Vertex Models: Algebraic and Probabilistic Aspects of Universality IPAM, Los Angeles, May 20-24, 2024

Frozen boundaries and their fluctuations

 in the square-ice modelFilippo Colomo
INFN, Florence

Based on arXiv:2405.04358
Joint work with A. Pronko (Steklov Mathematical Institute, St. Petersburg)

The six-vertex model

[Lieb'67] [Sutherland'67]

$$
\begin{aligned}
\Delta & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
t & =b / a
\end{aligned}
$$

square ice:

$$
a=b=c \text { or } \Delta=\frac{1}{2}, t=1
$$

Phase diagram

The Domain Wall boundary conditions

[Korepin' ${ }^{22]}$

$\Delta=1 / 2$
$N=500$

Arctic curves

$$
\Delta=-1 / 2
$$

[Lybero, Korepin, Viti' 18]

Arctic curves

$$
\Delta=-1 / 2
$$

$$
\Delta=-1
$$

- Conjectural analytic expressions have been around for some time
[FC-Pronko'09]
- Rigorous proof provided for the sole $\Delta=1 / 2$ case

Interface fluctuations

Interface fluctuations

- two different statistics:
- intersection of most external path with diagonal
- maximum deviation of most external path
- for $\Delta=0$, the model is in correspondence with Airy 2 process; first statistics is governed by GUE TW [Johansson'00], and consequently [Corwin-Quastel-Remenik'13] second statistic is governed by GOE TW

Interface fluctuations ($\Delta=1 / 2$)
Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn'19](private communication)
[Korepin-Lyberg-Viti'23] [Prauhofer-Spohn'24]

Collapse of distributions of $h_{N}(0)$ for ASM

Interface fluctuations ($\Delta=1 / 2$)

Strong numerical evidence that interface fluctuations follow GUE TW
[Prauhofer-Spohn'19](private communication)
[Korepin-Lyberg-Viti'23] [Prauhofer-Spohn'24]

Collapse of distributions of $h_{N}(0)$ for ASM

Moreover, indirect but strong hint from [Ayyer-Chhita-Johansson'23], where GOE TW was proven for the maximum of the most external path.

Partition function

$$
\begin{aligned}
& Z_{N}:=\sum_{\{\mathcal{C}\}} a^{n_{a}} b^{n_{b}} c^{n_{c}} \\
& n_{a}+n_{b}+n_{c}=N^{2}
\end{aligned}
$$

Z_{N} evaluated as an I-K or Hankel determinant [Korepin' ${ }^{\text {82] [Izergin' } 87]}$

One-point boundary correlation function $H_{N}^{(r)}$

One-point boundary correlation function $H_{N}^{(r)}$

$H_{N}^{(r)}$ evaluated as an I-K or Hankel determinant with one modified column
[Bogoliubov-Pronko-Zvonarev'02]

Emptiness Formation Probability (EFP) $F_{N}^{(r, s)}$

Emptiness Formation Probability (EFP) $F_{N}^{(r, s)}$

- dicriminates the transition between top-left ordered region and central disordered region of the curve
- expected stepwise behaviour in correspondence of the Arctic curve
- Multiple Integral Representations (MIRs) provided [FC-Pronko'08] ['21]

Multiple Integral Representation for EFP

Generating function of the one-point boundary correlator:

$$
h_{N}(z):=\sum_{r=1}^{N} H_{N}^{(r)} z^{r-1}, \quad h_{N}(1)=1
$$

Now define:

$$
h_{N, s}\left(z_{1}, \ldots, z_{s}\right):=\frac{1}{\Delta_{s}\left(z_{1}, \ldots, z_{s}\right)} \operatorname{det}\left[\left(z_{j}-1\right)^{k} z_{j}^{s-k} h_{N-s+k}\left(z_{j}\right)\right]_{j, k=1}^{s}
$$

- symmetric polynomials of order $N-1$.
- they provide a new, alternative representation (wrt Izergin-Korepin'one) for the partially inhomogeneous partition function $Z_{N}\left(\lambda_{1}, \ldots, \lambda_{s}\right)$.
- two important properties:

$$
\begin{aligned}
& h_{N, s}\left(z_{1}, \ldots, z_{s-1}, 1\right)=h_{N, s-1}\left(z_{1}, \ldots, z_{s-1}\right) \\
& h_{N, s}\left(z_{1}, \ldots, z_{s-1}, 0\right)=h_{N}(0) h_{N-1, s-1}\left(z_{1}, \ldots, z_{s-1}\right)
\end{aligned}
$$

Multiple Integral Representation for EFP

$$
\begin{aligned}
F_{N}^{(r, s)}=(-1)^{s} \oint_{C_{0}} & \cdots \oint_{C_{0}} \prod_{j=1}^{s} \frac{\left[\left(t^{2}-2 \Delta t\right) z_{j}+1\right]^{s-j}}{z_{j}^{r}\left(z_{j}-1\right)^{s-j+1}} \\
& \times \prod_{1 \leq j<k \leq s} \frac{z_{j}-z_{k}}{t^{2} z_{j} z_{k}-2 \Delta t z_{j}+1} h_{N, s}\left(z_{1}, \ldots, z_{s}\right) \frac{\mathrm{d}^{s} z}{(2 \pi \mathrm{i})^{s}}
\end{aligned}
$$

Remark: Similar (but somewhat simpler) expressions occur for various correlation functions of ASEP [Tracy-Widom’08-11], or also of the six-vertex model (possibly with higher spin, or coloured), but only in its stochastic version [Borodin-Corwin-Gorin'14] [Borodin-Petrov'16] [Aggarwal-Borodin'16] [Borodin-Bufetov-Wheeler'16] [Borodin-Corwin-Ferrari'16] [Dimitrov'16] [Barraquand-Borodin-Corwin'20] [Borodin-Wheeler'20]...

1) restrict to $t=1$, and change variables: $z_{j} \mapsto z_{j}^{-1}, \quad j=1, \ldots, s$:

$$
F_{N}^{(r, s)}=\oint_{C_{\infty}} \cdots \oint_{C_{\infty}} J_{N}^{(r, s)}\left(z_{1}, \ldots, z_{s}\right) \mathrm{d}^{s} z
$$

where

$$
\begin{aligned}
J_{N}^{(r, s)}\left(z_{1}, \ldots, z_{s}\right)=\frac{1}{(2 \pi \mathrm{i})^{s}} & \prod_{j=1}^{s} \frac{\left[1-2 \Delta+z_{j}\right]^{s-j}}{z_{j}^{N-r}\left(z_{j}-1\right)^{s-j+1}} \\
& \times \prod_{1 \leq j<k \leq s} \frac{z_{j}-z_{k}}{1-2 \Delta z_{k}+z_{j} z_{k}} h_{N, s}\left(z_{1}, \ldots, z_{s}\right)
\end{aligned}
$$

2) deform integration contours. Miracolously, poles from double products give vanishing contribution [FC-Di Giulio-Pronko'21]. Thus

$$
F_{N}^{(r, s)}=\oint_{C_{1} \cup C_{0}} \cdots \oint_{C_{1} \cup C_{0}} J_{N}^{(s)}\left(z_{1}, \ldots, z_{s}\right) \mathrm{d}^{s} z
$$

that is:

$$
F_{N}^{(r, s)}=\sum_{k=0}^{s} I_{k}, \quad I_{k}:=\sum_{|S|=k} \prod_{i \in S} \oint_{C_{0}} \mathrm{~d} z_{i} \prod_{j \in S^{c}} \oint_{C_{1}} \mathrm{~d} z_{j} J_{N}^{(r, s)}\left(z_{1}, \ldots, z_{s}\right)
$$

Two lemmas

Lemma
For arbitrary values of parameters r, s, Δ,

$$
I_{0} \equiv \operatorname{res}_{z_{1}=1} \ldots \operatorname{res}_{z_{s}=1} J_{N}^{(r, s)}\left(z_{1}, \ldots, z_{s}\right)=1
$$

(Actually holds for generic values of t as well).

Lemma
At the ice point, $\Delta=1 / 2, t=1$, and for $r=N-s$ (square EFP)

$$
I_{s} \equiv \operatorname{res}_{z_{1}=0} \ldots \operatorname{res}_{z_{s}=0} J_{N}^{(N-s, s)}\left(z_{1}, \ldots, z_{s}\right)=(-1)^{s} h_{N} \cdots h_{N-s+1},
$$

where $h_{N} \equiv h_{N}(0)$, etc.

Proof is elementary

And when $k \neq 0, s$?

Recall:

$$
\begin{aligned}
I_{k}:=\sum_{|S|=k} \prod_{i \in S} \oint_{C_{0}} \frac{\mathrm{~d} z_{i}}{2 \pi \mathrm{i}} \prod_{j \in S^{c}} \oint_{C_{1}} \frac{\mathrm{~d} z_{j}}{2 \pi \mathrm{i}} & \prod_{j=1}^{s} \frac{\left[1-2 \Delta+z_{j}\right]^{s-j}}{z_{j}^{N-r}\left(z_{j}-1\right)^{s-j+1}} \\
& \times \prod_{1 \leq j<k \leq s} \frac{z_{j}-z_{k}}{1-2 \Delta z_{k}+z_{j} z_{k}} h_{N, s}\left(z_{1}, \ldots, z_{s}\right)
\end{aligned}
$$

where

$$
h_{N, s}:=\frac{1}{\Delta_{s}\left(z_{1}, \ldots, z_{s}\right)} \operatorname{det}\left[\left(z_{j}-1\right)^{k} z_{j}^{s-k} h_{N-s+k}\left(z_{j}\right)\right]_{j, k=1}^{s}
$$

Two types of identities (type I)

$$
\begin{aligned}
h_{N-1}^{\prime}(1)= & \frac{1}{1-2 \Delta t+t^{2}}\left\{\frac{h_{N}^{\prime}}{h_{N}}-t^{2}\right\}, \\
h_{N-2}^{\prime \prime}(1)= & \frac{1}{\left(1-2 \Delta t+t^{2}\right)^{2}}\left\{-\frac{h_{N}^{\prime \prime}}{h_{N}}+2 \frac{h_{N-1}^{\prime} h_{N}^{\prime}}{h_{N-1} h_{N}}-2\left(1-2 \Delta t+2 t^{2}\right) \frac{h_{N-1}^{\prime}}{h_{N-1}}\right. \\
& \left.+2 \frac{h_{N}^{\prime}}{h_{N}}-2 t^{2}+2 t^{4}\right\}, \\
h_{N-3}^{\prime \prime \prime}(1)= & \frac{1}{\left(1-2 \Delta t+t^{2}\right)^{2}}\left\{\frac{h_{N}^{\prime \prime \prime}}{h_{N}}-3 \frac{h_{N-2}^{\prime} h_{N}^{\prime \prime}}{h_{N-2} h_{N}}-3 \frac{h_{N-1}^{\prime \prime} h_{N}^{\prime}}{h_{N-1} h_{N}}\right. \\
& +3\left(2+3 t^{2}-4 t \Delta\right) \frac{h_{N-1}^{\prime \prime}}{h_{N-1}}-6 \frac{h_{N}^{\prime \prime}}{h_{N}}+6 \frac{h_{N-2}^{\prime} h_{N-1}^{\prime} h_{N}^{\prime}}{h_{N-2} h_{N-1} h_{N}} \\
& -6\left(2+3 t^{2}-4 t \Delta\right) \frac{h_{N-2}^{\prime} h_{N-1}^{\prime}}{h_{N-2} h_{N-1}}+6 \frac{h_{N-2}^{\prime} h_{N}^{\prime}}{h_{N-2} h_{N}}+6 \frac{h_{N-1}^{\prime} h_{N}^{\prime}}{h_{N-1} h_{N}} \\
& +6\left(1+2 t^{2}+3 t^{4}-4 t \Delta-6 t^{3} \Delta+4 t^{2} \Delta^{2}\right) \frac{h_{N-2}}{h_{N-2}} \\
& \left.-6\left(2+3 t^{2}-4 t \Delta\right) \frac{h_{N-1}^{\prime}}{h_{N-1}}+6 \frac{h_{N}^{\prime}}{h_{N}}+18 t^{4}-6 t^{6}-12 t^{3} \Delta\right\} . \\
h_{N-4}^{\prime \prime \prime \prime}(1)= & \ldots
\end{aligned}
$$

Two types of identities (type I)

$$
\begin{aligned}
h_{N-1}^{\prime}(1)= & \frac{1}{1-2 \Delta t+t^{2}}\left\{\frac{h_{N}^{\prime}}{h_{N}}-t^{2}\right\}, \\
h_{N-2}^{\prime \prime}(1)= & \frac{1}{\left(1-2 \Delta t+t^{2}\right)^{2}}\left\{-\frac{h_{N}^{\prime \prime}}{h_{N}}+2 \frac{h_{N-1}^{\prime} h_{N}^{\prime}}{h_{N-1} h_{N}}-2\left(1-2 \Delta t+2 t^{2}\right) \frac{h_{N-1}^{\prime}}{h_{N-1}}\right. \\
& \left.+2 \frac{h_{N}^{\prime}}{h_{N}}-2 t^{2}+2 t^{4}\right\}, \\
h_{N-3}^{\prime \prime \prime}(1)= & \frac{1}{\left(1-2 \Delta t+t^{2}\right)^{2}}\left\{\frac{h_{N}^{\prime \prime \prime}}{h_{N}}-3 \frac{h_{N-2}^{\prime} h_{N}^{\prime \prime}}{h_{N-2} h_{N}}-3 \frac{h_{N-1}^{\prime \prime} h_{N}^{\prime}}{h_{N-1} h_{N}}\right.
\end{aligned}
$$

- valid for any Δ and t
- follows from availability of different MIR's for EFP (see [FC-Di Giulio-Pronko'21] for details)
- relate sums over the set of functions $H_{N}^{(r)}, r=1, \ldots, N$ to the first few values of them (sum rules identities)
- allow to express the result of integration of our MIRs in terms of the sole value of $h_{N}(z)$ (and derivatives) at the origin
$h_{N-4}^{\prime \prime \prime \prime}(1)=\ldots$

Two types of identities (type II)

When $\Delta=1 / 2$ and $t=1$ [Zeilberger' 96]

$$
h_{N}(z)=\frac{(N)_{N-1}}{(2 N)_{N-1}} 2 F_{1}\left(\left.\begin{array}{c}
-N+1, N \\
-2 N+2
\end{array} \right\rvert\, z\right) .
$$

It is easy to derive:

$$
\begin{aligned}
& \frac{h_{N}^{\prime}}{h_{N}}-\frac{h_{N-1}^{\prime}}{h_{N-1}}-\frac{1}{2}=0 \\
& \frac{h_{N}^{\prime \prime}}{h_{N}}-\frac{h_{N-1}^{\prime \prime}}{h_{N-1}}-\frac{h_{N}^{\prime}}{h_{N}}-2 \frac{h_{N-2}}{h_{N-1}}+\frac{7}{2}=0 \\
& \frac{h_{N}^{\prime \prime \prime}}{h_{N}}-\frac{h_{N-1}^{\prime \prime \prime}}{h_{N-1}}-\frac{3}{2}\left(\frac{h_{N}^{\prime}}{h_{N}}\right)^{2}-\frac{21}{2}\left(\frac{h_{N-2}}{h_{N-1}}-\frac{7}{4}\right)=0 \\
& \frac{h_{N}^{\prime \prime \prime \prime}}{h_{N}}-\quad \cdots \quad=0
\end{aligned}
$$

Two types of identities (type II)

When $\Delta=1 / 2$ and $t=1$ [Zeilberger' 96]

$$
h_{N}(z)=\frac{(N)_{N-1}}{(2 N)_{N-1}} 2 F_{1}\left(\left.\begin{array}{c}
-N+1, N \\
-2 N+2
\end{array} \right\rvert\, z\right) .
$$

It is easy to derive:

$$
\begin{aligned}
& \frac{h_{N}^{\prime}}{h_{N}}-\frac{h_{N-1}^{\prime}}{h_{N-1}}-\frac{1}{2}=0 \\
& h_{N}^{\prime \prime} \quad h_{N-1}^{\prime \prime} \quad h_{N}^{\prime}, h_{N-2}, 7
\end{aligned}
$$

- valid only at ice-point
- follow from standard relation for Gauss hypergeometric functions
- involves only functions $h_{N}(z)$ and derivatives, evaluated at $z=0$
- allow to express the result of integration of our MIRs in terms of just $2 s-1$ formally independent objects, $h_{N-s+1}, \ldots, h_{N}, h_{N}^{\prime}, \ldots, h_{N}^{(s-1)}$

Determinant structure

Inspired by [Tracy-Widom’08] [Saenz-Tracy-Widom'22] we assume that, for each s, an $s \times s$ matrix $A=A(N, s)$ exists, such that

$$
\sum_{k=0}^{s} \lambda^{k} I_{k}=\operatorname{det}_{s}(I-\lambda A)
$$

Clearly, from last lemma, $\operatorname{det}_{s} A=I_{s}$, for any s.
Below, we shall also observe that

- A is such that by eliminating its last row and colum, the reduction $s \mapsto s-1, \quad N \mapsto N-1$ is made;
- A can be given explicitely in a factorized form $A=D L U$.

Determinant structure

Inspired by [Tracy-Widom'08] [Saenz-Tracy-Widom'22] we assume that, for each s, an $s \times s$ matrix $A=A(N, s)$ exists, such that

$$
\sum_{k=0}^{s} \lambda^{k} I_{k}=\operatorname{det}_{s}(I-\lambda A)
$$

Clearly, from last lemma, $\operatorname{det}_{s} A=I_{s}$, for any s.
Below, we shall also observe that

- A is such that by eliminating its last row and colum, the reduction $s \mapsto s-1, \quad N \mapsto N-1$ is made;
- A can be given explicitely in a factorized form $A=D L U$.

To proceed, it is convenient to introduce the abbreviated notations

$$
b_{i} \equiv h_{N-i}, \quad i=0,1,2, \ldots, s-1,
$$

and

$$
\kappa_{i}^{\prime}=\frac{h_{N-i}^{\prime}}{h_{N-i}}, \quad \kappa_{i}^{\prime \prime}=\frac{h_{N-i}^{\prime \prime}}{h_{N-i}}, \quad \kappa_{i}^{\prime \prime \prime}=\frac{h_{N-i}^{\prime \prime \prime}}{h_{N-i}}, \quad \ldots
$$

Recall that $h_{N} \equiv h_{N}(0), h_{N}^{\prime} \equiv h_{N}^{\prime}(0)$, etc.

Case $s=1$

$$
\begin{aligned}
F_{N}^{(N-1,1)} & =\oint_{C_{1} \cup C_{0}} \frac{1}{z(z-1)} h_{N}(z) \frac{\mathrm{d} z}{2 \pi \mathrm{i}} \\
& =h_{n}(1)-h_{N}(0) \\
& =1-b_{0}
\end{aligned}
$$

That is

$$
I_{0}=1 \quad I_{1}=-b_{0}
$$

as we already knew from our two lemmas.
We are looking for 1×1 matrix A such that

$$
\operatorname{det}_{1}(1-A)=1-b_{0}
$$

Thus:

$$
A=b_{0}
$$

Case $\mathrm{s}=2$

$$
\begin{array}{ll}
I_{0}=1 & \\
I_{1}=-b_{0} k_{0}^{\prime}-b_{1}-b_{0} k_{0}^{\prime} h_{N-1}^{\prime}(1) & =-\operatorname{tr} A \\
I_{2}=b_{0} b_{1} & =\operatorname{det} A
\end{array}
$$

Use first identity of type I, namely $h_{N-1}^{\prime}(1)=k_{0}^{\prime}-1$, and get

$$
\begin{array}{ll}
I_{0}=1 & \\
I_{1}=-b_{1}-b_{0}\left(k_{0}^{\prime}\right)^{2} & =-\operatorname{tr} A \\
I_{2}=b_{0} b_{1} & =\operatorname{det} A
\end{array}
$$

If 2×2 matrix A exists, it must be such that when $b_{0}=0$ its top-left entries is b_{1}. Thus

$$
A=\left(\begin{array}{cc}
b_{1} & b_{1}\left(\kappa_{0}^{\prime}-1\right) \\
b_{0}\left(\kappa_{0}^{\prime}+1\right) & b_{0}\left(\kappa_{0}^{\prime}\right)^{2}
\end{array}\right)
$$

with DLU factorization:

$$
D=\left(\begin{array}{cc}
b_{1} & 0 \\
0 & b_{0}
\end{array}\right), \quad L=\left(\begin{array}{cc}
1 & 0 \\
\kappa_{0}^{\prime}+1 & 1
\end{array}\right), \quad U=\left(\begin{array}{cc}
1 & \kappa_{0}^{\prime}-1 \\
0 & 1
\end{array}\right) .
$$

Case $s=3$

$I_{0}=1$

$$
\begin{array}{ll}
I_{1}=-b_{2}-b_{1}\left(\kappa_{1}^{\prime}\right)^{2}-b_{0}\left[\left(\frac{\kappa_{0}^{\prime \prime}}{2}-\kappa_{0}^{\prime}\right)^{2}+2 \kappa_{0}^{\prime}-1\right] & =-\operatorname{tr} A \\
I_{2}=b_{1} b_{2}+b_{0} b_{2}\left(\kappa_{0}^{\prime}\right)^{2}+b_{0} b_{1}\left[1-\kappa_{0}^{\prime}\left(1+\kappa_{1}^{\prime}\right)+\frac{\kappa_{0}^{\prime \prime}}{2}\right]^{2} & =\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right] \\
I_{3}=-b_{0} b_{1} b_{2} & =\operatorname{det} A
\end{array}
$$

NB1: here first two identities of type I have been used
NB2: setting $b_{0}=0$ one recover the $s=2$ case, modulo the replacement $b_{0}, b_{1}, k_{0}^{\prime} \mapsto b_{1}, b_{2}, k_{1}^{\prime}$, that is $N \mapsto N-1$.

We may thus obtaine the top-left 2×2 block from the $s=2$ case.
Completing the sudoku, we get $A=D L U$, with
$D=\left(\begin{array}{ccc}b_{2} & 0 & 0 \\ 0 & b_{1} & 0 \\ 0 & 0 & b_{0}\end{array}\right), L=\left(\begin{array}{ccc}1 & 0 & 0 \\ \kappa_{1}^{\prime}+1 & 1 & 0 \\ \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 & \kappa_{0}^{\prime}-1 & 1\end{array}\right), U=\left(\begin{array}{ccc}1 & \kappa_{1}^{\prime}-1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 \\ 0 & 1 & \kappa_{0}^{\prime}+1 \\ 0 & 0 & 1\end{array}\right)$
NB3: l_{0}, l_{1}, l_{3} are easily reproduced. But l_{2} is only recovered modulo a term proportional to $k_{1}^{\prime}-k_{0}^{\prime}+\frac{1}{2}$, which however vanish, due to first identity of type II !

Case $s=4$

$D=\operatorname{diag}\left(b_{3}, b_{2}, b_{1}, b_{0}\right)$,

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\kappa_{2}^{\prime}+1 & 1 & 0 & 0 \\
\frac{1}{2} \kappa_{1}^{\prime \prime}-2 \kappa_{1}^{\prime}+1 & \kappa_{1}^{\prime}-1 & 1 & 0 \\
\frac{1}{6} \kappa_{0}^{\prime \prime}-\frac{1}{2} \kappa_{0}^{\prime \prime}-\kappa_{0}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 & \kappa_{0}^{\prime}+1 & 1
\end{array}\right),
$$

$$
U=\left(\begin{array}{cccc}
1 & \kappa_{2}^{\prime}-1 & \frac{1}{2} \kappa_{1}^{\prime \prime}-1 & \frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{3}{2} \kappa_{0}^{\prime \prime}+3 \kappa_{0}^{\prime}-1 \\
0 & 1 & \kappa_{1}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 \\
0 & 0 & 1 & \kappa_{0}^{\prime}-1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Case $s=4$

$D=\operatorname{diag}\left(b_{3}, b_{2}, b_{1}, b_{0}\right)$,

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\kappa_{2}^{\prime}+1 & 1 & 0 & 0 \\
\frac{1}{2} \kappa_{1}^{\prime \prime}-2 \kappa_{1}^{\prime}+1 & \kappa_{1}^{\prime}-1 & 1 & 0 \\
\frac{1}{6} \kappa_{0}^{\prime \prime}-\frac{1}{2} \kappa_{0}^{\prime \prime}-\kappa_{0}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 & \kappa_{0}^{\prime}+1 & 1
\end{array}\right),
$$

$$
U=\left(\begin{array}{cccc}
1 & \kappa_{2}^{\prime}-1 & \frac{1}{2} \kappa_{1}^{\prime \prime}-1 & \frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{3}{2} \kappa_{0}^{\prime \prime}+3 \kappa_{0}^{\prime}-1 \\
0 & 1 & \kappa_{1}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 \\
0 & 0 & 1 & \kappa_{0}^{\prime}-1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Case $s=4$

$$
D=\operatorname{diag}\left(b_{3}, b_{2}, b_{1}, b_{0}\right),
$$

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\kappa_{2}^{\prime}+1 & 1 & 0 & 0 \\
\frac{1}{2} \kappa_{1}^{\prime \prime}-2 \kappa_{1}^{\prime}+1 & \kappa_{1}^{\prime}-1 & 1 & 0 \\
\frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{1}{2} \kappa_{0}^{\prime \prime}-\kappa_{0}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 & \kappa_{0}^{\prime}+1 & 1
\end{array}\right),
$$

$$
U=\left(\begin{array}{cccc}
1 & \kappa_{2}^{\prime}-1 & \frac{1}{2} \kappa_{1}^{\prime \prime}-1 & \frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{3}{2} \kappa_{0}^{\prime \prime}+3 \kappa_{0}^{\prime}-1 \\
0 & 1 & \kappa_{1}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 \\
0 & 0 & 1 & \kappa_{0}^{\prime}-1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

$$
L_{0}(x)=1
$$

$$
L_{1}(x)=-x+1,
$$

$$
L_{2}(x)=\frac{x^{2}}{2}-2 x+1 \quad L_{3}(x)=-\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-3 x+1
$$

Case $s=4$

$$
\begin{gathered}
D=\operatorname{diag}\left(b_{3}, b_{2}, b_{1}, b_{0}\right), \\
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\kappa_{2}^{\prime}+1 & 1 & 0 & 0 \\
\frac{1}{2} \kappa_{1}^{\prime \prime}-2 \kappa_{1}^{\prime}+1 & \kappa_{1}^{\prime}-1 & 1 & 0 \\
\frac{1}{6} \kappa_{0}^{\prime \prime}-\frac{1}{2} \kappa_{0}^{\prime \prime}-\kappa_{0}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 & \kappa_{0}^{\prime}+1 & 1
\end{array}\right), \\
U=\left(\begin{array}{cccc}
1 & \kappa_{2}^{\prime}-1 & \frac{1}{2} \kappa_{1}^{\prime \prime}-1 & \frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{3}{2} \kappa_{0}^{\prime \prime}+3 \kappa_{0}^{\prime}-1 \\
0 & 1 & \kappa_{1}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 \\
0 & 0 & 1 & \kappa_{0}^{\prime}-1 \\
0 & 0 & 0 & 1
\end{array}\right) \\
L_{0}^{(-1)}(x)-L_{-1}^{(0)}(x)=1 \\
L_{2}^{(-1)}(x)-L_{1}^{(0)}(x)=\frac{x^{2}}{2}-1
\end{gathered} L_{3}^{(-1)}(x)-L_{2}^{(0)}(x)=-\frac{x^{3}}{6}+\frac{x^{2}}{2}+x-1 .
$$

Case $s=4$

$$
D=\operatorname{diag}\left(b_{3}, b_{2}, b_{1}, b_{0}\right)
$$

$$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\kappa_{2}^{\prime}+1 & 1 & 0 & 0 \\
\frac{1}{2} \kappa_{1}^{\prime \prime}-2 \kappa_{1}^{\prime}+1 & \kappa_{1}^{\prime}-1 & 1 & 0 \\
\frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{1}{2} \kappa_{0}^{\prime \prime}-\kappa_{0}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-1 & \kappa_{0}^{\prime}+1 & 1
\end{array}\right)
$$

$$
U=\left(\begin{array}{cccc}
1 & \kappa_{2}^{\prime}-1 & \frac{1}{2} \kappa_{1}^{\prime \prime}-1 & \frac{1}{6} \kappa_{0}^{\prime \prime \prime}-\frac{3}{2} \kappa_{0}^{\prime \prime}+3 \kappa_{0}^{\prime}-1 \\
0 & 1 & \kappa_{1}^{\prime}+1 & \frac{1}{2} \kappa_{0}^{\prime \prime}-2 \kappa_{0}^{\prime}+1 \\
0 & 0 & 1 & \kappa_{0}^{\prime}-1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
L_{0}^{(-1)}(x)+L_{-1}^{(0)}(x)=1
$$

$$
L_{1}^{(-1)}(x)+L_{0}^{(0)}(x)=-x+1
$$

$$
L_{2}^{(-1)}(x)+L_{1}^{(0)}(x)=\frac{x^{2}}{2}-2 x+1
$$

$$
L_{3}^{(-1)}(x)+L_{2}^{(0)}(x)=-\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-3 x+1
$$

The conjecture

For $t=1$ and $\Delta=1 / 2$, and for $r=N-s$, the EFP can be given as $\operatorname{det}_{s}(I-A)$ where the $s \times s$ matrix A is given as $A=D L U$ and

$$
\begin{aligned}
D_{i j} & =h_{r+i}(0) \delta_{i j} \\
L_{i j} & =\left.\frac{(-1)^{i-j}}{h_{r+i}(0)}\left[L_{i-j}^{(-1)}\left(\partial_{z}\right)+(-1)^{i-1} L_{i-j-1}^{(0)}\left(\partial_{z}\right)\right] h_{r+i}(z)\right|_{z=0} \\
U_{i j} & =\left.\frac{(-1)^{i-j}}{h_{r+j}(0)}\left[L_{j-i}^{(-1)}\left(\partial_{z}\right)+(-1)^{j} L_{j-i-1}^{(0)}\left(\partial_{z}\right)\right] h_{r+j}(z)\right|_{z=0}
\end{aligned}
$$

where functions $h_{j}(z)$ are the Gauss hypergeometric functions given above.

The conjecture

For $t=1$ and $\Delta=1 / 2$, and for $r=N-s$, the EFP can be given as $\operatorname{det}_{s}(I-A)$ where the $s \times s$ matrix A is given as $A=D L U$ and

$$
\begin{aligned}
D_{i j} & =h_{r+i}(0) \delta_{i j} \\
L_{i j} & =\left.\frac{(-1)^{i-j}}{h_{r+i}(0)}\left[L_{i-j}^{(-1)}\left(\partial_{z}\right)+(-1)^{i-1} L_{i-j-1}^{(0)}\left(\partial_{z}\right)\right] h_{r+i}(z)\right|_{z=0} \\
U_{i j} & =\left.\frac{(-1)^{i-j}}{h_{r+j}(0)}\left[L_{j-i}^{(-1)}\left(\partial_{z}\right)+(-1)^{j} L_{j-i-1}^{(0)}\left(\partial_{z}\right)\right] h_{r+j}(z)\right|_{z=0}
\end{aligned}
$$

where functions $h_{j}(z)$ are the Gauss hypergeometric functions given above.

- note that dependence on parameter s is both via the size of the matrix, and the parameter $r=N-s$
- Appearance of Laguerre polynomials does not come as a surprise, if one recalls relations such as

$$
\int_{C_{0}} \frac{(1-z)^{n+\alpha}}{z^{n+1}} f(z) \frac{\mathrm{d} z}{2 \pi \mathrm{i}}=\left.(-1)^{n} L_{n}^{(\alpha)}\left(\partial_{z}\right) f(z)\right|_{z=0}
$$

The conjecture

For $t=1$ and $\Delta=1 / 2$, and for $r=N-s$, the original MIR for EFP,

$$
\begin{aligned}
F_{N}^{(N-s, s)}=(-1)^{s} \oint_{C_{0}} & \cdots \oint_{C_{0}} \prod_{j=1}^{s} \frac{1}{z_{j}^{N-s}\left(z_{j}-1\right)^{s-j+1}} \\
& \times \prod_{1 \leq j<k \leq s} \frac{z_{j}-z_{k}}{z_{j} z_{k}-z_{j}+1} h_{N, s}\left(z_{1}, \ldots, z_{s}\right) \frac{\mathrm{d}^{s} z}{(2 \pi \mathrm{i})^{s}}
\end{aligned}
$$

can be given as $\operatorname{det}_{s}(I-A)$ where the $s \times s$ matrix $A=A(N, s)$ reads

$$
\begin{equation*}
A_{i j}=\oint_{C_{0}} \oint_{C_{0}} \frac{e_{i}^{L}(z) e_{j}^{U}(w)}{1-z-w} \frac{\mathrm{~d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}, \quad i, j=1, \ldots, s, \tag{*}
\end{equation*}
$$

with

$$
\begin{aligned}
e_{i}^{L}(z) & :=\frac{(1-z)^{i-1}}{z^{i}}\left(1+(-1)^{i} z\right) h_{r+i}(z) \\
e_{j}^{U}(w) & :=\frac{(1-w)^{j-1}}{h_{r+j}(0) w^{j}}\left(1+(-1)^{j+1} w\right) h_{r+j}(w)
\end{aligned}
$$

The conjecture

- crucial in this derivation were our two sets of identities;
- and also our ansatz, fixing at step s, all entries of an $(s-1) \times(s-1)$ sub-block of A, so that s new conditions at each step were sufficient;
- however nice is the result, it is still just a guess;
- unable to proceed with our calculation beyond $s=4$;
- desperately seeking a proof.

$$
\begin{equation*}
A_{i j}=\oint_{C_{0}} \oint_{C_{0}} \frac{e_{i}^{L}(z) e_{j}^{U}(w)}{1-z-w} \frac{\mathrm{~d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}, \quad i, j=1, \ldots, s, \tag{*}
\end{equation*}
$$

with

$$
\begin{aligned}
e_{i}^{L}(z) & :=\frac{(1-z)^{i-1}}{z^{i}}\left(1+(-1)^{i} z\right) h_{r+i}(z) \\
e_{j}^{U}(w) & :=\frac{(1-w)^{j-1}}{h_{r+j}(0) w^{j}}\left(1+(-1)^{j+1} w\right) h_{r+j}(w)
\end{aligned}
$$

Check

Check the $s=5$ case: evaluate with Mathematica both our conjectural expression and the MIR, for $N=7, \ldots, 13$:

N	Determinant	MIR
7	0	0
8	0	0
9	0	0
10	$\frac{61347}{43178090900}$	$\frac{61347}{43178090900}$
11	$\frac{49711519}{1636618150125}$	$\frac{49711519}{1636618150125}$
12	$\frac{54886057499}{221251085257500}$	$\frac{54886057499}{221251085257500}$
13	$\frac{3870965779057}{3266307568354500}$	$\frac{3870965779057}{3266307568354500}$

Integral form for matrix A

As said, the matrix A admits the following integral representation

$$
A_{i j}=\oint_{C_{0}} \oint_{C_{0}} \frac{e_{i}^{L}(z) e_{j}^{U}(w)}{1-z-w} \frac{\mathrm{~d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}, \quad i, j \in\{1, \ldots, s\},
$$

where

$$
\begin{aligned}
e_{i}^{L}(z) & :=\frac{(1-z)^{i-1}}{z^{i}}\left(1+(-1)^{i} z\right) h_{r+i}(z), \\
e_{j}^{U}(w) & :=\frac{(1-w)^{j-1}}{h_{r+j}(0) w^{j}}\left(1+(-1)^{j+1} w\right) h_{r+j}(w) .
\end{aligned}
$$

Or, equivalently,

$$
A_{i j}=\oint_{C_{0}} \oint_{C_{0}} e_{i}^{L}(z) e_{j}^{U}(w) \int_{0}^{\infty} \mathrm{e}^{(z+w-1) t} \mathrm{~d} t \frac{\mathrm{~d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}, \quad \operatorname{Re}(z+w)<1
$$

Fredholm determinant

Let $\hat{K}_{[0, \infty)}$ be a linear integral operator acting on functions defined on \mathbb{R}^{+} according to the rule

$$
\left(\hat{K}_{[0, \infty)} f\right)\left(t_{1}\right)=\int_{0}^{\infty} K\left(t_{1}, t_{2}\right) f\left(t_{2}\right) \mathrm{d} t_{2}
$$

with kernel

$$
K\left(t_{1}, t_{2}\right)=\oint_{C_{0}} \oint_{C_{0}} \mathrm{e}^{\left(z-\frac{1}{2}\right) t_{1}+\left(w-\frac{1}{2}\right) t_{2}} \sum_{j=1}^{s} e_{j}^{L}(z) e_{j}^{U}(w) \frac{\mathrm{d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}
$$

Proposition

Given matrix $A=A(N, s)$ as in $(*)$, for any finite integer s, we have

$$
\operatorname{det}_{s}(I-A)=\operatorname{det}\left(1-\hat{K}_{[0, \infty)}\right) .
$$

Remark

The kernel $K\left(t_{1}, t_{2}\right)$ is not 'of integrable form' (in the sense of [Its-Izergin-Korepin-Slavnov'92]).

Scaling limit

We want to study the behaviour of the kernel $K\left(t_{1}, t_{2}\right)$ in the scaling limit, i.e. (recall that $r=N-s$)

$$
s=\lceil y N\rceil, \quad y \in(0,1 / 2], \quad N \rightarrow \infty
$$

Scaling limit

We want to study the behaviour of the kernel $K\left(t_{1}, t_{2}\right)$ in the scaling limit, i.e. (recall that $r=N-s$)

$$
s=\lceil y N\rceil, \quad y \in(0,1 / 2], \quad N \rightarrow \infty
$$

Scaling limit

We want to study the behaviour of the kernel $K\left(t_{1}, t_{2}\right)$ in the scaling limit, i.e. (recall that $r=N-s$)

$$
s=\lceil y N\rceil, \quad y \in(0,1 / 2], \quad N \rightarrow \infty
$$

In this limit

$$
K\left(t_{1}, t_{2}\right) \sim \oint_{C_{0}} \oint_{C_{0}} \mathrm{e}^{\left(z-\frac{1}{2}\right) t_{1}+\left(w-\frac{1}{2}\right) t_{2}} \mathrm{e}^{N[g(w)+g(z)]} f(z, w) \frac{\mathrm{d} z \mathrm{~d} w}{(2 \pi \mathrm{i})^{2}}
$$

where

$$
g(w):=y \log \frac{1-w}{w}+\log \frac{(1-2 w)(2-w)(1+w)+2\left(1-w+w^{2}\right)^{3 / 2}}{3 \sqrt{3}(1-w)^{2}}
$$

while $f(z, w)$ is some complicate but explicit function.

Saddle points

Saddle-point equation

$$
g^{\prime}(w)=\frac{y}{w(w-1)}-\frac{1-\sqrt{1-w+w^{2}}}{w(w-1)}=0
$$

has two solutions

$$
w_{ \pm}=\frac{1 \pm \sqrt{1-8 y+4 y^{2}}}{2}
$$

which collide when $y=y_{c}:=1-\frac{\sqrt{3}}{2}, \quad$ recall, $y \in\left(0, \frac{1}{2}\right]$.

Saddle points

Saddle-point equation

$$
g^{\prime}(w)=\frac{y}{w(w-1)}-\frac{1-\sqrt{1-w+w^{2}}}{w(w-1)}=0
$$

has two solutions

$$
w_{ \pm}=\frac{1 \pm \sqrt{1-8 y+4 y^{2}}}{2}
$$

which collide when $y=y_{c}:=1-\frac{\sqrt{3}}{2}, \quad$ recall, $y \in\left(0, \frac{1}{2}\right]$.

- y_{c} happens to correspond to the intersection of the arctic curve with the main diagonal
- for values $y \in\left(0, y_{c}\right)$ i.e. outside the arctic curve (frozen region) $w_{ \pm}$ are both real, with an exponential decay of the integrals, ruled by w_{-}
- for values $y \in\left(y_{c}, 1 / 2\right)$, i.e. inside the arctic curve (disordered region) $w_{ \pm}$are complex conjugate, and contribute both to the integrals, producing an oscillatory behaviour
in analogy with dimer models [Kenyon-Okounkov-Sheffield'06]

y close to y_{c}

Let us study $K\left(t_{1}, t_{2}\right)$ in the vicinity of $y=y_{c}$.
Let $y=y_{c}-\eta$, and $w=\frac{1}{2}+\lambda$, with η, λ small. We have

$$
\left.g(w)\right|_{w=\frac{1}{2}+\lambda}=4 \eta \lambda-\frac{4}{3 \sqrt{3}} \lambda^{3}+O\left(\lambda^{4}\right)
$$

which sets the scales $\lambda=O\left(N^{-1 / 3}\right), \eta=O\left(N^{-2 / 3}\right)$.

and similarly for $z=\frac{1}{2}+\mu$, with $\mu=O\left(N^{-1 / 3}\right)$.

y close to y_{c}

We now rescale

$$
\tilde{\lambda}=q \lambda, \quad \tilde{\mu}=q \mu, \quad q=\frac{2^{2 / 3}}{3^{1 / 6}} N^{1 / 3}
$$

and

$$
\sigma=\frac{4 N}{q} \eta=2^{4 / 3} 3^{1 / 6} N^{2 / 3} \eta .
$$

where $\tilde{\lambda}, \tilde{\mu}$, and σ are $O\left(N^{0}\right)$.
We also rescale the variables t_{1} and t_{2} and the kernel itself

$$
\widetilde{K}\left(t_{1}, t_{2}\right):=q K\left(q t_{1}, q t_{2}\right), \quad q>0, \quad t_{1}, t_{2} \in[0, \infty)
$$

obtaining

$$
\widetilde{K}\left(t_{1}, t_{2}\right)=-\int_{\tilde{\gamma}} \int_{\tilde{\gamma}} \frac{\mathrm{e}^{\tilde{\mu} t_{1}+\tilde{\lambda} t_{2}+\sigma(\tilde{\lambda}+\tilde{\mu})-\left(\tilde{\lambda}^{3}+\tilde{\mu}^{3}\right) / 3}}{\tilde{\lambda}+\tilde{\mu}} \frac{\mathrm{d} \tilde{\lambda} \mathrm{~d} \tilde{\mu}}{(2 \pi \mathrm{i})^{2}} .
$$

Summing up

$$
\lim _{N \rightarrow \infty}\left(\left.\operatorname{det}_{s}(1-A)\right|_{s=N\left(1-\frac{\sqrt{3}}{2}\right)-\frac{N^{1 / 3}}{2^{4 / 3} 3^{1 / 6}}}\right)=\operatorname{det}\left(1-\hat{\widetilde{K}}_{[0, \infty)}\right)
$$

with kernel

$$
\widetilde{K}\left(t_{1}, t_{2}\right)=-\int_{\tilde{\gamma}} \int_{\tilde{\gamma}} \frac{\mathrm{e}^{\tilde{\mu} \tilde{t}_{1}+\tilde{\lambda} t_{2}+\sigma(\tilde{\lambda}+\tilde{\mu})-\left(\tilde{\lambda}^{3}+\tilde{\mu}^{3}\right) / 3}}{\tilde{\lambda}+\tilde{\mu}} \frac{\mathrm{d} \tilde{\lambda} \mathrm{~d} \tilde{\mu}}{(2 \pi \mathrm{i})^{2}} .
$$

Summing up

$$
\lim _{N \rightarrow \infty}\left(\left.\operatorname{det}_{s}(1-A)\right|_{s=N\left(1-\frac{\sqrt{3}}{2}\right)-\frac{N^{1 / 3}}{2^{4 / 3} 3^{1 / 6}} \sigma}\right)=\operatorname{det}\left(1-\hat{\widetilde{K}}_{[0, \infty)}\right)
$$

with kernel

$$
\widetilde{K}\left(t_{1}, t_{2}\right)=-\int_{\tilde{\gamma}} \int_{\tilde{\gamma}} \frac{\mathrm{e}^{\tilde{\mu} \tilde{t}_{1}+\tilde{\lambda}_{t_{2}}+\sigma(\tilde{\lambda}+\tilde{\mu})-\left(\tilde{\lambda}^{3}+\tilde{\mu}^{3}\right) / 3}}{\tilde{\lambda}+\tilde{\mu}} \frac{\mathrm{d} \tilde{\lambda} \mathrm{~d} \tilde{\mu}}{(2 \pi \mathrm{i})^{2}} .
$$

Proposition
Let $\hat{K}^{\text {Ai }}$ the linear integral operator on the real line, with kernel

$$
K^{\operatorname{Ai}}\left(t_{1}, t_{2}\right)=\frac{\operatorname{Ai}\left(t_{1}\right) \operatorname{Ai}^{\prime}\left(t_{2}\right)-\operatorname{Ai}^{\prime}\left(t_{1}\right) \operatorname{Ai}\left(t_{2}\right)}{t_{1}-t_{2}} .
$$

One has

$$
\operatorname{det}\left(1-\hat{\tilde{K}}_{[0, \infty)}\right)=\operatorname{det}\left(1-\hat{K}_{[\sigma, \infty)}^{\mathrm{Ai}}\right)=: \mathcal{F}_{2}(\sigma),
$$

Conclusions

Conjecture

At ice point, $\Delta=\frac{1}{2}, t=1$, the following holds

$$
F_{N}^{(N-s, s)}=\operatorname{det}_{s}(1-A)
$$

where $A=A(N, s)$ is the $s \times s$ matrix given in (*).
Theorem
Given the $s \times s$ matrix $A=A(N, s)$, see $(*)$, the following holds

$$
\lim _{N \rightarrow \infty}\left(\left.\operatorname{det}_{s}(1-A)\right|_{s=N\left(1-\frac{\sqrt{3}}{2}\right)-\frac{N^{1 / 3}}{2^{4 / 3} 3^{1 / 6}} \sigma}\right)=\mathcal{F}_{2}(\sigma)
$$

The presented result is in full agreement with the conjecture in [Ayyer-Chhita-Johansson'23] and with the numerical simulations in [Korepin-Lyberg-Viti'23] [Prauhofer-Spohn'24].

