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The six-vertex model

[Lieb’67] [Sutherland’67]
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The Domain Wall boundary conditions
[Korepin’82]







Arctic curves
A=—1/2
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[Lyberg,Korepin,Viti’18]



Arctic curves
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» Conjectural analytic expressions have been around for some time
[FC-Pronko’09]

» Rigorous proof provided for the sole A = 1/2 case
[Aggarwal’19]
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[Lyberg,Korepin,Viti’ 18]




Interface fluctuations




Interface fluctuations

» two different statistics:
P intersection of most external path with diagonal
»> maximum deviation of most external path
» for A = 0, the model is in correspondence with Airy, process;
first statistics is governed by GUE TW [Johansson’00], and
consequently [Corwin-Quastel-Remenik’13] second statistic is
governed by GOE TW




Interface fluctuations (A = 1/2)

Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn’19] (private communication)

[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24]

Collapse of distributions of hy(0) for ASM
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Interface fluctuations (A = 1/2)

Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn’19] (private communication)

[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24]

Collapse of distributions of hy(0) for ASM
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Moreover, indirect but strong hint from [Ayyer—Chhita-Johansson’23],
where GOE TW was proven for the maximum of the most external
path.
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Partition function

° Zy = Z a" bl
. {c}

na+nb+nC:N2

Zy evaluated as an I-K or Hankel determinant [Korepin’82] [Izergin’87]



One-point boundary correlation function H,(Vr)




One-point boundary correlation function H,(Vr)

H,(Vr) evaluated as an |-K or Hankel determinant with one modified column

[Bogoliubov-Pronko-Zvonarev’02]



Emptiness Formation Probability (EFP) F{/**
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Emptiness Formation Probability (EFP) F{/**
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» dicriminates the transition between top-left ordered region and central
disordered region of the curve

> expected stepwise behaviour in correspondence of the Arctic curve
» Multiple Integral Representations (MIRs) provided [FC-Pronko’08][’21]



Multiple Integral Representation for EFP

Generating function of the one-point boundary correlator:
N

hu(z) =Y H{z ™t (1) =1
r=1

Now define:

S

1

hN,s(Zl’ ceey Zs) = m

k _s—k
det [(Zj = 1)z hv—sii(z) I

- symmetric polynomials of order N — 1.

- they provide a new, alternative representation (wrt Izergin-Korepin'one)
for the partially inhomogeneous partition function Zy(A1,..., \s).

- two important properties:

hN,S(Zla ceeyZs—1, 1) — hN,s—l(Zla CRI) Zsfl)
hns(zi, ..., 2s-1,0) = hy(0) hy—1s—1(21, . .., Zs—1)



Multiple Integral Representation for EFP

[FC-Pronko’08]
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Remark: Similar (but somewhat simpler) expressions occur for various
correlation functions of ASEP [Tracy-Widom’08-111, or also of the six-vertex
model (possibly with higher spin, or coloured), but only in its stochastic
version [Borodin-Corwin-Gorin’14] [Borodin-Petrov’16] [Aggarwal-Borodin’16]
[Borodin-Bufetov-Wheeler’16] [Borodin-Corwin-Ferrari’16] [Dimitrov’16]

[Barraquand-Borodin-Corwin’20] [Borodin-Wheeler’20]...



1) restrict to t = 1, and change variables: z; — zjfl, j=1...,s:

where

,_-,(Vr,S) :fc ?{C J,(Vr’s)(zl,...,zs)dsza

S

1 11 [1—2A + z]

CyZs) = . - ;
@iy Lo =i

j=

Zj — Zk
X H S hN,s(Zly--~,Zs)~

1—-2Az + ziz
1<j<k<s k+ iz

2) deform integration contours. Miracolously, poles from double products
give vanishing contribution [FC-Di Giulio-Pronko’21]. Thus

that is:

F,(Vr,s) :f % JI(VS)(Zl,...,Zs)dSZ-
CGlUG GUG

F/i/r75) = Z/k, I = Z Hji dz; H 7{. dsz/(\lrys)(zlv"wZS)
k=0 0 '

|S|=k i€S jese



Two lemmas

Lemma
For arbitrary values of parameters r, s, A,

Io = res ... res J(r’s)z .. Zs) = 1.
0 o 721 N (17 ) s)

(Actually holds for generic values of t as well).

Lemma
At the ice point, A =1/2, t =1, and for r = N — s (square EFP)

—S,S)(

N
Is = res ... res J/(v
z1=0 zs=0

21y - >Zs) = (_1)ShN t hN—s—l—la
where hy = hy(0), etc.

Proof is elementary



And when k # 0,s7?

Recall:
Y M S M
N r o —j+1
STk ics 271 - G 27l J:1 1)5 J
Zi — zk
X H J hN,s(Zla . ,Zs)
1<j<k<s 1—-2Az + Zjzy
where

S

k _s—k
det |(z = 1) 2~ w-son(z)]



Two types of identities (type I)

ha) = fpa g - 8
N-RY 71 _2At+ 82 | hy ’
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Two types of identities (type I)

ha) = fpa g - 8
N-RY 71 _2At+ 82 | hy ’
1 h!! hhy_ . k) I/

W)= — = ) N o N-TN_ 5(] oA 4 2¢2) N1
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valid for any A and t

follows from availability of different MIR's for EFP (see [FC-Di
Giulio-Pronko’21] for details)

relate sums over the set of functions H,(Vr), r=1,...,N to the first few
values of them (sum rules identities)

allow to express the result of integration of our MIRs in terms of the
sole value of hy(z) (and derivatives) at the origin

111

n-a(l) =




Two types of identities (type II)

When A = 1/2 and t = 1 [Zeilberger’96]

h(z) = ((2’\,9)",’\’1125 <__,\£/J\;JI;2N'Z> '

It is easy to derive:

h;V_M_}:()
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Two types of identities (type II)

When A = 1/2 and t = 1 [Zeilberger’96]

(N)Nfl —-N + 17 N
h = ————F .
n(z) (2N)N—12 1l oy z
It is easy to derive:
By He 1

__N=1_~_p
v hnoi 2

hy  hyq  hy  hyeo 7

A

» valid only at ice-point
» follow from standard relation for Gauss hypergeometric functions
» involves only functions hy(z) and derivatives, evaluated at z =0

> allow to express the result of integration of our MIRs in terms of

just 2s — 1 formally independent objects,

hN—S+17 ccog hN, h/[\[v 0aog hs\iil)




Determinant structure
Inspired by [Tracy-Widom’08] [Saenz-Tracy-Widom’22] we assume that, for

each s, an s x s matrix A= A(N, s) exists, such that

s
> Al = det(1 — MA)
k=0
Clearly, from last lemma, detsA = I, for any s.
Below, we shall also observe that
> A is such that by eliminating its last row and colum, the reduction
s—~s—1, N— N —1 is made;
» A can be given explicitely in a factorized form A = DLU.



Determinant structure
Inspired by [Tracy-Widom’08] [Saenz-Tracy-Widom’22] we assume that, for

each s, an s x s matrix A= A(N, s) exists, such that

S
> Al = det(1 — MA)
k=0
Clearly, from last lemma, detsA = I, for any s.
Below, we shall also observe that
> A is such that by eliminating its last row and colum, the reduction
s—~s—1, N— N —1 is made;
» A can be given explicitely in a factorized form A = DLU.
To proceed, it is convenient to introduce the abbreviated notations

bi=hy_j, i=0,1,2,...,5s—1,
and
/ " "
I€/~ _ UN—i li// _ UN—i m _ N—i
| 9 i 9 i )
hn—i hn—i hn—i

Recall that hy = hy(0), hy, = h)(0), etc.



Case s=1
_ 1 dz
F(N-1,1) _% b 2) 92
N o 2(z— 1) v(Z) o

= hn(1) — hn(0)
=1-1b

That is
h=1 h = —bg

as we already knew from our two lemmas.
We are looking for 1 x 1 matrix A such that
det1(1 - A) =1-— by

Thus:
A= by



Case s=2

h=1
h = —b0k6 — by — bokéhllv_l(l) = —trA
h = boby =detA

Use first identity of type |, namely A}, ;(1) = k{ — 1, and get

=1
lh = —by — bo(k})? = —trA
h = boby =detA

If 2 x 2 matrix A exists , it must be such that when by = 0 its top-left
entries is by. Thus

. b1 bl(/il — 1)
A= <b0(/<56+1) bo(11)? )

with DLU factorization:

(b1 0 (1 o0 (1 k-1
=3 ) =gt 1) v=(o )



Case s=3
=1
1!

2
11:—b2—b1(,‘€/1)2—b0 [(?—Ke) +2:‘€6—11 = —trA

ig
2
I3 = —bgby by =detA

2
1
Iy = byby + boby (k})* + boby [1 — kg(1+ k) + } = §[(trA)2 —tr A%]

NB1: here first two identities of type | have been used
NB2: setting by = 0 one recover the s = 2 case, modulo the replacement
bo, b1, ki — b1, ba, ki, thatis N — N — 1.

We may thus obtaine the top-left 2 x 2 block from the s = 2 case.
Completing the sudoku, we get A = DLU, with

b, 0 0 1 0 0 1 ki—1 Ikg—1
D=0 b O0]f,L= Ky +1 1 ol,u=1{o 1 K+ 1
0 0 by k0 —2kg+1 Ky—1 1 0 0 1

NB3: Iy, 1, 5 are easily reproduced. But / is only recovered modulo a term
proportional to k; — k{ + % which however vanish, due to first identity of type Il !



Case s=4

D = diag(bs, by, b1, bg),

1 0 0o 0
- Kh+1 1 0 0
- IRy —2k) +1 Ky —1 1 0
%,{g/_l,.; —kp+1 k-1 Kp+1 1
1 rh—1 Ikf-1 é/ig/— kg +3kg—1
U 0 1 Ky +1 *50—2’10*‘1
0 0 1 Ko — 1
0 0 0 1



Case s=4

D = diag(bs, by, b1, bg),

1 0 0 0
L Kb+ 1 1 0 0
- §H172/€1+1 /{171 1 O
1,{6//_%,% ,@04_1 % -1 /@6—}—1 1
1 rh—1 Zkf-1 éné{’— Ko + 3kg — 1
U 0 1 k) +1 —/@072/<0+1
0 0 1 Ko — 1
0 0 0 1



Case s=4

D = diag(bs, by, b1, by),

1 0 0 0
- ,Q/2_|_1 1 0 0
B O G R SRS S S )
R T R R
1 wh—1 36{—1 Lwf — 3k +3kH—1
T L K41 3K0 — 2rg + 1
- 0 O 1 /<36—1
0 0 0 1
Lo(x) =1 Li(x) = —x+1,
2 3 3x2
L2(x):%—2x+1 L3(X)_—% %_3X+1



Case s=4

D = diag(bs, by, b1, by),

1 0 0 0
L Kh+1 1 0 0
- IR =2k + 1 Ky —1 1ol
ey — iRy —kp+1 Aef—1 KH+1 1
1 wh—1 3Ky —1 %/ﬁ{)”l— 3kg +3kp— 1
U— 0 1 Ky +1 sko — 2Kg +1
0 0 1 Ky —1
0 0 0 1
L0 - L) =1 L0 - 1670 = —x — 1
2 3 2
L0 -1000=5 -1 Y0 -0 =% +% +x-1



Case s=4

D = diag(bs, by, b1, by),

1 0 0 0
L— /‘€2+1 1 O 0
= é//_2/+1 /{/1—1 1 0 ’
§r0 —5rg —mo+1 Rg—1 mp+1 1
1 rh—1 3r{—1 trg’ —3rg+3rp—1
y_lo v e =21
0 0 1 Ko — 1
0 0 0 1
D00+ LO(x) = 1 L7000 + L67(0) = —x +1

2
000+ L1000 = 5 —2x+1

X3

L5000+ 1700 =~

+

3x2

— —3x+1

2



The conjecture

For t =1and A =1/2, and for r = N — s, the EFP can be given as
dets(/ — A) where the s x s matrix A is given as A= DLU and

Lj= (h:,)(’(;; [LS:})(@) + (—1)'.71Li07)171(82)} i),
1y

Uy = gy [0+ (/L1 00)] he(a)

z=0

where functions hj(z) are the Gauss hypergeometric functions given above.



The conjecture

For t =1and A =1/2, and for r = N — s, the EFP can be given as
dets(/ — A) where the s x s matrix A is given as A= DLU and

Lij _ (_1)f—f [Ls_})(az) + (_1)’.71L,'07)j—1(82)} hH_,'(Z)

hr+i(0) - =
Uy = oy (67000 + (L0 hsta)|

where functions hj(z) are the Gauss hypergeometric functions given above.

» note that dependence on parameter s is both via the size of the
matrix, and the parameter r = N — s

» Appearance of Laguerre polynomials does not come as a surprise, if
one recalls relations such as

/c Wf(Z)dz = (-1)"L5(0.)F(2)|



The conjecture
For t =1 and A =1/2, and for r = N — s, the original MIR for EFP,

F(N—s,s) f ]é
N Go COH N S _j+1

Zi— Z dsz
) k hN75(217 ceey ZS) (27‘(1)5

X

zZizk — z; +1
1<jihes TPk T F T

can be given as dets(/ — A) where the s x s matrix A = A(N, s) reads

) dzdw
A, = .7.:17"‘7 )
J »%Co ]{Co 1—z—w (27)?’ hJ s (+)

with



The conjecture

v

crucial in this derivation were our two sets of identities;

» and also our ansatz, fixing at step s, all entries of an
(s —1) x (s —1) sub-block of A, so that s new conditions at each
step were sufficient;

» however nice is the result, it is still just a guess;

v

unable to proceed with our calculation beyond s = 4;

» desperately seeking a proof.

]{f{ Jdzdw = s ()
Ai cJe lfsz (27r1) E A

with



Check

Check the s =5 case: evaluate with Mathematica both our conjectural
expression and the MIR, for N =7,...,13:

eterminan
N Det t MIR
7 0 0
8 0 0
9 0 0
10 61347 61347
43178090900 43178090900
11 49711519 49711519
1636618150125 1636618150125
12 54886057499 54886057499
221251085257500 221251085257500
13 3870965779057 3870965779057

3266307568354500 3266307568354500



Integral form for matrix A

As said, the matrix A admits the following integral representation

) dzdw
Aj = jeql,...
¥ ﬁoﬁo 1fsz (2mi)?’ J €L s),

(]'_Zf)l(l—i-( ].) )hr-l-i(z)v

er(W) = m (1+ (1Y w) A j(w).

where

Or, equivalently,

> dzdw
Aii :j){ 7{ eb(z)eV(w / pletw=1tq 22 Re(z+w) <1
= f f e | T Re(ztw)




Fredholm determinant

Let k[O,oo) be a linear integral operator acting on functions defined on R™
according to the rule

(Roso)F)(11) = /O " K (b, 1) F(t2)dts

with kernel
dzdw
Kot = el e
G JG (2mi)

Proposition

Given matrix A = A(N, s) as in (x), for any finite integer s, we have
dst(l — A) = det (]_ — K[O,oo))

Remark

The kernel K(t1,t2) is not ‘of integrable form’ (in the sense of
[Its—IzeTgin—Korepin—Sla'unov’92]).



Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo



Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo
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Scaling limit

We want to study the behaviour of the kernel K(t1, t) in the scaling limit,
i.e. (recall that r = N —s)

s = [yN], y €(0,1/2], N — oo

In this limit
K(t1, t2) 7{ 7{ Jat(w=3)e Ne(w)+e()] £(5, 1) dZG}W
G /G (27i)2
where
1—w (1—2W)(2—W)(1+W)+2(1_W+W2)3/2

g(w) = ylog " + log V3 w)?

while f(z, w) is some complicate but explicit function.



Saddle points
Saddle-point equation
y 1—V1—w+ w?

EW) = Ty T e "

has two solutions

14+ +/1—8y +4y?

2

W4 =

g

which collide when y = y. :=1—%2 recall, y € (0, 3].



Saddle points
Saddle-point equation

‘(W) = y _1—\/1—W—|—W2:0
& w(w — 1) w(w — 1)

has two solutions

14+ +/1—8y+4y2

2

W4 =

which collide when y = y. := 1 — § . recall, y € (0,1].

» y. happens to correspond to the intersection of the arctic curve with
the main diagonal

» for values y € (0, y.) i.e. outside the arctic curve (frozen region) wy
are both real, with an exponential decay of the integrals, ruled by w_

» for values y € (y¢,1/2) , i.e. inside the arctic curve (disordered
region) wy are complex conjugate, and contribute both to the
integrals, producing an oscillatory behaviour

in analogy with dimer models [Kenyon-Okounkov-Sheffield’06]



y close to y.
Let us study K(t1, t2) in the vicinity of y = y..
Lety =y.—mn, and w = % + A, with n, A small. We have
4

3V3
which sets the scales A = O(N~Y/3), n = O(N—2/3).

g(W)|,_1 iy =4nA = =27+ O(A)

@)

&

Co
/A
E

N[

and similarly for z = % + g1, with o = O(N~1/3).



y close to y.
We now rescale
~ . 22/3 1/3
A= qA, A= qu, q= 31/6N

and
o=—n= 24/331/6,\,2/377.
q

where X , i , and o are O(NO).
We also rescale the variables t; and t» and the kernel itself
K(ti, ) :=qK(gti,qt2), g>0, 1,1t €[0,00)

obtaining

- elitit A +o(A+)—(N+7%)/3 q3d
K(tl,tz)z—// S M2
5J5 A+ fi (27i)



Summing up

N—o0

lim (dets(l _A) (1) ) — det (1 - f?[o,oo)>

2 ) 24/331767
with kernel
. ettt A to (M) —(N+7)/3 g5 d
K(t17t2)__// ~ - lé
5J5 A+t (2mi)



Summing up

lim (dets(l _A) (1) ) — det (1 - iA?[o,oo)>
- 2

N—oo _24/331/60
with kernel
. ettt A to (M) —(N+7)/3 g5 d
K(t17t2)__// ~ - lé
5J5 A+t (2mi)
Proposition

Let KAl the linear integral operator on the real line, with kernel

Ai(ty) Ai'(t) — Ai'(t1) Ai(to)

KA (1, 1) = Pa— :

One has

A

det (1— Ko = det (1- KAL) ) == Fao(o),



Conclusions

Conjecture

At ice point, A = 1, t =1, the following holds

FVo%) = dety(1 - A)

where A = A(N,s) is the s X s matrix given in (x).

Theorem
Given the s x s matrix A= A(N,s), see (), the following holds

lim (dets(l —A)

N—o0

s:N(1_£) W)Zfz(o).

2 ) 24/331767

The presented result is in full agreement with the conjecture in
[Ayyer-Chhita-Johansson’23] and with the numerical simulations in
[Korepin-Lyberg-Viti’23] [Prauhofer-Spohn’24].



