The Radon–Nikodym topography of an amenable equivalence relation in an acyclic graph

Robin Tucker-Drob Joint work with Anush Tserunyan

IPAM, May 2024

The setting

- (X, μ) denotes a standard probability space.
- E is a countable Borel equivalence relation (cBer) on X, i.e., each E-class is countable, and E ⊆ X × X is Borel measurable.
- A treeing of E is a Borel graph T on X that is acyclic, and whose connected component equivalence relation, E_T , coincides with E.
- *E* is called treeable if it admits a treeing.

Example (Boundary of the free group)

 $X = \partial F_2 = \{ (right-)infinite reduced words in <math>a, a^{-1}, b, b^{-1} \}$ $\mu = \mu_{\partial F_2} = hitting measure for the simple random walk on <math>F_2$. The action $F_2 \curvearrowright \partial F_2$ (via concatenate then reduce) gives rise to a cBer:

$$E_{\partial F_2} = \{(x, y) \in \partial F_2 \times \partial F_2 : F_2.x = F_2.y\}$$

A treeing $T_{\partial F_2}$ of $E_{\partial F_2}$ is given by connecting each $x \in \partial F_2$ to its shift S(x), i.e., S(x) is obtained by "chopping off" the first letter of x.

The Radon–Nikodym cocycle

On *E* we have the left and right fiber measures, μ_{ℓ}^{E} and μ_{r}^{E} :

$$\int_{E} h d\mu_{\ell}^{E} = \int_{X} \sum_{y \in [x]_{E}} h(x, y) d\mu(x)$$
$$\int_{E} h d\mu_{r}^{E} = \int_{X} \sum_{y \in [x]_{E}} h(y, x) d\mu(x).$$

E is called measure class preserving (mcp) if μ_{ℓ}^{E} and μ_{r}^{E} are equivalent. The function $\rho := \frac{d\mu_{\ell}^{E}}{d\mu_{r}^{E}}$ is called the Radon–Nikodym cocycle of (E, X, μ) . It satisfies $\rho(z, x) = \rho(z, y)\rho(y, x)$ for all *E*-related points $x, y, z \in X$. Interpretation: $\rho(y, x) = \rho^{x}(y) =$ "the weight of y from x's perspective." The mass transport principle: for all Borel functions $h : E \to [0, \infty)$

$$\int_X \sum_{y \in [x]_E} h(x, y) \ d\mu(x) = \int_X \sum_{y \in [x]_E} h(y, x) \rho^x(y) \ d\mu(x)$$

Example (Boundary of F_2)

One computes that $\rho^{x}(S(x)) = 3$ for all $x \in \partial F_2$. In general, if $S^{m}(x) = S^{n}(y)$ then $\rho^{x}(y) = 3^{m-n}$.

Definition

An mcp cBer E on (X, μ) is called **amenable** if there exists a measurable way of assigning to each $x \in X$ a sequence $(\lambda_n^x)_{n=0}^{\infty}$ of probability measures on $[x]_E$ such that $\|\lambda_n^x - \lambda_n^y\|_1 \xrightarrow{n \to \infty} 0$ for a.e. $(x, y) \in E$.

The assignment being measurable means that $(y, x) \mapsto \lambda_n^x(y)$ is Borel measurable for each *n*.

Example (Boundary of F_2)

 $E_{\partial F_2}$ is amenable: for each $x \in \partial F_2$ and $n \ge 0$, take λ_n^x be the uniform distribution on $\{x, S(x), S^2(x), \dots, S^n(x)\}$.

Theorem (S. Adams)

Let E be an ergodic cBer on (X, μ) that is measure preserving (i.e., $\rho \equiv 1$), and treed by T.

1 If E is amenable then a.e. T-component has at most two ends.

If E is nonamenable then the space of ends of a.e. T-component is nonempty and perfect.

As stated, this fails miserably in the general mcp setting: $E_{\partial F_2}$ is amenable, but the treeing $T_{\partial F_2}$ is four-regular!

Vanishing and Nonvanishing Ends

Let *E* be an mcp cBer on (X, μ) that is treed by *T*. For each *T*-component $[x]_E$, we equip its end completion $\overline{[x]_E} := [x]_E \cup \partial_T [x]_E$ with the topology generated by all half-spaces.

• An end $\xi \in \partial_T[x]_E$ is called vanishing if

$$\lim_{y\to\xi}\rho^x(y)=0,$$

where the limit is over $y \in [x]_E$. Otherwise ξ is called nonvanishing.

• These notions do not depend on the choice of representative x, i.e., if $[z]_E = [x]_E$ then $\lim_{y \to \xi} \rho^z(y) = 0$ iff $\lim_{y \to \xi} \rho^x(y) = 0$.

In the measure preserving setting, where $\rho \equiv 1$, every end is nonvanishing.

Example (Boundary of free group)

For each $x \in \partial F_2$, the "forward end" $\xi_{[x]} := \lim_{n \to \infty} S^n(x)$ is nonvanishing since $\rho^x(S^n(x)) = 3^n$. Every other end of this component is vanishing.

Theorem (Tserunyan, Tucker-Drob)

Let E be an ergodic mcp cBer on (X, μ) that is treed by T.

y

- If E is amenable, then a.e. T component has at most two nonvanishing ends.
- If E is nonamenable then the space of nonvanishing ends of a.e.
 T-component is nonempty and perfect.

Theorem (Tserunyan, Tucker-Drob)

Let *E* be an ergodic mcp cBer on (X, μ) that is treed by *T*. Then for a.e. $x \in X$, every vanishing end $\eta \in \partial_T[x]_E$ is geodesically RN-finite, i.e.

$$\sum_{y\in[x,\eta)_T}\rho^x(y)<\infty.$$

The crux of the amenability half of the proof comes down to the case where the treeing T is generated by a single function f (like how $T_{\partial F_2}$ is generated by S).

For this, we use a (apparently new) combinatorial lemma:

Paddle-ball Lemma

Let T be a tree on a vertex set V with a distinguished end $\xi^+ \in \partial_T V$. Suppose that $\Sigma \subseteq \text{Sym}(V)$ is a collection of permutations of V satisfying, for every $v \in V$:

(i)
$$v \in (\sigma^{-1}(v), \xi^+)_T$$
 for each $\sigma \in \Sigma$;

(ii)
$$v \in (\sigma^{-1}(v), \tau^{-1}(v))_T$$
 for all distinct $\sigma, \tau \in \Sigma$.

Then Σ freely generates a free subgroup $\langle \Sigma \rangle$ of $\operatorname{Sym}(V)$, and the action of $\langle \Sigma \rangle$ on V is free.

Our methods allow us to prove structural results for treeable equivalence relations that were previously only known to hold in the measure preserving setting.

An mcp cBer *E* is called (a.e.) smooth if $\rho^{x}([x]_{E}) < \infty$ almost surely, and nowhere smooth if $\rho^{x}([x]_{E}) = \infty$ almost surely.

Theorem (Adams (mp), Tserunyan-Tucker-Drob (mcp))

Let E be an mcp, treeable cBer on (X, μ) that is ergodic and nonamenable.

- Each nowhere smooth amenable subrelation of E is contained in a unique maximal amenable subrelation of E.
- Every maximal amenable subrelation F of E is almost malnormal in E, i.e., if φ : X → X is such that (x, φ(x)) ∈ E − F, then (φ × φ)(F) ∩ F is a.e. smooth.

Thank you!