Shuffle algebras and lattice paths

IPAM workshop "Vertex Models: Algebraic and Probabilistic Aspects of Universality"

Overview

- Lattice paths
- Partition functions
- An algebraic tool
- Computation of partition functions
- Application to skew Macdonald polynomials

Lattice paths

Lattice paths

Lattice paths

Consider lattice paths on square lattice

Lattice paths

Consider lattice paths on square lattice

Lattice paths

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex
straight
- Paths do not sharning eastges

Lattice paths

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex
straight
- Paths do not share edges

Consider all lattice
paths with fixed
starting and ending
Use 0/1 to denote
unoccupied/occupied
boundary edges

Lattice paths

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex
- Paths do not share edges

Consider all lattice paths with fixed starting and ending points

Use $0 / 1$ to denote unoccupied/occupied boundary edges

Lattice paths

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex
straight turning north turning north
turning east
- Paths do not share edges

Consider all lattice paths with fixed starting and ending

Use 0/1 to denote unoccupied/occupied boundary edges

Coloured lattice paths

Coloured lattice paths

Consider coloured lattice paths on square lattice

Coloured lattice paths

Consider coloured lattice paths on square lattice

Coloured lattice paths

Consider coloured lattice paths on square lattice

Coloured lattice paths

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps:
straight
turning north
- Paths do not share edges

Coloured lattice paths

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps: straight turning north
- Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1/2 to denote
none/red/green path on boundary edges

Coloured lattice paths

Consider coloured lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps:
straight turning north
- Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1/2 to denote none/red/green path on boundary edges

Lattice paths: special boundary conditions

Lattice paths: special boundary conditions
Domain wall boundary conditions:

Lattice paths: special boundary conditions
Domain wall boundary conditions:

Lattice paths: special boundary conditions
Domain wall boundary conditions:

Rainbow domain wall boundary conditions:

Lattice paths: special boundary conditions
Domain wall boundary conditions.

Rainbow domain wall boundary conditions:

Lattice paths: special boundary conditions

Lattice paths: special boundary conditions
Trace boundary conditions:
$\sum_{i, j, k} z_{i} z_{j} z_{i}$

Lattice paths: special boundary conditions

Trace boundary conditions.
$\sum_{i, j, k} z_{i} z_{i} z_{i}$

$\xrightarrow{\text { join edges }}$

Lattice paths: special boundary conditions
Trace boundary conditions:
$\sum_{i, j, k}^{z_{i} z_{j} z_{k}}$

$\xrightarrow{\text { join edges }}$

Lattice paths: special boundary conditions

Trace boundary conditions.

Picking coefficient of $z_{1} z_{2}$ gives 32 configurations among which:

Lattice paths: special boundary conditions

Trace boundary conditions:

Picking coefficient of $z_{1} z_{2}$ gives 32 configurations among which:

Lattice paths: special boundary conditions

Trace boundary conditions.

Picking coefficient of $z_{1} z_{2}$ gives 32 configurations among which:

The coefficients of z_{i}^{3} produce domain wall boundaries for paths of colour i

Lattice paths and partition functions

Lattice paths and partition functions

 colours i and j (assume that $i<j$).
Lattice paths and partition functions

The rules for drawing lattice paths imply the following local configurations where red and green are any two colours i and j (assume that $i<j$).

Lattice paths and partition functions

The rules for drawing lattice paths imply the following local configurations where red and green are any two colours i and j (assume that $i<j$).

ntroduce two parameters $u, t \in \mathbb{C}$.
To each local vertex assign Boltzmann weights:

Lattice paths and partition functions

The rules for drawing lattice paths imply the following local configurations where red and green are any two colours i and j (assume that $i<j$).
ntroduce two parameters $u, t \in \mathbb{C}$.
To each local vertex assign Boltzmann weights:

Lattice paths and partition functions

The rules for drawing lattice paths imply the following ocal configurations where red and green are any two colours i and j (assume that $i<j$).

Fix boundary conditions on edges of $N \times N$ lattice et \mathscr{C} be the set of all configurations.

The partition function Z is the sum over \mathscr{C} weighted by the product of local Boltzmann weights.

Lattice paths and partition functions

The rules for drawing lattice paths imply the following ocal configurations where red and green are any two colours i and j (assume that $i<j$).

Fix boundary conditions on edges of $N \times N$ lattice et \mathscr{C} be the set of all configurations.

The partition function Z is the sum over \mathscr{C} weighted by the product of local Boltzmann weights.

Lattice paths and partition functions

The rules for drawing lattice paths imply the following ocal configurations where red and green are any two colours i and j (assume that $i<j$).

Fix boundary conditions on edges of $N \times N$ lattice. et \mathscr{C} be the set of all configurations.

The partition function Z is the sum over \mathscr{C} weighted by the product of local Boltzmann weights.

Example

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i, j}=x_{i} / y_{j}$, with (i, j) being the position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i, j}=x_{i} / y_{j}$, with (i, j) being the position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i, j}=x_{i} / y_{j}$, with (i, j) being the position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i, j}=x_{i} / y_{j}$, with (i, j) being the position of the vertex.

$=\frac{(1-t) x_{1} / y_{1}\left(1-x_{2} / y_{1}\right) t\left(1-x_{1} / y_{2}\right)\left(x_{2} / y_{2}-t\right)}{\left(1-1 x_{1} y_{1}\right)}+\frac{(1-t)^{4} x_{1} / y_{1} x_{2} / y_{1} x_{1} / y_{2}}{}$

$$
\left(1-t x_{1} / y_{1}\right)\left(1-t x_{2} / y_{1}\right)\left(1-t x_{1} / y_{2}\right)\left(1-t x_{2} / y_{2}\right)+\frac{t}{\left(1-t x_{1} / y_{1}\right)\left(1-t x_{2} / y_{1}\right)\left(1-t x_{1} / y_{2}\right)\left(1-t x_{2} / y_{2}\right)}
$$

R-matrix

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.
Define the R-matrix:

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.
Define the R-matrix:
For $n=1$:
$\check{R}(x / y)=\underbrace{y} x=\sum_{a, b, c, d=0}^{n} a \stackrel{y}{x} \sum_{c}^{b} d \quad|a, c\rangle\langle b, d| \quad \check{R}(x / y)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{(1-t) x}{y-t x} & \frac{y-x}{y-t x} & 0 \\ 0 & \frac{t(y-x)}{y-t x} & \frac{(1-t) y}{y-t x} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

$$
\begin{aligned}
& \text { Define the } R \text {-matrix: } \\
& \text { For } n=1 \text { : } \\
& \check{R}(x / y)=\overbrace{}^{y}=\sum_{a, b, c, d=0}^{n} a_{c}^{x x^{y}} \sum_{c}^{b} d \quad|a, c\rangle\langle b, d| \quad \check{R}(x / y)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{(1-t) x}{y-t x} & \frac{y-x}{y-t x} & 0 \\
0 & \frac{t(y-x)}{y-t x} & \frac{(1-t) y}{y-t x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & + & + & 0 \\
0 & + & + & 0 \\
0 & 0 & 0 & +
\end{array}\right]
\end{aligned}
$$

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.
Define the R-matrix:

$$
\text { For } n=1 \text { : }
$$

$\check{R}(x / y)=\stackrel{y}{y} x=\sum_{a, b, c, d=0}^{n} a_{c}^{x} \sum_{c}^{b} d \quad|a, c\rangle\langle b, d| \quad \check{R}(x / y)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{(1-t) x}{y-t x} & \frac{y-x}{y-t x} & 0 \\ 0 & \frac{t(y-x)}{y-t x} & \frac{(1-t) y}{y-t x} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}+1 & 0 & 0 & 0 \\ 0 & + & + & 0 \\ 0 & + & + & 0 \\ 0 & 0 & 0 & +\end{array}\right]$

Role of arrows: order of matrix multiplication follows the flow of arrows.

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.
Define the R-matrix:

$$
\text { For } n=1 \text { : }
$$

Role of arrows: order of matrix multiplication follows the flow of arrows.
The R-matrix satisfies the Yang-Baxter equation:
$\check{R}_{1}(z / y) \check{R}_{2}(z / x) \check{R}_{1}(y / x)=\check{R}_{2}(y / x) \check{R}_{1}(z / x) \check{R}_{2}(z / y)$
where $\check{R}_{1}(u)=\check{R}(u) \otimes I$ and $\check{R}_{2}(u)=I \otimes \check{R}(u)$

R-matrix

An efficient way of computing these partition functions is with matrix multiplication.

Define the R-matrix:
$\check{R}(x / y)=\overbrace{}^{y} x=\sum_{a, b, c, d=0}^{n} a_{\substack{x \\ y}}^{\substack{b \\ c}} d|a, c\rangle\langle b, d|$

$$
\text { For } n=1 \text { : }
$$

$$
\check{R}(x / y)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{(1-t) x}{y-t x} & \frac{y-x}{y-t x} & 0 \\
0 & \frac{t(y-x)}{y-t x} & \frac{(1-t) y}{y-t x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
+ & 0 & 0 & 0 \\
0 & + & + & 0 \\
0 & + & + & 0 \\
0 & 0 & 0 & +
\end{array}\right]
$$

Role of arrows: order of matrix multiplication follows the flow of arrows.
The R-matrix satisfies the Yang-Baxter equation:
$\check{R}_{1}(z / y) \check{R}_{2}(z / x) \check{R}_{1}(y / x)=\check{R}_{2}(y / x) \check{R}_{1}(z / x) \check{R}_{2}(z / y)$
where $\check{R}_{1}(u)=\check{R}(u) \otimes I$ and $\check{R}_{2}(u)=I \otimes \check{R}(u)$

Partition functions

Partition functions

We compute any partition function by multiplying R-matrices and taking matrix elements.
$Z_{N}(x ; y):=\check{R}_{N}\left(x_{N} / y_{1}\right) \check{R}_{N-1}\left(x_{N-1} / y_{1}\right) \check{R}_{N+1}\left(x_{N} / y_{2}\right) \cdots \check{R}_{N}\left(x_{1} / y_{N}\right)$

Partition functions

We compute any partition function by multiplying R-matrices and taking matrix elements.
$Z_{N}(x ; y):=\check{R}_{N}\left(x_{N} / y_{1}\right) \check{R}_{N-1}\left(x_{N-1} / y_{1}\right) \check{R}_{N+1}\left(x_{N} / y_{2}\right) \cdots \check{R}_{N}\left(x_{1} / y_{N}\right)$

Partition functions

We compute any partition function by multiplying R-matrices and taking matrix elements.
$Z_{N}(x ; y):=\check{R}_{N}\left(x_{N} / y_{1}\right) \check{R}_{N-1}\left(x_{N-1} / y_{1}\right) \check{R}_{N+1}\left(x_{N} / y_{2}\right) \cdots \check{R}_{N}\left(x_{1} / y_{N}\right)$

Let $q \in \mathbb{C}$. In the following we specialize: $y_{i}=q x_{i}$.

Partition functions

We compute any partition function by multiplying R-matrices and taking matrix elements.
$Z_{N}(x ; y):=\check{R}_{N}\left(x_{N} / y_{1}\right) \check{R}_{N-1}\left(x_{N-1} / y_{1}\right) \check{R}_{N+1}\left(x_{N} / y_{2}\right) \cdots \check{R}_{N}\left(x_{1} / y_{N}\right)$

Let $q \in \mathbb{C}$. In the following we specialize: $y_{i}=q x_{i}$.

The conic partition function is a partial trace of Z_{N} :
$T_{N}\left(x ; z_{0} \ldots z_{n}\right):=\sum_{\alpha \in\{0 \ldots\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\left\langle 0^{N}, \alpha\right| Z_{N}(x ; q x)\left|0^{N}, \alpha\right\rangle$

Partition functions

We compute any partition function by multiplying R-matrices and taking matrix elements.
$Z_{N}(x ; y):=\check{R}_{N}\left(x_{N} / y_{1}\right) \check{R}_{N-1}\left(x_{N-1} / y_{1}\right) \check{R}_{N+1}\left(x_{N} / y_{2}\right) \cdots \check{R}_{N}\left(x_{1} / y_{N}\right)$

Let $q \in \mathbb{C}$. In the following we specialize: $y_{i}=q x_{i}$.

The conic partition function is a partial trace of Z_{N} :
$T_{N}\left(x ; z_{0} \ldots z_{n}\right):=\sum_{\alpha \in\{0 \ldots n\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\left\langle 0^{N}, \alpha\right| Z_{N}(x ; q x)\left|0^{N}, \alpha\right\rangle$

Conic partition function

Conic partition function
Goal. Compute the grand canonical partition function on the cone:

$$
T(v \mid x ; z)=\sum_{N=0}^{\infty} v^{v_{N}} T_{N}(x ; z)
$$

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

$$
T(v \mid x ; z)=\sum_{N=0}^{\infty} v^{N} T_{N}(x ; z)
$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$
\Xi=\sum_{N=0}^{\infty} \sum_{\text {states }} e^{-\beta\left(E_{N}-\mu N\right)}=e^{\Phi(T, \mu)}
$$

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

$$
T(v \mid x ; z)=\sum_{N=0}^{\infty} v^{N} T_{N}(x ; z)
$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$
\Xi=\sum_{N=0}^{\infty} \sum_{\text {states }} e^{-\beta\left(E_{N}-\mu N\right)}=e^{\Phi(T, \mu)}
$$

Our problem involves an interacting system but Yang-Baxter integrable. We find a shuffle-exponential expression for $T(v \mid x ; z)$.

Conic partition function
Goal. Compute the grand canonical partition function on the cone:

$$
T(v \mid x ; z)=\sum_{N=0}^{\infty} v^{N} T_{N}(x ; z)
$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$
\Xi=\sum_{N=0}^{\infty} \sum_{\text {states }} e^{-\beta\left(E_{N}-\mu N\right)}=e^{\Phi(T, \mu)}
$$

Our problem involves an interacting system but Yang-Baxter integrable. We find a shuffle-exponential expression for $T(v \mid x ; z)$.
Theorem [AG, A Gunna '23]:

$$
T(v \mid x ; z)=\exp _{*}\left(-\sum_{k>0} \frac{v^{k}}{k}\left(z_{1}^{k}+\cdots+z_{n}^{k}+\frac{q^{k}-t^{k}}{1-t^{k}} z_{0}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

where $\exp _{*} A=1+A+1 / 2!A * A+1 / 3!A * A * A+\cdots$ and $L_{k}\left(x_{1} \ldots x_{k}\right)$ is another "small" conic partition function (with two types of paths) which has and explicit expression as a rational function in x_{i}.

The shuffle algebra

The shuffle algebra
Consider the vector space of symmetric rational functions: $\quad V=\bigoplus_{k \geq 0} \mathbb{Q}(q, t)\left(x_{1} \ldots x_{k}\right)^{\delta_{n}}$

The shuffle algebra

Consider the vector space of symmetric rational functions: $\quad V=\bigoplus_{k \geq 0} \mathbb{Q}(q, t)\left(x_{1} \ldots x_{k}\right)^{\delta_{n}}$
Multiplication of two elements $F, G \in V$:

The shuffle algebra

Consider the vector space of symmetric rational functions: $\quad V=\bigoplus_{k \geq 0} \mathbb{Q}(q, t)\left(x_{1} \ldots x_{k}\right)^{\delta_{n}}$
Multiplication of two elements $F, G \in V$:

$$
F\left(x_{1} \ldots x_{k}\right) * G\left(x_{1} \ldots x_{l}\right)=\sum_{\sigma \in \delta_{k+l} / \delta_{k} \times \delta_{l}} \sigma\left(F\left(x_{1} \ldots x_{k}\right) G\left(x_{k+1} \ldots x_{k+l}\right) \prod_{\substack{i \in 1 \ldots k \\ j \in k+1 \ldots k+l}} \frac{\left(x_{j}-q x_{i}\right)\left(x_{j}-t^{-1} x_{i}\right)}{\left(x_{j}-x_{i}\right)\left(x_{i}-q t^{-1} x_{i}\right)}\right)
$$

The shuffle algebra \mathscr{A} is the subspace in V of elements of the form:

$$
P\left(x_{1} \ldots x_{k}\right)=\frac{p\left(x_{1} \ldots x_{k}\right)}{\prod_{1 \leq i \neq j \leq k}\left(x_{i}-q t^{-1} x_{j}\right)} \quad \text { s.t.: } \quad p\left(\ldots x, q t^{-1} x, t^{-1} x \ldots\right)=p\left(\ldots x, q t^{-1} x, q x \ldots\right)=0
$$

The shuffle algebra

Consider the vector space of symmetric rational functions: $\quad V=\bigoplus_{k \geq 0} \mathbb{Q}(q, t)\left(x_{1} \ldots x_{k}\right)^{\delta_{n}}$
Multiplication of two elements $F, G \in V$:

$$
F\left(x_{1} \ldots x_{k}\right) * G\left(x_{1} \ldots x_{l}\right)=\sum_{\sigma \in \mathcal{S}_{k+l} / \mathcal{S}_{k} \times \mathcal{S}_{l}} \sigma\left(F\left(x_{1} \ldots x_{k}\right) G\left(x_{k+1} \ldots x_{k+l}\right) \prod_{\substack{i \in 1 \ldots k \\ j \in k+1 \ldots k+l}} \frac{\left(x_{j}-q x_{i}\right)\left(x_{j}-t^{-1} x_{i}\right)}{\left(x_{j}-x_{i}\right)\left(x_{i}-q t^{-1} x_{i}\right)}\right)
$$

The shuffle algebra \mathscr{A} is the subspace in V of elements of the form:

$$
P\left(x_{1} \ldots x_{k}\right)=\frac{p\left(x_{1} \ldots x_{k}\right)}{\prod_{1 \leq i \neq j \leq k}\left(x_{i}-q t^{-1} x_{j}\right)} \quad \text { s.t.: } \quad p\left(\ldots x, q t^{-1} x, t^{-1} x \ldots\right)=p\left(\ldots x, q t^{-1} x, q x \ldots\right)=0
$$

The commutative shuffle algebra is a subspace $\mathscr{A}^{\circ} \subset \mathscr{A}$ such that:

$$
\lim _{\epsilon \rightarrow 0} P\left(\epsilon^{ \pm 1} x_{1}, \ldots, \epsilon^{ \pm 1} x_{r}, x_{r+1}, \ldots, x_{n}\right)=\kappa<\infty
$$

Feigin-Odesskii, FHHSY

Commutative shuffle algebra

Commutative shuffle algebra

The simplest elements of \mathscr{A}° are the factorized elements: $\quad \quad E_{k}(x ; p):=\prod_{1 \leq i<i \leq k} \frac{\left(x_{i}-p x_{j}\right)\left(x_{i}-p^{-1} x_{j}\right)}{\left(x_{i}-q t^{-1} x_{j}\right)\left(x_{i}-t q^{-1} x_{j}\right)}, \quad p=q, t^{-1}, t q^{-1}$
[Feigin-Odesskii]

Commutative shuffle algebra

The simplest elements of \mathscr{A}^{0} are the factorized elements: $\quad E_{k}(x ; p):=\prod_{1 \leq i<i \leq k} \frac{\left(x_{i}-p x_{j}\right)\left(x_{i}-p^{-1} x_{j}\right)}{\left(x_{i}-q t^{-1} x_{j}\right)\left(x_{i}-t q^{-1} x_{j}\right)}, \quad p=q, t^{-1}, t q^{-1}$
[Feigin-Odesskii]

Let $\left(p, p^{\prime}, p^{\prime \prime}\right)$ be a permutation of $\left(q, t^{-1}, t q^{-1}\right)$.
Another example of elements of \mathscr{A}° is given by determinants: [lzergin]
$H_{k}(x ; p):=f(x) \operatorname{det}_{1 \leq i, j \leq k} \frac{1}{\left(x_{i}-p^{\prime} x_{j}\right)\left(x_{j}-p^{\prime \prime} x_{i}\right)}$
$f(x)$ is composed of simple factors hich fix the poles s.t: $H_{k} \in \mathscr{l ^ { \circ }}$

Commutative shuffle algebra

The simplest elements of \mathscr{A}° are the factorized elements: [Feigin-Odesskii]	$E_{k}(x ; p):=\prod_{1 \leq i<j \leq k} \frac{\left(x_{i}-p x_{j}\right)\left(x_{i}-p^{-1} x_{j}\right)}{\left(x_{i}-q t^{-1} x_{j}\right)\left(x_{i}-t q^{-1} x_{j}\right)},$	$p=q, t^{-1}, t q^{-1}$
Let ($p, p^{\prime}, p^{\prime \prime}$) be a permutation of ($q, t^{-1}, t q^{-1}$). Another example of elements of \mathscr{A}° is given by determinants: [lzergin]	$H_{k}(x ; p):=f(x) \underset{1 \leq i, j \leq k}{\operatorname{det}} \frac{1}{\left(x_{i}-p^{\prime} x_{j}\right)\left(x_{j}-p^{\prime \prime} x_{i}\right)}$	$f(x)$ is composed of simple factors which fix the poles s.t.: $H_{k} \in \mathscr{\mathscr { A } ^ { \circ }}$
A third type of elements given by a symmetrization formula: [Negut]	$S_{k}(x):=c_{k}(q, t) \sum_{\sigma \in S_{k}} \sigma\left(\frac{\sum_{j=0}^{k-1}\left(q t^{-1}\right){ }^{\text {j }} x_{j+1} / x_{1}}{\prod_{j=1}^{k-1}\left(1-q t^{-1} x_{j+1} / x_{j}\right)}\right.$	$\left.\prod_{i<k} \frac{\left(x_{j}-q x_{i}\right)\left(x_{j}-t^{-1} x_{i}\right)}{\left(x_{j}-x_{i}\right)\left(x_{i}-q t^{-1} x_{i}\right)}\right)$

Commutative shuffle algebra

The simplest elements of \mathscr{A}° are the factorized elements: $\quad E_{k}(x ; p):=\prod_{1 \leq i<j \leq k} \frac{\left(x_{i}-p x_{j}\right)\left(x_{i}-p^{-1} x_{j}\right)}{\left(x_{i}-q t^{-1} x_{j}\right)\left(x_{i}-t q^{-1} x_{j}\right)}, \quad p=q, t^{-1}, t q^{-1}$
[Feigin-Odesskii]

Let $\left(p, p^{\prime}, p^{\prime \prime}\right)$ be a permutation of $\left(q, t^{-1}, t q^{-1}\right)$.
Another example of elements of \mathscr{A}° is given by determinants:
$H_{k}(x ; p):=f(x) \underset{1 \leq i, j \leq k}{\operatorname{det}} \frac{1}{\left(x_{i}-p^{\prime} x_{j}\right)\left(x_{j}-p^{\prime \prime} x_{i}\right)}$
$f(x)$ is composed of simple factors
which fix the poles st: $H_{\iota} \in \mathscr{A}$ [lzergin]
$S_{k}(x):=c_{k}(q, t) \sum_{\sigma \in \mathcal{S}_{k}} \sigma\left(\frac{\sum_{j=0}^{k-1}\left(q t^{-1}\right)^{j} x_{j+1} / x_{1}}{\prod_{j=1}^{k-1}\left(1-q t^{-1} x_{j+1} / x_{j}\right)} \prod_{1 \leq i<i j \leq k} \frac{\left(x_{j}-q x_{i}\right)\left(x_{j}-t^{-1} x_{x_{j}}\right)}{\left(x_{j}-x_{i}\right)\left(x_{i}-q t^{-1} x_{i}\right)}\right)$

$$
\left(\prod_{j=1}^{\sim}\left(1-q t^{-1} x_{j+1} / x_{j}\right) 1 \leq i<i j k\left(x_{j}-x_{i}\right)\left(x_{i}-q t-x_{i}\right)\right.
$$

Lemma: The generating functions of $E_{k}(x ; p), H_{k}(x ; p)$ are equal to shuffle-exponentials:
$E(v \mid p)=\sum_{k=0}^{\infty} v^{k} E_{k}(x ; p)=\exp _{*}\left(\sum_{r>0} \frac{(-1)^{r+1}}{r} d_{r} v^{r} S_{r}(x)\right), \quad H(v \mid p)=\sum_{k=0}^{\infty} v^{k} H_{k}(x ; p)=\exp _{*}\left(\sum_{r>0} \frac{1}{r} d_{r} v^{r} S_{r}(x)\right) \quad \begin{aligned} & \text { where: } \\ & d_{r}=\frac{1-p^{r}}{1-q^{r}}\left(\frac{(t-q)^{r}}{(1-p)^{r}}\right.\end{aligned}$

Partition functions as elements of \mathscr{A}°

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

loop content:
λ_{1} loops of colour 1
λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x 's.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$T_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$T_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$I_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$I_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x 's.
$T_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$I_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
$T_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x 's.

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$
	λ_{1} loop content: of colour 1
\cdots	
\cdots	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
2) Wheel conditions. Set $\left(x_{1}, x_{2}, x_{3}\right)=\left(q t^{-1} x, x, t^{-1} x\right)$

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	loop content:
$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$	λ_{1} loops of colour 1
\cdots	
	λ_{n} loops of colour n
	$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x 's.
2) Wheel conditions. Set $\left(x_{1}, x_{2}, x_{3}\right)=\left(q t^{-1} x, x, t^{-1} x\right)$

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}:$	$T_{\lambda}(x)$ is the partition function with fixed
	$T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)$
	λ_{1} loop content: of colour 1
\cdots	
\cdots	λ_{n} loops of colour n
$\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops	

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in x^{\prime} s.
2) Wheel conditions. Set $\left(x_{1}, x_{2}, x_{3}\right)=\left(q t^{-1} x, x, t^{-1} x\right)$

Partition functions as elements of \mathscr{A}°

Expand the partition function $T_{N}(x ; z)$ in monomials $z^{\lambda}:=z_{0}^{\lambda_{0}} z_{1}^{\lambda_{1}} \ldots z_{n}^{\lambda_{n}}$:

$$
T_{N}(x ; z)=\sum_{\lambda} z^{\lambda} T_{\lambda}(x)
$$

Lemma: $T_{\lambda}(x)=T_{\lambda}\left(x_{1} \ldots x_{N}\right) \in \mathscr{A}^{\circ}$
Proof:

1) $T_{\lambda}\left(x_{1} \ldots x_{N}\right)$ is a symmetric function in $x^{\text {'s. }}$
2) Wheel conditions. Set $\left(x_{1}, x_{2}, x_{3}\right)=\left(q t^{-1} x, x, t^{-1} x\right)$
3) Proof of $\lim _{\epsilon \rightarrow 0} T_{\lambda}\left(\epsilon^{ \pm 1} x_{1}, \ldots, \epsilon^{ \pm 1} x_{r}, x_{r+1}, \ldots, x_{N}\right)=\kappa<\infty$ is similar in spirit.
$T_{\lambda}(x)$ is the partition function with fixed loop content. λ_{1} loops of colour 1
λ_{n} loops of colour n $\lambda_{0}=N-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ "empty" loops
```
Lemma: }\mp@subsup{T}{\lambda}{}(x)=\mp@subsup{T}{\lambda}{}(\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{N}{})\in\mathscr{A
Proof:
*)
3) Proof of }\mp@subsup{\operatorname{lim}}{\epsilon->0}{}\mp@subsup{T}{\lambda}{}(\mp@subsup{\epsilon}{}{\pm1}\mp@subsup{x}{1}{},\ldots,\mp@subsup{\epsilon}{}{\pm1}\mp@subsup{x}{r}{},\mp@subsup{x}{r+1}{},\ldots,\mp@subsup{x}{N}{})=\kappa<\infty\mathrm{ is similar in spirit.
```


Computing T_{N}

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)
$T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in[0,1,1)^{w_{1}}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle$

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0, \ldots 1)^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0 \ldots 1\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Statement 1: Let P_{i} be the permutation matrix. There exists a transformation F such that:

$$
\widetilde{W}_{N}(x ; y):=F_{N}(y) W_{N}(x ; y) F_{N}^{-1}(x) \quad \text { satisfies: } \quad \begin{aligned}
\widetilde{W}_{N}(x ; y) P_{i} & =\widetilde{W}_{N}\left(\ldots x_{i+1}, x_{i} \ldots ; y\right) \\
P_{i} \widetilde{W}_{N}(x ; y) & =\widetilde{W}_{N}\left(x ; \ldots y_{i+1}, y_{i} \ldots\right)
\end{aligned}
$$

This implies that computing one matrix element of \widetilde{W}_{N} is enough to recover all of them.

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0 \ldots 1\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Statement 1: Let P_{i} be the permutation matrix. There exists a transformation F such that:

$$
\widetilde{W}_{N}(x ; y):=F_{N}(y) W_{N}(x ; y) F_{N}^{-1}(x) \quad \text { satisfies: } \quad \begin{aligned}
& \widetilde{W}_{N}(x ; y) P_{i}=\widetilde{W}_{N}\left(\ldots x_{i+1}, x_{i} \ldots ; y\right) \\
& P_{i} \widetilde{W}_{N}(x ; y)=\widetilde{W}_{N}\left(x ; \ldots y_{i+1}, y_{i} \ldots\right)
\end{aligned}
$$

This implies that computing one matrix element of \widetilde{W}_{N} is enough to recover all of them.

Statement 2 Denote by $D(x ; y)$ the domain wall partition functions, then:

$$
\widetilde{W}_{\left(0^{N-k} 1^{k}\right)}^{\left(1^{k} N-k\right)}(x ; y)=\prod_{1 \leq i<j \leq N} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}} \times W_{\left(0^{N-k} 1^{k}\right)}^{\left(1^{k} 0^{N-k}\right)}(x ; y)
$$

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0 \ldots 1\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Statement 1: Let P_{i} be the permutation matrix. There exists a transformation F such that:

$$
\widetilde{W}_{N}(x ; y):=F_{N}(y) W_{N}(x ; y) F_{N}^{-1}(x) \quad \text { satisfies: } \quad \begin{aligned}
& \widetilde{W}_{N}(x ; y) P_{i}=\widetilde{W}_{N}\left(\ldots x_{i+1}, x_{i} \ldots ; y\right) \\
& P_{W_{X}}(x ; y)=\widetilde{W}_{N}\left(x ; \ldots y_{i+1}, y_{i} \ldots\right)
\end{aligned}
$$

This implies that computing one matrix element of \widetilde{W}_{N} is enough to recover all of them.

Statement 2 Denote by $D(x ; y)$ the domain wall partition functions, then:

$$
\widetilde{W}_{\left(0^{N-k} l^{k}\right)}^{\left(1^{k} N-k\right)}(x ; y)=\prod_{1 \leq i<j \leq N} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}} \times W_{\left(0^{N-k} k^{k}\right)}^{\left(1^{k} 0^{N-k}\right)}(x ; y)
$$

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0 \ldots 1\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Statement 1: Let P_{i} be the permutation matrix. There exists a transformation F such that:

$$
\widetilde{W}_{N}(x ; y):=F_{N}(y) W_{N}(x ; y) F_{N}^{-1}(x) \quad \text { satisfies: } \quad \begin{aligned}
& \widetilde{W}_{N}(x ; y) P_{i}=\widetilde{W}_{N}\left(\ldots x_{i+1}, x_{i} \ldots ; y\right) \\
& P_{i} \widetilde{W}_{N}(x ; y)=\widetilde{W}_{N}\left(x ; \ldots y_{i+1}, y_{i} \ldots\right)
\end{aligned}
$$

This implies that computing one matrix element of \widetilde{W}_{N} is enough to recover all of them.

Statement 2 Denote by $D(x ; y)$ the domain wall partition functions, then:

$$
\widetilde{W}_{\left(0^{N-k} 1^{k}\right)}^{\left(1^{k} N-k\right)}(x ; y)=\prod_{1 \leq i<j \leq N} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}} \times W_{\left(0^{N-k} 1^{k}\right)}^{\left(1^{k} 0^{N-k}\right)}(x ; y)
$$

Computing T_{N}

Consider the case of paths of single colour (six vertex case $n=1$)

$$
T_{N}\left(x ; z_{0}, z_{1}\right):=\sum_{\alpha \in\{0 \ldots 1\}^{N}} z_{\alpha_{1}} \cdots z_{\alpha_{N}}\langle\alpha| W_{N}(x ; q x)|\alpha\rangle
$$

Statement 1: Let P_{i} be the permutation matrix. There exists a transformation F such that:

$$
\widetilde{W}_{N}(x ; y):=F_{N}(y) W_{N}(x ; y) F_{N}^{-1}(x) \quad \text { satisfies: } \quad \begin{aligned}
& \widetilde{W}_{N}(x ; y) P_{i}=\widetilde{W}_{N}\left(\ldots x_{i+1}, x_{i} \ldots ; y\right) \\
& P_{i} \widetilde{W}_{N}(x ; y)=\widetilde{W}_{N}\left(x ; \ldots y_{i+1}, y_{i} \ldots\right)
\end{aligned}
$$

This implies that computing one matrix element of \widetilde{W}_{N} is enough to recover all of them.

Statement 2 Denote by $D(x ; y)$ the domain wall partition functions, then:

$$
\widetilde{W}_{\left(0^{N-k} 1^{k}\right)}^{\left(k^{N-k}\right)}(x ; y)=\prod_{1 \leq i<j \leq N} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}} \times W_{\left(0^{N-k} l^{(k)}\right)}^{\left(k^{N-k}\right)}(x ; y) \quad W_{\left(0^{N-k} 1^{(k)}\right.}^{\left(1^{N-k}\right)}(x ; y)=\prod_{i, j>k} \frac{y_{i}-x_{j}}{y_{i}-t x_{j}} \times D\left(x_{1} \ldots x_{k} ; y_{N-k+1} \ldots y_{N}\right)
$$

Computing T_{N}

Computing T_{N}

After simple algebra we get:

$$
T_{N}\left(x ; z_{0}, z_{1}\right)=\sum_{k=0}^{N} z_{0}^{N-k} z_{1}^{k} \frac{\left(1-t^{-1}\right)^{k}}{\left(1-q t^{-1}\right)^{k}} H_{k}\left(t^{-1}\right) * E_{N-k}\left(t q^{-1}\right)
$$

Computing T_{N}
After simple algebra we get:

$$
T_{N}\left(x ; z_{0}, z_{1}\right)=\sum_{k=0}^{N} z_{0}^{N-k} z_{1}^{k} \frac{\left(1-t^{-1}\right)^{k}}{\left(1-q t^{-1}\right)^{k}} H_{k}\left(t^{-1}\right) * E_{N-k}\left(t q^{-1}\right)
$$

Summing $T_{N}\left(x ; z_{0}, z_{1}\right)$ with the generating parameter gives the shuffle exponential:

$$
T(v \mid x ; z)=\exp _{*}\left(-\sum_{k>0} \frac{v^{k}}{k}\left(z_{1}^{k}+\frac{q^{k}-t^{k}}{1-t^{k}} z_{0}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

Computing T_{N}
After simple algebra we get:

$$
T_{N}\left(x ; z_{0}, z_{1}\right)=\sum_{k=0}^{N} z_{0}^{N-k} z_{1}^{k} \frac{\left(1-t^{-1}\right)^{k}}{\left(1-q t^{-1}\right)^{k}} H_{k}\left(t^{-1}\right) * E_{N-k}\left(t q^{-1}\right)
$$

Summing $T_{N}\left(x ; z_{0}, z_{1}\right)$ with the generating parameter gives the shuffle exponential:

$$
T(v \mid x ; z)=\exp _{*}\left(-\sum_{k>0} \frac{v^{k}}{k}\left(z_{1}^{k}+\frac{q^{k}-t^{k}}{1-t^{k}} z_{0}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

The coloured case follows the same logic.

Computing T_{N}
After simple algebra we get:

$$
T_{N}\left(x ; z_{0}, z_{1}\right)=\sum_{k=0}^{N} z_{0}^{N-k} z_{1}^{k} \frac{\left(1-t^{-1}\right)^{k}}{\left(1-q t^{-1}\right)^{k}} H_{k}\left(t^{-1}\right) * E_{N-k}\left(t q^{-1}\right)
$$

Summing $T_{N}\left(x ; z_{0}, z_{1}\right)$ with the generating parameter gives the shuffle exponential:

$$
T(v \mid x ; z)=\exp _{*}\left(-\sum_{k>0} \frac{v^{k}}{k}\left(z_{1}^{k}+\frac{q^{k}-t^{k}}{1-t^{k}} z_{0}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

The coloured case follows the same logic.
Including supersymmetric Boltzmann weights leads to a model with mixtures of "bosonic" and "fermionic" paths. In this case:

$$
T(v \mid x ; z)=\exp _{*}\left(-\sum_{k>0} \frac{v^{k}}{k}\left(-w_{1}^{k}-\cdots-w_{m}^{k}+z_{1}^{k}+\cdots+z_{n}^{k}+\frac{q^{k}-t^{k}}{1-t^{k}} z_{0}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

where w_{i} count fermionic paths.
$T(x ; w)$ as a mixed Macdonald Cauchy kernel
$T(x ; w)$ as a mixed Macdonald Cauchy kernel
Consider the Boltzmann weights of $U_{q}\left(s l_{1 \mid m}\right)$ i.e. all m fermionic paths and set $z_{0}=0$, then:

$$
T(x ; w)=\exp _{*}\left(\sum_{k>0} \frac{1}{k}\left(w_{1}^{k}+\cdots+w_{m}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

$T(x ; w)$ as a mixed Macdonald Cauchy kernel
Consider the Boltzmann weights of $U_{q}\left(s l_{1 \mid m}\right)$ i.e. all m fermionic paths and set $z_{0}=0$, then:

$$
T(x ; w)=\exp _{*}\left(\sum_{k>0} \frac{1}{k}\left(w_{1}^{k}+\cdots+w_{m}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand $T(x ; w)$ in Macdonald polynomials $P_{\lambda}(w)$:

$$
T(x ; w)=\sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)
$$

$T(x ; w)$ as a mixed Macdonald Cauchy kernel
Consider the Boltzmann weights of $U_{q}\left(s l_{1 \mid m}\right)$ i.e. all m fermionic paths and set $z_{0}=0$, then:

$$
T(x ; w)=\exp _{*}\left(\sum_{k>0} \frac{1}{k}\left(w_{1}^{k}+\cdots+w_{m}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand $T(x ; w)$ in Macdonald polynomials $P_{\lambda}(w)$:

$$
T(x ; w)=\sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)
$$

F_{λ} is the "Macdonald function" of \mathscr{A}. Using rep theory of \mathscr{A} [Feigin-Tsymbaliuk '09, Schiffmann-Vasserot, '09] we can derive:

$$
\mathrm{ev}_{\mu / \nu}\left(F_{\lambda}\right) \propto f_{\lambda, \nu}^{\mu}
$$

where $\mathrm{ev}_{\mu / \nu}\left(x_{i}\right)=$ content of i-th box of diagram of μ / ν
$T(x ; w)$ as a mixed Macdonald Cauchy kernel
Consider the Boltzmann weights of $U_{q}\left(s l_{1 \mid m}\right)$ i.e. all m fermionic paths and set $z_{0}=0$, then:

$$
T(x ; w)=\exp _{*}\left(\sum_{k>0} \frac{1}{k}\left(w_{1}^{k}+\cdots+w_{m}^{k}\right) L_{k}\left(x_{1} \ldots x_{k}\right)\right)
$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand $T(x ; w)$ in Macdonald polynomials $P_{\lambda}(w)$:

$$
T(x ; w)=\sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)
$$

F_{λ} is the "Macdonald function" of \mathscr{A}. Using rep theory of \mathscr{A} [Feigin-Tsymbaliuk '09, Schiffmann-Vasserot, '09] we can derive:

$$
\operatorname{ev}_{\mu / \nu}\left(F_{\lambda}\right) \propto f_{\lambda, \nu}^{\mu}
$$

where $\mathrm{ev}_{\mu / \nu}\left(x_{i}\right)=$ content of i-th box of diagram of μ / ν.
Proposition [AG, A Gunna '23]:

$$
\operatorname{ev}_{\mu / \nu}(T(x ; w))=\operatorname{const} P_{\mu / \nu}(w)
$$

Example

Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have $\mathrm{ev}_{(2,1) /(1)}\left(x_{1}, x_{2}\right)=\left(q, t^{-1}\right)$ and

Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have $\mathrm{ev}_{(2,1) /(1)}\left(x_{1}, x_{2}\right)=\left(q, t^{-1}\right)$ and

$$
\begin{aligned}
& \propto w_{1}^{2}+\frac{(1-t)(2+q+t+2 q t)}{1-q t^{2}} w_{1} w_{2}+w_{2}^{2}
\end{aligned}
$$

