae{0...n}V

b Py
i W
Pl
a 8
Xy
ay Sy
14l N
o ... o0
9% 9
X
0
Ty
0

= (7| Zy(x.)| P, 5)

Conic partition function

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

o0

TW|x;z) = Z WWT(x; 2)
N=0

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

o0

TW|x;z) = Z WWT(x; 2)
N=0

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

== i Z e_ﬁ(EN—ﬂN) — ed)(T,ﬂ)

N=0 states

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

o0

Twlx;2) =) vV T(x2)
N=0

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

== i Z e_ﬁ(EN—ﬂN) — ed)(T,ﬂ)

N=0 states

Our problem involves an interacting system but Yang—Baxter integrable. We find a shuffle-exponential expression for T(v | x; z).

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

o0

Tw|x2) = Y vWIy(x:2)

N=0

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

= i Z o PEHN) — (T p)

N=0 states

[1]

Our problem involves an interacting system but Yang—Baxter integrable. We find a shuffle-exponential expression for T(v | x; z).

Theorem [AG, A Gunna "23]:

k

i A
T(v|x;z) = exps« —Z? Zl+-"+Zn+7Zo Li(x;...x;)

1
k>0

whereexp:A=14+A+1/21A*A+ 1/31A*A* A + --- and Li(x;...x;) is another “small” conic partition function (with two
types of paths) which has and explicit expression as a rational function in x;.

The shuffle algebra

The shuffle algebra

Consider the vector space of symmetric rational functions: V= @ Q(g, 1)(x;.. .xk)&"
k20

The shuffle algebra

Consider the vector space of symmetric rational functions: V= @ Q(g, 1)(x;.. .xk)S"
k20

Multiplication of two elements F, G € V:

(x; — gx)(x; — t_lxi)
FOn) * Gl = Y o Fa.)G m) [(xj-—x)(x»J— pr
Vj i\ i

CES; 4 SXS, i€l k
jek+1. k+1

The shuffle algebra

Consider the vector space of symmetric rational functions: V= @ Q(g, 1)(x;.. .xk)S"
k20

Multiplication of two elements F, G € V:

1 (= gx)(x; — 17'x;)

FOn) *Gon.) = Y o Fey.)G, %) T ———
Vj i\ i

CES; 4 SXS, i€l k
jek+1. k+1

The shuffle algebra & is the subspace in V of elements of the form:

p(xy...x)
Hlsi#jgk (o — qt~'x))

P(x,...xp) = pC.x gt ..) =p(..x,qt7 %, gx..) =0

The shuffle algebra

Consider the vector space of symmetric rational functions: V= @ Q(g, 1)(x;.. .xk)cc"
k20

Multiplication of two elements F, G € V:

@ = @)y — 7'x)
FO) * Gl = Y o F.x)Ggx) [= il
OES 1/ SiXS) i€l .k (xj —x)(x; —qr7'x)

JEk+1..k+1

The shuffle algebra & is the subspace in V of elements of the form:

p(xy...x)

P(x,...x;) =
1 k ngi;&jsk(xi - qt—lxj)

pC.x gt ..) =p(..x,qt7 %, gx..) =0

The commutative shuffle algebra is a subspace &/° C &/ such that:

lim P(e*!xy, ..., €*x,, %,y 1, .00 X,) = K < 00

e—0

Feigin—Odesskii, FHHSY

Commutative shuffle algebra

The simplest elements of &/° are the factorized elements:

[Feigin—Odesskii]

Commutative shuffle algebra

(5=)5~ ')
Etsp) =[] ! !

1<i<j<k (= quxj)(xi - tq"xj)

Commutative shuffle algebra

, (= px)(x; — p~'x))
The simplest elements of &/° are the factorized elements: Ex;p) == I I d 4 i p=q.t g7

C - (5 — gt~ 1x)(x; — 1g71x)
[Feigin—Odesskii] 5 i

1<i<j<k

Let (p, p’, p") be a permutation of (g, 1, tq‘l). |

Another example of elements of o is given by determinants: Hy(x;p) :=f(x) det —— 88— f(x‘) is t?omposed of simple fact?rs
[Izergin] 1<ij<k (5 = p'x)(x5 — p"x;) which fix the poles s.t.: H, € o'

Commutative shuffle algebra

The simplest elements of &/° are the factorized elements:
[Feigin—Odesskii]

Let (p, p’, p") be a permutation of (g, 1, tq‘l).

Another example of elements of &/° is given by determinants:

[Izergin]

A third type of elements given by a symmetrization formula:
[Negut]

(o — Px,')(x,' - p71¥;)

O — gt~ — 197 %)

p=qt1q7!

Ewp) =[]

1<i<j<k

f(x) is composed of simple factors

. 1
Hk(x’ P) - f(X) det which fix the poles s.t.: H, € o/°

1sijsk (% = p)(G = p"x)

k—1 —1Nj
Tico @ Yxlx A)

— —) — gt—1x:
H}]_‘:ll (] — qt_lxj-%—l/xj) 1<i<j<k (.Xj xz)(xl qt xz)

S0 =g, Y, ¢

oES),

Commutative shuffle algebra

(o — Px,')(x,' - p71¥;)

The simplest elements of &f° are the factorized elements: Ex;p) == H - - P=4q g
[Feigin—Odesski] 1iciee i~ @I — 197 1x)
Let (p, p', p") be a permutation of (g, ™!, tg™"). X
Another example of elements of &/° is given by determinants: H(x;p) :=f(x) det ————— (@) is composed of simple factors
[Izergin] 1<ijj<k (X; — p'xj)(xj —-p'x) which fix the poles s.t.: H, € o/°

- - o RO (5 - gx)05 — 171
A third type of elements given by a symmetrization formula: S(x) == ¢ (g, 0 Z c — k —
[Negut] ves, H}’_‘;l‘ (1 _ qt‘lx/+l/x/) \Sidk (5 = x)(x; — gt71x;)

Lemma: The generating functions of Ei(x; p), H,(x; p) are equal to shuffle-exponentials:

00 -1 r+1 00 1 where: . .
EWv|p) = Z v"'Ek(x;p) = expx < Z (r) d,.v’S,.(x)), Hv|p) = Z kak(x;p) = expx < Z 7d,v’S,(x)> d, = 1=p =gy

1—qgr (1 —p)
k=0 >0 k=0 >0 a(1=p

Partition functions as elements of &/°

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= z(f"zfl---zj”:

Ty(2) =) 2 Ty(x)
A

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials = z(f"zfl---z,j”: T),(x) is the partition function with fixed
loop content:
Ty(x;2) = Z 2T, (x) A1 loops of colour 1
! A, loops of colour n
Ag=N— (4 + -+ + 4,) “empty” loops

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= z(f"zfl---zj”: T),(x) is the partition function with fixed

loop content:
Ty(x;2) = Z 2T, (x) A1 loops of colour 1
/1
A, loops of colour n
Ag=N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= z(f"zfl---zj”: T),(x) is the partition function with fixed
loop content:
A, loops of colour 1

Ty(x2) =) 2Ty
>
A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
A, loops of colour 1

Ty(i2) =) 2T,
>

A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials = zé"zf'---z,j”: T),(x) is the partition function with fixed
loop content:
Ty(x;2) = Z PT,() Ay loops of colour 1
! A, loops of colour n
Ag=N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Insert empty vertex

0 0 - 0 0
ax| qx qx| g%

Proof: 0 0
X2 0 X ><

1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
Use YB equation
qxo , 0 .. 0 o
1| x| qx
Proof: o 0™
1) T(x;...xy) is a symmetric function in x’s. 0 = 0%

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
Ty(x;2) = Z PT,() Ay loops of colour 1
-
A, loops of colour n
Ag=N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Use trace property

0 0 - 0 0
qu| ax qx| gy

Proof: o 0

1) T(x;...xy) is a symmetric function in x’s. . =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
Use YB equation
0 0 .. o o
qx| qr [N
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 - o+
Ol

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials = zé"zf'---z,j”: T),(x) is the partition function with fixed
loop content:
Ty(x;2) = Z PT,() Ay loops of colour 1
! A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
Remove empty vertex
0 0 0 0
PR, o g
Proof: 0 o™
1) T(x;...xy) is a symmetric function in x’s. 0 = 0%
H L]

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0 =

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
/1
A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops
Lemma: T)(x) = T)(x;...xy) € &°
0 0
x| gx;
Proof: 0
1) T(x;...xy) is a symmetric function in x’s. 0

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
A, loops of colour 1

Ty(i2) =) 2T,
>

A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
A, loops of colour 1

Ty(x2) =) 2Ty
>
A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

2) Wheel conditions. Set (x|, Xy, X3) = (qt_lx, x,t %)

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed
loop content:
Ty(x:2) = Z PT,() Ay loops of colour 1
A

A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.
0 0 0

N n|a'y
2) Wheel conditions. Set (x;, X,, x3) = (gt %, x, %) lirzr},l yliIquA 01 =g —g0) %X o “’;‘J—J—*— =0
.vl_hq X Z_' ¢

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials 7= zé"zf'---zj”: T),(x) is the partition function with fixed

loop content:
A, loops of colour 1

Ty(x2) =) 2Ty
>
A, loops of colour n

Ay =N— (4 + -+ + 4,) “empty” loops

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

2) Wheel conditions. Set (x|, Xy, X3) = (qt_lx, x,t %)

Partition functions as elements of &/°

Expand the partition function 7(x; z) in monomials = zé"zf'---zj”:

Ty(x;2) = Z ziTl(x)
A

Lemma: T)(x) = T)(x;...xy) € &°

Proof:

1) T(x;...xy) is a symmetric function in x’s.

2) Wheel conditions. Set (x|, Xy, X3) = (qt_lx, x,t %)

3) Proof of lim T(e*!xy, ..., ¥lx, X, |, ..., Xy) = k < o0 is similar in spirit.

e—0

T),(x) is the partition function with fixed
loop content:
Ay loops of colour 1

A, loops of colour n
Ay =N— (4 + -+ + 4,) “empty” loops

Computing 7,

Computing 7,
Consider the case of paths of single colour (six vertex case n = 1)

Tyxi202) =). 2y o Zg @ Wyl gx) | a)
ae{0...1}V

Computing 7,

Consider the case of paths of single colour (six vertex case n = 1)

Ti(x; 29, 21) i= 2 Zg, "

ae{0...1}V

Zg | Wy(x; qx) | @)

Wy y)

=Y la)pl ¢ -

N

ap 0

a

ay

b

%

Computing 7,

0
Consider the case of paths of single colour (six vertex case n = 1) o
0
Tyxi202) =). 2y o Zg @ Wyl gx) | a) Wyxiy) = 3 la)(pl + -
aef0...1)V ap 0~

X
Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
WN(x; VP, = WN(...le,x,-...;y)

W, x;y) = F, Wy VFa (x satisfies: — —
N()’) N(y) N()’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

ay

b

%

Computing 7,

0

Consider the case of paths of single colour (six vertex case n = 1) o
03
Tyxi202) =). 2y o Zg @ Wyl gx) | a) Wyxiy) = 3 la)(pl + -
aef0...1)V ap 0~

X
Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
W W6)P, = Wl Xy %o 3 Y)
Wa(x;y) = Fy()Wy(x; y)F,;l(x) satisfies: M M
PiW(x;y) = Wi - Y1 Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

Statement 2 Denote by D(x; y) the domain wall partition functions, then:

X; — IX;
TN _ H i j (1KON-ky
W(ON’klk)(x’ y) - X — X; X vv(()kalk) ()C, }’)
1<i<j<N 1 J

ay

b

%

Computing 7,

0 0
Consider the case of paths of single colour (six vertex case n = 1) ; n Y
o
Tp(x;20,21) 1= 2 gy gl Wyl gx) | @) Wy y) = Y [a)(p] -
ae{0...1}V ap 0 Y
a ... oy

Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
Wy)P = Wyl Xy, X3)

W, x;y) = F, Wy VFa (x satisfies: — —
N()’) N(y) N()’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

0O 0 O 0
Statement 2 Denote by D(x; y) the domain wall partition functions, then:

0 1

—_) X; — IX; 0 1

(10N ¥), _ i i (10N, kgN—ky
W(()kalk)(x’ y) - I I S X vv(()kalk) ()C, y) W(IN(,);(k)(x, y) =0 0
X, —X (ON—k1k)
1<i<j<N 1 J 0 0

b

%

Computing 7,

0

Consider the case of paths of single colour (six vertex case n = 1) o
03
Tyxi202) =). 2y o Zg @ Wyl gx) | a) Wyxiy) = 3 la)(pl + -
aef0...1)V ap 0~

X
Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
W W6)P, = Wl Xy %o 3 Y)
Wa(x;y) = Fy()Wy(x; y)F,;l(x) satisfies: M M
PiW(x;y) = Wi - Y1 Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

Statement 2 Denote by D(x; y) the domain wall partition functions, then:

X; — IX;
TN _ H i j (1KON-ky
W(ON’klk)(x’ y) - X — X; X vv(()kalk) ()C, }’)
1<i<j<N 1 J

ay

b

%

Computing 7,

0 .. 0
Consider the case of paths of single colour (six vertex case n = 1) ; n Y
0« 2
Tp(x;20,21) 1= 2 gy gl Wyl gx) | @) Wy y) = Y [a)(p] -
ac{0...1}V ap 0 Y By
a ... oy

Statement 1: Let P; be the permutation matrix. There exists a transformation F such that:
Wy)P = Wyl Xy, X3)

W, x;y) = F, Wy VFa (x satisfies: — —
N()’) N(y) N()’) N @ P Wy y) = WX .Yt Vi)

This implies that computing one matrix element of WN is enough to recover all of them.

Statement 2 Denote by D(x; y) the domain wall partition functions, then:

X; — IX; -
TRy S n i (1koN-Hy . TkoN—Hy, Yi X .
W(ON*"I")(X’ V)= X — X: X W(ON*kl") @) W/((()N_W))(x, y) = l l X D(xl-"xk’ YN—k+1-+
I<i<j<N 7t 7 ek Vi 1x;

N

Computing 7,

Computing 7,
After simple algebra we get:

N—k_k a _t_l)k

0 2 (1——qt_1)ka(t_l) * EN_k(tq_l)

N
Ti(x; 29, 21) = Z g

k=0

Computing 7,

After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2) = Z %9 % mHk(t)*Ey_i(tg™")
k=0 q

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

ok P
T(v|x;z) = exp« —27 zf+ T z(l)‘ Li(x...x)

k>0

Computing 7,

After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2)) = ZZO S t—l)ka(t)* Ey_(tq™")
k=0 9

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

ok P
T(v|x;z) = exp« —27 zf+ T z(l)‘ Li(x...x)

k>0

The coloured case follows the same logic.

Computing 7,

After simple algebra we get:

N N—k_k a _t_l)k —1y % -1
Ty(x;29,2) = Z %9 % mHk(t)*Ey_i(tg™")
k=0 q

Summing T(x; 2y, ;) with the generating parameter gives the shuffle exponential:

k_ sk
qg -t
- Zo) Li(xy.)

k
v
T(V|X;Z) = €XPx —27 Zf‘l‘
k>0

The coloured case follows the same logic.
Including supersymmetric Boltzmann weights leads to a model with mixtures of “bosonic” and “fermionic” paths. In this case:

k

k
qg —t
1 Zg Lk(xl...xk)

v
T(v|x;z) = expx —Z— —wE— e — w2
k>0

where w; count fermionic paths.

T(x; w) as a mixed Macdonald Cauchy kernel

T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of Uq(slllm) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = exp. < Z% (wh+ -+ wh) Lk(xl...xk)>

k>0

T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = exp. < Z% (wh+ o+ wk) Lk(xl...xk)>

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):

T(x;w) = Z P,(W)F,(x)
2

T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = expx (Z% (Wi +wk) Lk(xl...xk))

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):
T(w) =) P(w)F,x)
yl
F, is the “Macdonald function” of &/°. Using rep theory of & [Feigin—Tsymbaliuk *09, Schiffmann—Vasserot, ’09] we can derive:
eV (FA) ocf/’l"b

where ev,,;,(x;) = content of i-th box of diagram of u/v.

T(x; w) as a mixed Macdonald Cauchy kernel

Consider the Boltzmann weights of U(sl},,) i.e. all m fermionic paths and set z;, = 0, then:

T(x; w) = expx (Z% (Wi +wk) Lk(xl...xk)>

k>0

This is a mixed Cauchy kernel [Feigin et. al. *10]. Expand 7(x; w) in Macdonald polynomials P;(w):
T(w) =) P(w)F,x)
yl
F, is the “Macdonald function” of &/°. Using rep theory of & [Feigin—Tsymbaliuk *09, Schiffmann—Vasserot, ’09] we can derive:
eV (FA) o<f/’1"b

where ev,,;,(x;) = content of i-th box of diagram of u/v.

Proposition [AG, A Gunna ’23]:

eVl (T(x; w)) = const PM/U(W)

Example

Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have ev 2, 1y1)(X1, X,) = (¢, 1 and

Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have ev(z 1)1y(x;, X,) = (¢, t~1 and

0 0 0 0 0 0 0 0
Pa,1y/y (w1, ws) oc | © +° wi +|° +° wj
0 J 0 0 J 0
\
0 0 0 0 0 0 0 0
+1° + 0 + " - wiws
0 ® 0 0 O 0
\ .

2 (1—t)(24 g+t 4+ 2qt)

2
x w wiwy + w
1 =2 1wz + W

