The Radon-Nikodym topography of an amenable equivalence relation in an acyclic graph

Robin Tucker-Drob
Joint work with Anush Tserunyan

IPAM, May 2024

The setting

- (X, μ) denotes a standard probability space.
- E is a countable Borel equivalence relation (cBer) on X, i.e., each E-class is countable, and $E \subseteq X \times X$ is Borel measurable.
- A treeing of E is a Borel graph T on X that is acyclic, and whose connected component equivalence relation, E_{T}, coincides with E.
- E is called treeable if it admits a treeing.

Example (Boundary of the free group)

$X=\partial F_{2}=\left\{\left(\right.\right.$ right-)infinite reduced words in $\left.a, a^{-1}, b, b^{-1}\right\}$
$\mu=\mu_{\partial F_{2}}=$ hitting measure for the simple random walk on F_{2}.
The action $F_{2} \curvearrowright \partial F_{2}$ (via concatenate then reduce) gives rise to a cBer:

$$
E_{\partial F_{2}}=\left\{(x, y) \in \partial F_{2} \times \partial F_{2}: F_{2} \cdot x=F_{2} \cdot y\right\}
$$

A treeing $T_{\partial F_{2}}$ of $E_{\partial F_{2}}$ is given by connecting each $x \in \partial F_{2}$ to its shift $S(x)$, i.e., $S(x)$ is obtained by "chopping off" the first letter of x.

The Radon-Nikodym cocycle

On E we have the left and right fiber measures, μ_{ℓ}^{E} and μ_{r}^{E} :

$$
\begin{aligned}
\int_{E} h d \mu_{\ell}^{E} & =\int_{X} \sum_{y \in[x]_{E}} h(x, y) d \mu(x) \\
\int_{E} h d \mu_{r}^{E} & =\int_{x} \sum_{y \in[x]_{E}} h(y, x) d \mu(x)
\end{aligned}
$$

E is called measure class preserving (mcp) if μ_{ℓ}^{E} and μ_{r}^{E} are equivalent.
The function $\rho:=\frac{d \mu_{l}^{E}}{d \mu_{r}^{E}}$ is called the Radon-Nikodym cocycle of (E, X, μ).
It satisfies $\rho(z, x)=\rho(z, y) \rho(y, x)$ for all E-related points $x, y, z \in X$.
Interpretation: $\rho(y, x)=\rho^{x}(y)=$ "the weight of y from x's perspective."
The mass transport principle: for all Borel functions $h: E \rightarrow[0, \infty)$

$$
\int_{X} \sum_{y \in[x]_{E}} h(x, y) d \mu(x)=\int_{X} \sum_{y \in[x]_{E}} h(y, x) \rho^{x}(y) d \mu(x)
$$

Example (Boundary of F_{2})

One computes that $\rho^{x}(S(x))=3$ for all $x \in \partial F_{2}$. In general, if $S^{m}(x)=S^{n}(y)$ then $\rho^{x}(y)=3^{m-n}$.

Amenability

Definition

An mcp cBer E on (X, μ) is called amenable if there exists a measurable way of assigning to each $x \in X$ a sequence $\left(\lambda_{n}^{x}\right)_{n=0}^{\infty}$ of probability measures on $[x]_{E}$ such that $\left\|\lambda_{n}^{x}-\lambda_{n}^{y}\right\|_{1} \xrightarrow{n \rightarrow \infty} 0$ for a.e. $(x, y) \in E$.

The assignment being measurable means that $(y, x) \mapsto \lambda_{n}^{x}(y)$ is Borel measurable for each n.

Example (Boundary of F_{2})

$E_{\partial F_{2}}$ is amenable: for each $x \in \partial F_{2}$ and $n \geq 0$, take λ_{n}^{x} be the uniform distribution on $\left\{x, S(x), S^{2}(x), \ldots, S^{n}(x)\right\}$.

The Adams Dichotomy

Theorem (S. Adams)

Let E be an ergodic $c B e r$ on (X, μ) that is measure preserving (i.e., $\rho \equiv 1$), and treed by T.
(1) If E is amenable then a.e. T-component has at most two ends.
(2) If E is nonamenable then the space of ends of a.e. T-component is nonempty and perfect.

As stated, this fails miserably in the general mcp setting: $E_{\partial F_{2}}$ is amenable, but the treeing $T_{\partial F_{2}}$ is four-regular!

Vanishing and Nonvanishing Ends

Let E be an mcp cBer on (X, μ) that is treed by T.
For each T-component $[x]_{E}$, we equip its end completion
$\overline{[x]_{E}}:=[x]_{E} \cup \partial_{T}[x]_{E}$ with the topology generated by all half-spaces.

- An end $\xi \in \partial_{T}[x]_{E}$ is called vanishing if

$$
\lim _{y \rightarrow \xi} \rho^{x}(y)=0
$$

where the limit is over $y \in[x]_{E}$. Otherwise ξ is called nonvanishing.

- These notions do not depend on the choice of representative x, i.e., if $[z]_{E}=[x]_{E}$ then $\lim _{y \rightarrow \xi} \rho^{z}(y)=0$ iff $\lim _{y \rightarrow \xi} \rho^{x}(y)=0$.
In the measure preserving setting, where $\rho \equiv 1$, every end is nonvanishing.

Example (Boundary of free group)

For each $x \in \partial F_{2}$, the "forward end" $\xi_{[x]}:=\lim _{n \rightarrow \infty} S^{n}(x)$ is nonvanishing since $\rho^{x}\left(S^{n}(x)\right)=3^{n}$. Every other end of this component is vanishing.

Generalized Adams Dichotomy

Theorem (Tserunyan, Tucker-Drob)

Let E be an ergodic mcp cBer on (X, μ) that is treed by T.
(1) If E is amenable, then a.e. T component has at most two nonvanishing ends.
(2) If E is nonamenable then the space of nonvanishing ends of a.e. T-component is nonempty and perfect.

Theorem (Tserunyan, Tucker-Drob)

Let E be an ergodic mcp cBer on (X, μ) that is treed by T. Then for a.e. $x \in X$, every vanishing end $\eta \in \partial_{T}[x]_{E}$ is geodesically $R N$-finite, i.e.

$$
\sum_{y \in[x, \eta)_{T}} \rho^{x}(y)<\infty
$$

The Paddle-ball Lemma

The crux of the amenability half of the proof comes down to the case where the treeing T is generated by a single function f (like how $T_{\partial F_{2}}$ is generated by S).
For this, we use a (apparently new) combinatorial lemma:

Paddle-ball Lemma

Let T be a tree on a vertex set V with a distinguished end $\xi^{+} \in \partial_{T} V$. Suppose that $\Sigma \subseteq \operatorname{Sym}(V)$ is a collection of permutations of V satisfying, for every $v \in V$:
(i) $v \in\left(\sigma^{-1}(v), \xi^{+}\right)_{T}$ for each $\sigma \in \Sigma$;
(ii) $v \in\left(\sigma^{-1}(v), \tau^{-1}(v)\right)_{T}$ for all distinct $\sigma, \tau \in \Sigma$.

Then Σ freely generates a free subgroup $\langle\Sigma\rangle$ of $\operatorname{Sym}(V)$, and the action of $\langle\Sigma\rangle$ on V is free.

Maximal amenable subrelations

Our methods allow us to prove structural results for treeable equivalence relations that were previously only known to hold in the measure preserving setting.
An mcp cBer E is called (a.e.) smooth if $\rho^{x}\left([x]_{E}\right)<\infty$ almost surely, and nowhere smooth if $\rho^{x}\left([x]_{E}\right)=\infty$ almost surely.

Theorem (Adams (mp), Tserunyan-Tucker-Drob (mcp))

Let E be an $m c p$, treeable $c B e r$ on (X, μ) that is ergodic and nonamenable.
(1) Each nowhere smooth amenable subrelation of E is contained in a unique maximal amenable subrelation of E.
(2) Every maximal amenable subrelation F of E is almost malnormal in E, i.e., if $\phi: X \rightarrow X$ is such that $(x, \phi(x)) \in E-F$, then $(\phi \times \phi)(F) \cap F$ is a.e. smooth.

Thank you!

