Shuffle algebras and lattice paths

IPAM workshop "Vertex Models: Algebraic and Probabilistic Aspects of Universality"

Alexandr Garbali, University of Melbourne, May 2024

Based on works with Paul Zinn-Justin and Ajeeth Gunna

Overview

- Lattice paths
- Partition functions
- An algebraic tool
- Computation of partition functions
- Application to skew Macdonald polynomials

Lattice paths	

Lattice paths Consider lattice paths on square lattice

	Lattice paths	
Consider lattice paths on square lattice		

Consider lattice paths on square lattice

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex: straight turning north turning east • Paths do not share edges

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex:
 straight
 turning north
- turning east
 Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1 to denote unoccupied/occupied boundary edges

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex:
 straight
 turning north
- turning east
 Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1 to denote unoccupied/occupied boundary edges

Consider lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps at vertex:

straight turning north

turning east
• Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1 to denote unoccupied/occupied boundary edges

Coloured lattice paths	

Consider coloured lattice paths Consider coloured lattice paths on square lattice

Coloured lattice paths	
Consider coloured lattice paths on square lattice	

Consider coloured lattice paths on square lattice

Consider coloured lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps:

straight turning north turning east

turning east
• Paths do not share edges

Consider coloured lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps:

straight turning north turning east

turning east
• Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1/2 to denote none/red/green path on boundary edges

Consider coloured lattice paths on square lattice

Rules:

- Path starts at a bottom or left boundary edge
- Path ends at a top or right edge
- Path makes unit steps:

straight turning north turning east

• Paths do not share edges

Consider all lattice paths with fixed starting and ending points.

Use 0/1/2 to denote none/red/green path on boundary edges

Lattice paths: special boundary conditions	

Domain wall boundary conditions:

Domain wall boundary conditions:

Domain wall boundary conditions:

Rainbow domain wall boundary conditions:

Domain wall boundary conditions:

Rainbow domain wall boundary conditions:

Lattice paths: special boundary conditions	

Trace boundary conditions:

Picking coefficient of z_1z_2 gives 32 configurations among which:

Trace boundary conditions:

Picking coefficient of $z_1 z_2$ gives 32 configurations among which:

The coefficients of z_i^3 produce domain wall boundaries for paths of colour i.

Lattice paths and partition functions	

The rules for drawing lattice paths imply the following local configurations where \underline{red} and \underline{green} are \underline{any} two colours i and j (assume that i < j).

The rules for drawing lattice paths imply the following local configurations where \underline{red} and \underline{green} are \underline{any} two colours i and j (assume that i < j).

The rules for drawing lattice paths imply the following local configurations where \underline{red} and \underline{green} are \underline{any} two colours i and j (assume that i < j).

Introduce two parameters $u,t\in\mathbb{C}$. To each local vertex assign Boltzmann weights:

The rules for drawing lattice paths imply the following local configurations where \underline{red} and \underline{green} are \underline{any} two colours i and j (assume that i < j).

Introduce two parameters $u,t\in\mathbb{C}$. To each local vertex assign Boltzmann weights:

$$\frac{1-t}{1-tu} \qquad \frac{(1-t)u}{1-tu} \qquad \frac{t(1-u)}{1-tu} \qquad \frac{1-u}{1-tu}$$

The rules for drawing lattice paths imply the following local configurations where red and green are any two colours i and j (assume that i < j).

Introduce two parameters $u,t\in\mathbb{C}$. To each local vertex assign Boltzmann weights:

$$\frac{1-t}{1-tu} \qquad \frac{(1-t)u}{1-tu} \qquad \frac{t(1-u)}{1-tu} \qquad \frac{1-u}{1-tu}$$

Fix boundary conditions on edges of $N\times N$ lattice. Let $\mathscr C$ be the set of all configurations.

The partition function Z is the sum over $\mathscr C$ weighted by the product of local Boltzmann weights.

The rules for drawing lattice paths imply the following local configurations where red and green are \underline{any} two colours i and j (assume that i < j).

Introduce two parameters $u,t\in\mathbb{C}$. To each local vertex assign Boltzmann weights:

$$\frac{1-t}{1-tu}$$
 $\frac{(1-t)u}{1-tu}$ $\frac{t(1-u)}{1-tu}$ $\frac{1-u}{1-tu}$

Fix boundary conditions on edges of $N\times N$ lattice. Let $\mathscr C$ be the set of all configurations.

The partition function Z is the sum over $\mathscr C$ weighted by the product of local Boltzmann weights.

Lattice paths and partition functions

The rules for drawing lattice paths imply the following local configurations where red and green are \underline{any} two colours i and j (assume that i < j).

Introduce two parameters $u,t\in\mathbb{C}$. To each local vertex assign Boltzmann weights:

$$\frac{1-t}{1-tu} \qquad \frac{(1-t)u}{1-tu} \qquad \frac{t(1-u)}{1-tu} \qquad \frac{1-u}{1-tu}$$

Fix boundary conditions on edges of $N\times N$ lattice. Let $\mathscr C$ be the set of all configurations.

The partition function Z is the sum over $\mathscr C$ weighted by the product of local Boltzmann weights.

ExampleWe consider inhomogeneous partition functions: the u parameter is replaced with $u_{i,j} = x_i/y_j$, with (i,j) being the position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i,j} = x_i/y_j$, with (i,j) being the position of the vertex.

$$Z_{02,12}^{02,12} = \begin{array}{c|c} 0 & 2 \\ y_1 & y_2 \\ 0 & 1 \\ 2 & 2 \end{array} \qquad \begin{array}{c|c} 1 \\ 2 & 2 \\ \end{array}$$

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i,j} = x_i/y_j$, with (i,j) being the position of the vertex.

Example

We consider inhomogeneous partition functions: the u parameter is replaced with $u_{i,j} = x_i/y_j$, with (i,j) being the position of the vertex.

R-matrix			
An efficient way of computing these partition functions is with matrix multiplication.			

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

$$\check{R}(x/y) = \underbrace{\qquad}_{x} = \sum_{a,b,c,d=0}^{n} a \underbrace{\stackrel{b}{\stackrel{y}{=}}}_{c} d |a,c\rangle\langle b,d|$$

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

For
$$n = 1$$
:

$$\check{R}(x/y) = \frac{\int_{a,b,c,d=0}^{y} \int_{a}^{b} \int_{c}^{b} d |a,c\rangle\langle b,d| \qquad \check{R}(x/y) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{(1-t)x}{y-tx} & \frac{y-x}{y-tx} & 0 \\ 0 & \frac{t(y-x)}{y-tx} & \frac{(1-t)y}{y-tx} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\check{R}(x/y) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{(1-t)x}{y-tx} & \frac{y-x}{y-tx} & 0 \\
0 & \frac{t(y-x)}{y-tx} & \frac{(1-t)y}{y-tx} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

For
$$n = 1$$
:

$$\check{R}(x/y) = \underbrace{\qquad}_{x} = \sum_{a,b,c,d=0}^{n} a^{\frac{x}{2}} \underbrace{\qquad}_{c}^{b} d \quad |a,c\rangle\langle b,d|$$

$$\check{R}(x/y) = \underbrace{\begin{array}{c} y \\ x = \sum_{a,b,c,d=0}^{n} a \xrightarrow{\frac{x}{2}} d & |a,c\rangle\langle b,d| \\ c & & & & \\ \end{array}}_{x} \underbrace{\begin{array}{c} b \\ 0 & \frac{(1-t)x}{y-tx} & \frac{y-x}{y-tx} & 0 \\ 0 & \frac{t(y-x)}{y-tx} & \frac{(1-t)y}{y-tx} & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}}_{x} = \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{array}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}}_{x} \underbrace{\begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0$$

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

For
$$n = 1$$
:

$$\check{R}(x/y) = \underbrace{\qquad}_{x = \sum_{a,b,c,d=0}^{n}} a^{\frac{b}{y}} d |a,c\rangle\langle b,d|$$

Role of arrows: order of matrix multiplication follows the flow of arrows.

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

For
$$n = 1$$
:

$$\check{R}(x/y) = \underbrace{\qquad}_{x = \sum_{a,b,c,d=0}^{n}} a \underbrace{\stackrel{b}{\stackrel{y}{=}}}_{c} d |a,c\rangle\langle b,d|$$

Role of arrows: order of matrix multiplication follows the flow of arrows.

The *R*-matrix satisfies the *Yang*—*Baxter* equation:

$$\check{R}_1(z/y)\check{R}_2(z/x)\check{R}_1(y/x) = \check{R}_2(y/x)\check{R}_1(z/x)\check{R}_2(z/y)$$

where
$$\check{R}_1(u)=\check{R}(u)\otimes I$$
 and $\check{R}_2(u)=I\otimes \check{R}(u)$

An efficient way of computing these partition functions is with matrix multiplication.

Define the *R*-matrix:

For
$$n = 1$$
:

$$\check{R}(x/y) = \underbrace{\qquad}_{x} = \sum_{a,b,c,d=0}^{n} a^{\frac{x}{2}} \underbrace{\qquad}_{c} d |a,c\rangle\langle b,d|$$

$$\check{R}(x/y) = \underbrace{\begin{array}{c} y \\ x = \sum_{a,b,c,d=0}^{n} a \xrightarrow{y} \\ c \end{array}} d \quad |a,c\rangle\langle b,d| \qquad \qquad \check{R}(x/y) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{(1-t)x}{y-tx} & \frac{y-x}{y-tx} & 0 \\ 0 & \frac{t(y-x)}{y-tx} & \frac{(1-t)y}{y-tx} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Role of arrows: order of matrix multiplication follows the flow of arrows.

The *R*-matrix satisfies the *Yang*—*Baxter* equation:

$$\check{R}_{1}(z/y)\check{R}_{2}(z/x)\check{R}_{1}(y/x) = \check{R}_{2}(y/x)\check{R}_{1}(z/x)\check{R}_{2}(z/y)$$

where
$$\check{R}_1(u)=\check{R}(u)\otimes I$$
 and $\check{R}_2(u)=I\otimes \check{R}(u)$

Partition functions

We compute any partition function by multiplying $\ensuremath{\mathit{R}}$ -matrices and taking matrix elements.

$$Z_N(x;y) := \check{R}_N(x_N/y_1)\check{R}_{N-1}(x_{N-1}/y_1)\check{R}_{N+1}(x_N/y_2)\cdots\check{R}_N(x_1/y_N)$$

We compute any partition function by multiplying R-matrices and taking matrix elements.

$$Z_N(x;y) := \check{R}_N(x_N/y_1) \check{R}_{N-1}(x_{N-1}/y_1) \check{R}_{N+1}(x_N/y_2) \cdots \check{R}_N(x_1/y_N)$$

We compute any partition function by multiplying R-matrices and taking matrix elements.

$$Z_N(x;y) := \check{R}_N(x_N/y_1) \check{R}_{N-1}(x_{N-1}/y_1) \check{R}_{N+1}(x_N/y_2) \cdots \check{R}_N(x_1/y_N)$$

Let $q \in \mathbb{C}$. In the following we specialize: $y_i = qx_i$.

We compute any partition function by multiplying R-matrices and taking matrix elements.

$$Z_N(x;y) := \check{R}_N(x_N/y_1)\check{R}_{N-1}(x_{N-1}/y_1)\check{R}_{N+1}(x_N/y_2)\cdots\check{R}_N(x_1/y_N)$$

Let $q \in \mathbb{C}$. In the following we specialize: $y_i = qx_i$.

The conic partition function is a partial trace of Z_N :

$$T_N(x;z_0\ldots z_n):=\sum_{\alpha\in\{0\ldots n\}^N}z_{\alpha_1}\ \cdots\ z_{\alpha_N}\langle 0^N,\alpha\,|\,Z_N(x;qx)\,|\,0^N,\alpha\rangle$$

We compute any partition function by multiplying R-matrices and taking matrix elements.

$$Z_N(x;y) := \check{R}_N(x_N/y_1)\check{R}_{N-1}(x_{N-1}/y_1)\check{R}_{N+1}(x_N/y_2)\cdots\check{R}_N(x_1/y_N)$$

Let $q \in \mathbb{C}$. In the following we specialize: $y_i = qx_i$.

The conic partition function is a partial trace of Z_N :

$$T_N(x; z_0...z_n) := \sum_{\alpha \in \{0...n\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle 0^N, \alpha | Z_N(x; qx) | 0^N, \alpha \rangle$$

Conic partition function

Goal. Compute the grand canonical partition function on the cone:

$$T(v \mid x; z) = \sum_{N=0}^{\infty} v^N T_N(x; z)$$

Goal. Compute the grand canonical partition function on the cone:

$$T(v \mid x; z) = \sum_{N=0}^{\infty} v^N T_N(x; z)$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$\Xi = \sum_{N=0}^{\infty} \sum_{\text{states}} e^{-\beta(E_N - \mu N)} = e^{\Phi(T, \mu)}$$

Goal. Compute the grand canonical partition function on the cone:

$$T(v | x; z) = \sum_{N=0}^{\infty} v^N T_N(x; z)$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$\Xi = \sum_{N=0}^{\infty} \sum_{\text{states}} e^{-\beta(E_N - \mu N)} = e^{\Phi(T, \mu)}$$

Our problem involves an interacting system but Yang—Baxter integrable. We find a shuffle-exponential expression for $T(v \mid x; z)$.

Goal. Compute the grand canonical partition function on the cone:

$$T(v \mid x; z) = \sum_{N=0}^{\infty} v^N T_N(x; z)$$

In non-interacting many body systems grand canonical partition functions can be resumed and written in exponential form:

$$\Xi = \sum_{N=0}^{\infty} \sum_{\text{states}} e^{-\beta(E_N - \mu N)} = e^{\Phi(T, \mu)}$$

Our problem involves an interacting system but Yang – Baxter integrable. We find a shuffle-exponential expression for $T(v \mid x; z)$.

Theorem [AG, A Gunna '23]:

$$T(v \mid x; z) = \exp_* \left(-\sum_{k>0} \frac{v^k}{k} \left(z_1^k + \dots + z_n^k + \frac{q^k - t^k}{1 - t^k} z_0^k \right) L_k(x_1 \dots x_k) \right)$$

where $\exp_* A = 1 + A + 1/2! A * A + 1/3! A * A * A + \cdots$ and $L_k(x_1...x_k)$ is another "small" conic partition function (with two types of paths) which has and explicit expression as a rational function in x_i .

i ne snuπie algebra
Ine snume algebra Consider the vector space of symmetric rational functions: $V = \bigoplus_{k \geq 0} \mathbb{Q}(q,t)(x_1x_k)^{\mathcal{S}_n}$

Consider the vector space of symmetric rational functions:
$$V = \bigoplus_{k \geq 0} \mathbb{Q}(q,t) (x_1 \dots x_k)^{\mathcal{S}_n}$$

Multiplication of two elements $F, G \in V$:

$$F(x_1...x_k) * G(x_1...x_l) = \sum_{\sigma \in \mathcal{S}_{k+l}/\mathcal{S}_k \times \mathcal{S}_l} \sigma \left(F(x_1...x_k)G(x_{k+1}...x_{k+l}) \prod_{\substack{i \in 1...k \\ j \in k+1...k+l}} \frac{(x_j - qx_i)(x_j - t^{-1}x_i)}{(x_j - x_i)(x_i - qt^{-1}x_i)} \right)$$

Consider the vector space of symmetric rational functions: $V = \bigoplus_{k \geq 0} \mathbb{Q}(q,t) (x_1 \dots x_k)^{\mathcal{S}_n}$

Multiplication of two elements $F, G \in V$:

$$F(x_1...x_k) * G(x_1...x_l) = \sum_{\sigma \in \mathcal{S}_{k+l} / \mathcal{S}_k \times \mathcal{S}_l} \sigma \left(F(x_1...x_k) G(x_{k+1}...x_{k+l}) \prod_{\substack{i \in 1...k \\ j \in k+1...k+l}} \frac{(x_j - qx_i)(x_j - t^{-1}x_i)}{(x_j - x_i)(x_i - qt^{-1}x_i)} \right)$$

The shuffle algebra ${\mathscr A}$ is the subspace in V of elements of the form:

$$P(x_1...x_k) = \frac{p(x_1...x_k)}{\prod_{1 \le i \ne j \le k} (x_i - qt^{-1}x_j)} \quad \text{s.t.:} \quad p(...x, qt^{-1}x, t^{-1}x...) = p(...x, qt^{-1}x, qx...) = 0$$

Consider the vector space of symmetric rational functions: $V = \bigoplus_{k \geq 0} \mathbb{Q}(q,t) (x_1 \ldots x_k)^{\mathcal{S}_n}$

Multiplication of two elements $F, G \in V$:

$$F(x_1...x_k) * G(x_1...x_l) = \sum_{\sigma \in \mathcal{S}_{k+l} \mid \mathcal{S}_k \times \mathcal{S}_l} \sigma \left(F(x_1...x_k) G(x_{k+1}...x_{k+l}) \prod_{\substack{i \in 1...k \\ j \in k+1...k+l}} \frac{(x_j - qx_i)(x_j - t^{-1}x_i)}{(x_j - x_i)(x_i - qt^{-1}x_i)} \right)$$

The shuffle algebra ${\mathscr A}$ is the subspace in V of elements of the form:

$$P(x_1...x_k) = \frac{p(x_1...x_k)}{\prod_{1 \le i \ne j \le k} (x_i - qt^{-1}x_j)} \quad \text{s.t.:} \quad p(...x, qt^{-1}x, t^{-1}x...) = p(...x, qt^{-1}x, qx...) = 0$$

The commutative shuffle algebra is a subspace $\mathscr{A}^{\circ} \subset \mathscr{A}$ such that:

$$\lim_{\epsilon \to 0} P(\epsilon^{\pm 1} x_1, \dots, \epsilon^{\pm 1} x_r, x_{r+1}, \dots, x_n) = \kappa < \infty$$

Feigin-Odesskii, FHHSY

Commutative sh	uffle algebra

	_	
The simplest elements of \mathscr{A}° are the factorized elements: [Feigin — Odesskii]	$E_k(x;p) := \prod_{1 \leq i < j \leq k} \frac{(x_i - px_j)(x_i - p^{-1}x_j)}{(x_i - qt^{-1}x_j)(x_i - tq^{-1}x_j)}, \qquad p = q, t^{-1}, tq^{-1}$	

The simplest elements of \mathscr{A}° are the factorized elements: [Feigin — Odesskii]

$$E_k(x;p) := \prod_{1 \leq i < j \leq k} \frac{(x_i - px_j)(x_i - p^{-1}x_j)}{(x_i - qt^{-1}x_j)(x_i - tq^{-1}x_j)}, \qquad p = q, t^{-1}, tq^{-1}$$

Let (p,p',p'') be a permutation of (q,t^{-1},tq^{-1}) .

Another example of elements of \mathscr{A}° is given by determinants: [Izergin]

$$H_k(x; p) := f(x) \det_{1 \le i, j \le k} \frac{1}{(x_i - p'x_j)(x_j - p''x_i)}$$

f(x) is composed of simple factors which fix the poles s.t.: $H_k \in \mathscr{A}^{\circ}$

The simplest elements of \mathscr{A}° are the factorized elements: [Feigin-Odesskii]

$$E_k(x;p) := \prod_{1 \leq i < j \leq k} \frac{(x_i - px_j)(x_i - p^{-1}x_j)}{(x_i - qt^{-1}x_j)(x_i - tq^{-1}x_j)}, \qquad p = q, t^{-1}, tq^{-1}$$

Let (p, p', p'') be a permutation of (q, t^{-1}, tq^{-1}) .

Another example of elements of \mathscr{A}° is given by determinants:

$$H_k(x;p) := f(x) \det_{1 \leq i,j \leq k} \frac{1}{(x_i - p'x_j)(x_j - p''x_i)} \qquad \qquad f(x) \text{ is composed of simple factors} \\ \text{which fix the poles s.t.: } H_k \in \mathscr{A}^*$$

A third type of elements given by a symmetrization formula:

$$S_k(x) := c_k(q,t) \sum_{\sigma \in \mathcal{S}_k} \sigma \left(\frac{\sum_{j=0}^{k-1} (qt^{-1})^j x_{j+1}/x_1}{\prod_{j=1}^{k-1} \left(1 - qt^{-1} x_{j+1}/x_j\right)} \prod_{1 \leq i < j \leq k} \frac{(x_j - qx_i)(x_j - t^{-1} x_i)}{(x_j - x_i)(x_i - qt^{-1} x_i)} \right)$$

The simplest elements of \mathscr{A}° are the factorized elements: [Feigin-Odesskii]

$$E_k(x;p) := \prod_{1 \leq i < j \leq k} \frac{(x_i - px_j)(x_i - p^{-1}x_j)}{(x_i - qt^{-1}x_j)(x_i - tq^{-1}x_j)}, \qquad p = q, t^{-1}, tq^{-1}$$

Let (p, p', p'') be a permutation of (q, t^{-1}, tq^{-1}) .

Another example of elements of \mathscr{A}° is given by determinants: [Izergin]

$$H_{\vec{k}}(x;p) := f(x) \det_{1 \leq i,j \leq k} \frac{1}{(x_i - p'x_j)(x_j - p''x_i)} \qquad \qquad f(x) \text{ is composed of simple factors} \\ \text{which fix the poles s.t.: } H_{\vec{k}} \in \mathscr{A}^*$$

A third type of elements given by a symmetrization formula:

$$S_k(x) := c_k(q,t) \sum_{\sigma \in \mathcal{S}_k} \sigma \left(\frac{\sum_{j=0}^{k-1} (qt^{-1})^j x_{j+1} / x_1}{\prod_{j=1}^{k-1} \left(1 - qt^{-1} x_{j+1} / x_j\right)} \prod_{1 \le i < j \le k} \frac{(x_j - qx_i)(x_j - t^{-1} x_i)}{(x_j - x_i)(x_i - qt^{-1} x_i)} \right)$$

<u>Lemma:</u> The generating functions of $E_k(x;p)$, $H_k(x;p)$ are equal to shuffle-exponentials:

$$E(v \mid p) = \sum_{k=0}^{\infty} v^k E_k(x; p) = \exp_* \left(\sum_{r>0} \frac{(-1)^{r+1}}{r} d_r v^r S_r(x) \right), \qquad H(v \mid p) = \sum_{k=0}^{\infty} v^k H_k(x; p) = \exp_* \left(\sum_{r>0} \frac{1}{r} d_r v^r S_r(x) \right)$$
 where:
$$d_r = \frac{1 - p^r}{1 - q^r} \frac{(t - q)^r}{(1 - p)^r} \frac{(t - q)^r}{(1 - q)^r} \frac{(t - q)^r}$$

$$H(v | p) = \sum_{k=0}^{\infty} v^k H_k(x; p) = \exp_* \left(\sum_{r \ge 0} \frac{1}{r} d_r v^r S_r(x) \right)$$

where:
$$d_r = \frac{1 - p^r}{1 - q^r} \frac{(t - q)^r}{(1 - p)^r}$$

Partition functions as elements of \mathscr{A}°	

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

 \ldots λ_n loops of colour n $\lambda_0 = N - (\lambda_1 + \cdots + \lambda_n) \text{ "empty" loops}$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $\underline{\mathsf{Lemma}} : T_{\lambda}(x) = T_{\lambda}(x_1 ... x_N) \in \mathscr{A}^{\circ}$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

 \ldots λ_n loops of colour n $\lambda_0 = N - (\lambda_1 + \cdots + \lambda_n) \text{ "empty" loops}$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour $1\,$

...
$$\lambda_n \text{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour $1\,$

... $\lambda_n \text{ loops of colour } n$ $\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n$$
 loops of colour n
$$\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

...
$$\lambda_n \text{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

Insert empty vertex

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

...
$$\lambda_n \text{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

Use YB equation

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ ``empty'' loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

Use trace property

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

...
$$\lambda_n \mbox{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

Use YB equation

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ ``empty'' loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Remove empty vertex

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\lambda}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 λ_1 loops of colour $1\,$

... $\lambda_n \text{ loops of colour } n$ $\lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \text{ "empty" loops}$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 $\lambda_1 \ \text{loops of colour} \ 1$

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

2) Wheel conditions. Set $(x_1, x_2, x_3) = (qt^{-1}x, x, t^{-1}x)$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{i}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour $1\,$

$$\ldots$$

$$\lambda_n \text{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \cdots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

2) Wheel conditions. Set
$$(x_1, x_2, x_3) = (qt^{-1}x, x, t^{-1}x)$$

$$\lim_{y_1 \to q^2 t^{-1}x} \lim_{y_2 \to qx} (y_1 - qx)(y_2 - qx) \times 0 \xrightarrow{qt^{-1}x} 0 = 0$$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the partition function with fixed loop content:

 $\lambda_1 \ \text{loops of colour} \ 1$

$$\lambda_n \mbox{ loops of colour } n \\ \lambda_0 = N - (\lambda_1 + \dots + \lambda_n) \mbox{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

1) $T_{\lambda}(x_1...x_N)$ is a symmetric function in x's.

2) Wheel conditions. Set $(x_1, x_2, x_3) = (qt^{-1}x, x, t^{-1}x)$

Expand the partition function $T_N(x;z)$ in monomials $z^\lambda:=z_0^{\lambda_0}z_1^{\lambda_1}\cdots z_n^{\lambda_n}$:

$$T_N(x;z) = \sum_{\lambda} z^{\lambda} T_{\lambda}(x)$$

 $T_{i}(x)$ is the partition function with fixed loop content:

 λ_1 loops of colour 1

$$\ldots$$

$$\lambda_n \text{ loops of colour } n$$

$$\lambda_0 = N - (\lambda_1 + \cdots + \lambda_n) \text{ "empty" loops}$$

<u>Lemma</u>: $T_{\lambda}(x) = T_{\lambda}(x_1...x_N) \in \mathscr{A}^{\circ}$

Proof:

- 2) Wheel conditions. Set $(x_1, x_2, x_3) = (qt^{-1}x, x, t^{-1}x)$
- 3) Proof of $\lim_{\epsilon \to 0} T_{\lambda}(\epsilon^{\pm 1}x_1, ..., \epsilon^{\pm 1}x_r, x_{r+1}, ..., x_N) = \kappa < \infty$ is similar in spirit.

Computing T_N

Consider the case of paths of single colour (six vertex case n=1)

$$T_N(x;z_0,z_1) := \sum_{\alpha \in \{0...1\}^N} z_{\alpha_1} \ \cdots \ z_{\alpha_N} \langle \alpha \, | \, W_N(x;qx) \, | \, \alpha \rangle$$

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0...1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0...1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Statement 1: Let P_i be the permutation matrix. There exists a transformation F such that:

$$\begin{split} \widetilde{W}_N(x;y) := F_N(y)W_N(x;y)F_N^{-1}(x) \qquad \text{ satisfies:} \qquad & \widetilde{W}_N(x;y)P_i = \widetilde{W}_N(\ldots x_{i+1},x_i\ldots;y) \\ P_i\widetilde{W}_N(x;y) = \widetilde{W}_N(x;\ldots y_{i+1},y_i\ldots) \end{split}$$

This implies that computing one matrix element of \widetilde{W}_N is enough to recover all of them.

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0...1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Statement 1: Let P_i be the permutation matrix. There exists a transformation F such that:

$$\widetilde{W}_N(x;y) := F_N(y) W_N(x;y) F_N^{-1}(x) \qquad \text{satisfies:} \qquad \widetilde{W}_N(x;y) P_i = \widetilde{W}_N(\ldots x_{i+1}, x_i \ldots; y) \\ P_i \widetilde{W}_N(x;y) = \widetilde{W}_N(x; \ldots, y_{i+1}, y_i \ldots)$$

This implies that computing one matrix element of \widetilde{W}_N is enough to recover all of them.

$$\widetilde{W}_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) = \prod_{1 \le i < j \le N} \frac{x_i - tx_j}{x_i - x_j} \times W_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y)$$

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0 \dots 1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Statement 1: Let P_i be the permutation matrix. There exists a transformation F such that:

$$\begin{split} \widetilde{W}_N(x;y) := F_N(y)W_N(x;y)F_N^{-1}(x) \qquad \text{ satisfies:} \qquad & \widetilde{W}_N(x;y)P_i = \widetilde{W}_N(\ldots x_{i+1},x_i\ldots;y) \\ P_i\widetilde{W}_N(x;y) = \widetilde{W}_N(x;\ldots y_{i+1},y_i\ldots) \end{split}$$

This implies that computing one matrix element of \widetilde{W}_N is enough to recover all of them.

$$\widetilde{W}_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) = \prod_{1 \le i < j \le N} \frac{x_i - tx_j}{x_i - x_j} \times W_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y)$$

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0...1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Statement 1: Let P_i be the permutation matrix. There exists a transformation F such that:

$$\widetilde{W}_N(x;y) := F_N(y) W_N(x;y) F_N^{-1}(x) \qquad \text{satisfies:} \qquad \widetilde{W}_N(x;y) P_i = \widetilde{W}_N(\ldots x_{i+1}, x_i \ldots; y) \\ P_i \widetilde{W}_N(x;y) = \widetilde{W}_N(x; \ldots, y_{i+1}, y_i \ldots)$$

This implies that computing one matrix element of \widetilde{W}_N is enough to recover all of them.

$$\widetilde{W}_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) = \prod_{1 \le i < j \le N} \frac{x_i - tx_j}{x_i - x_j} \times W_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y)$$

Consider the case of paths of single colour (six vertex case n = 1)

$$T_N(x; z_0, z_1) := \sum_{\alpha \in \{0,...1\}^N} z_{\alpha_1} \cdots z_{\alpha_N} \langle \alpha \mid W_N(x; qx) \mid \alpha \rangle$$

Statement 1: Let P_i be the permutation matrix. There exists a transformation F such that:

$$\widetilde{W}_N(x;y) := F_N(y) W_N(x;y) F_N^{-1}(x) \qquad \text{satisfies:} \qquad \begin{aligned} \widetilde{W}_N(x;y) P_i &= \widetilde{W}_N(\ldots x_{i+1}, x_i \ldots; y) \\ P_i \widetilde{W}_N(x;y) &= \widetilde{W}_N(x; \ldots y_{i+1}, y_i \ldots) \end{aligned}$$

This implies that computing one matrix element of \widetilde{W}_N is enough to recover all of them.

$$\widetilde{W}_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) = \prod_{1 \leq i < j \leq N} \frac{x_i - tx_j}{x_i - x_j} \times W_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) \qquad W_{(0^{N-k}1^k)}^{(1^k0^{N-k})}(x;y) = \prod_{i,j > k} \frac{y_i - x_j}{y_i - tx_j} \times D(x_1 \dots x_k; y_{N-k+1} \dots y_N)$$

Computing T_N

After simple algebra we get:

$$T_N(x; z_0, z_1) = \sum_{k=0}^N z_0^{N-k} z_1^k \frac{(1 - t^{-1})^k}{(1 - qt^{-1})^k} H_k(t^{-1}) * E_{N-k}(tq^{-1})$$

After simple algebra we get:

$$T_N(x; z_0, z_1) = \sum_{k=0}^N z_0^{N-k} z_1^k \frac{(1-t^{-1})^k}{(1-qt^{-1})^k} H_k(t^{-1}) * E_{N-k}(tq^{-1})$$

Summing $T_{\it N}(x;z_0,z_1)$ with the generating parameter gives the shuffle exponential:

$$T(v \mid x; z) = \exp_* \left(-\sum_{k>0} \frac{v^k}{k} \left(z_1^k + \frac{q^k - t^k}{1 - t^k} z_0^k \right) L_k(x_1 ... x_k) \right)$$

After simple algebra we get:

$$T_N(x;z_0,z_1) = \sum_{k=0}^N z_0^{N-k} z_1^k \frac{(1-t^{-1})^k}{(1-qt^{-1})^k} H_k(t^{-1}) * E_{N-k}(tq^{-1})$$

Summing $T_{\it N}(x;z_0,z_1)$ with the generating parameter gives the shuffle exponential:

$$T(v \mid x; z) = \exp_* \left(-\sum_{k>0} \frac{v^k}{k} \left(z_1^k + \frac{q^k - t^k}{1 - t^k} z_0^k \right) L_k(x_1 ... x_k) \right)$$

The coloured case follows the same logic.

After simple algebra we get:

$$T_N(x; z_0, z_1) = \sum_{k=0}^{N} z_0^{N-k} z_1^k \frac{(1-t^{-1})^k}{(1-qt^{-1})^k} H_k(t^{-1}) * E_{N-k}(tq^{-1})$$

Summing $T_N(x; z_0, z_1)$ with the generating parameter gives the shuffle exponential:

$$T(v \mid x; z) = \exp_* \left(-\sum_{k>0} \frac{v^k}{k} \left(z_1^k + \frac{q^k - t^k}{1 - t^k} z_0^k \right) L_k(x_1 ... x_k) \right)$$

The coloured case follows the same logic.

Including supersymmetric Boltzmann weights leads to a model with mixtures of "bosonic" and "fermionic" paths. In this case:

$$T(v \mid x; z) = \exp_* \left(-\sum_{k>0} \frac{v^k}{k} \left(-w_1^k - \dots - w_m^k + z_1^k + \dots + z_n^k + \frac{q^k - t^k}{1 - t^k} z_0^k \right) L_k(x_1 \dots x_k) \right)$$

where w_i count fermionic paths.

T(x; w) as a mixed Macdonald Cauchy kernel		

Consider the Boltzmann weights of $U_q(sl_{1\mid m})$ i.e. all m fermionic paths and set $z_0=0$, then:

$$T(x; w) = \exp_* \left(\sum_{k>0} \frac{1}{k} \left(w_1^k + \dots + w_m^k \right) L_k(x_1 \dots x_k) \right)$$

Consider the Boltzmann weights of $U_q(sl_{1\mid m})$ i.e. all m fermionic paths and set $z_0=0$, then:

$$T(x; w) = \exp_* \left(\sum_{k>0} \frac{1}{k} \left(w_1^k + \dots + w_m^k \right) L_k(x_1 \dots x_k) \right)$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand T(x; w) in Macdonald polynomials $P_{\lambda}(w)$:

$$T(x; w) = \sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)$$

Consider the Boltzmann weights of $U_q(sl_{1\mid m})$ i.e. all m fermionic paths and set $z_0=0$, then:

$$T(x; w) = \exp_* \left(\sum_{k>0} \frac{1}{k} \left(w_1^k + \dots + w_m^k \right) L_k(x_1 \dots x_k) \right)$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand T(x; w) in Macdonald polynomials $P_{\lambda}(w)$:

$$T(x; w) = \sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)$$

 F_{λ} is the "Macdonald function" of \mathscr{A} ". Using rep theory of \mathscr{A} [Feigin—Tsymbaliuk '09, Schiffmann—Vasserot, '09] we can derive:

$$\operatorname{ev}_{\mu/\nu}\left(F_{\lambda}\right) \propto f_{\lambda}^{\mu}$$

where $ev_{\mu/\nu}(x_i) = content$ of i-th box of diagram of μ/ν .

Consider the Boltzmann weights of $U_q(sl_{1\mid m})$ i.e. all m fermionic paths and set $z_0=0$, then:

$$T(x; w) = \exp_* \left(\sum_{k>0} \frac{1}{k} \left(w_1^k + \dots + w_m^k \right) L_k(x_1 \dots x_k) \right)$$

This is a mixed Cauchy kernel [Feigin et. al. '10]. Expand T(x; w) in Macdonald polynomials $P_{\lambda}(w)$:

$$T(x; w) = \sum_{\lambda} P_{\lambda}(w) F_{\lambda}(x)$$

 F_{λ} is the "Macdonald function" of \mathscr{A} °. Using rep theory of \mathscr{A} [Feigin—Tsymbaliuk '09, Schiffmann—Vasserot, '09] we can derive:

$$\operatorname{ev}_{\mu/
u}\left(F_{\lambda}\right) \propto f_{\lambda,
u}^{\mu}$$

where $ev_{\mu/\nu}(x_i) = content$ of i-th box of diagram of μ/ν .

Proposition [AG, A Gunna '23]:

$$ev_{\mu/\nu}\left(T(x;w)\right) = const P_{\mu/\nu}(w)$$

Example					
	Compute skew Macdonald polynomial of diagram (21)/(1). We have $ev_{(2,1)/(1)}(x_1,x_2)=(q,t^{-1})$ and				

Example

Compute skew Macdonald polynomial of diagram (21)/(1). We have $ev_{(2,1)/(1)}(x_1,x_2)=(q,t^{-1})$ and