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A framework (G = (V, E) , ¢ :V — R9) is called:

> Globally-rigid: if every ¢’ : V' — R? that yields the same
distances between adjacent vertices is obtained from ¢ by an
isometry.

» Rigid if there is no non-trivial continuous motions of the
vertices starting from ¢ that preserves the distances between
adjacent vertices.

Observation: Global Rigidity = min-degree at least d + 1
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Combinatorial Rigidity

Basic question: Is a given framework rigid?

» Cauchy's rigidity theorem (1813), Maxwell's criterion (1864).

» A hard problem in general (may depend on ).
E.g., Abbot '08: coNP-hard for d =2 .

» Asimow and Roth '79: For a generic ¢, rigidity is a simpler
linear-algebraic property of G.
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Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, ¢) is a d|V| x | E| matrix:

R(z,zy) = ¢(x) —¢(y) , R(y,zy) = ¢(y) — o(z)
A graph is d-rigid if rank(R) = d|V| — (d;rl) for a generic .
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The rigidity matrix R of a framework (G, ¢) is a d|V| x | E| matrix:

R(z,zy) = o(z) —9(y) , R(y,zy) = »(y) — ()
A graph is d-rigid if rank(R) = d|V| — (d;rl) for a generic ¢.
Idea: Left kernel of R <> motions infinitesimally preserving
distances of adjacent vertices at time t = 0.
» d = 1: l-rigidity = Graph connectivity.

» d = 2: 2-rigidity is well-understood (Laman, Lovész-Yemini,
Hendrickson, Crapo).

» d > 3: No combinatorial characterization (major open
problem).

Problem: When is G(n,p) d-rigid?
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When is a G(n, p) graph d-rigid?

d = 1: (Connectivity)
» Erdés-Rényi: p. = (logn + O(1))/n.
> Bollobds-Thomason: In (G(n,M):0 < M < (3)), a.as
7(connectivity) = 7(min-degree 1).
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» Erdés-Rényi: p. = (logn + O(1))/n.
> Bollobds-Thomason: In (G(n,M):0 < M < (3)), a.as
7(connectivity) = 7(min-degree 1).
d=2:
» Jackson, Servatius and Servatius:
pe = (logn +loglogn + O(1))/n.
» Coincides with threshold for having minimum degree 2.
» Builds on Lovasz-Yemini characterization.
d>3:
» Kiraly, Theran, and Tomioka ; Jordadn and Tanigawa:
pe = O(logn/n).
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Main results

Theorem
Let (G(n,M):0< M < (3)). Then, a.a.s.,

1. 7(d-rigidity) = T(min-degree d), and consequently,
2. 7(d-global-rigidity) = T(min-degree d + 1).
Remarks:
> ">" holds deterministically.
» Tanigawa, Jordan: A (d + 1)-rigid graph is d-globally-rigid.
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Theorem
Let (G(n,M):0< M < (3)). Then, a.as.,

1. 7(d-rigidity) = T(min-degree d), and consequently,
2. 7(d-global-rigidity) = T(min-degree d + 1).

Remarks:
> ">" holds deterministically.
» Tanigawa, Jordan: A (d + 1)-rigid graph is d-globally-rigid.
» pc(d-rigidity) = (logn + (d — 1) loglogn + O(1))/n.
> p.(d-global-rigidity) = (logn + dloglogn + O(1))/n.
» Applies to all abstract rigidity matroids.
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Proof idea 1: Large closure

» Key definition: (Matroid closure)

Cu(G) = {xy e (Z) : R(-,zy) € column — space(R(G))} ,

i.e., edges whose addition to G does not increase rank(R).
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Vv
Ca(G) = {xy € (2> : R(-,zy) € column — space(R(G))} ,
i.e., edges whose addition to G does not increase rank(R).
» Observation: in the process G(n, M), 0 < M < (’;)
ex & CalG(n, M~ 1)) ()

occurs dn — (d;rl) times.
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Proof idea 1: Large closure

» Key definition: (Matroid closure)

Cu(G) = {xy e (Z) : R(-,zy) € column — space(R(G))} ,

i.e., edges whose addition to G does not increase rank(R).
» Observation: in the process G(n, M), 0 < M < (’;)
en ¢ CalGln M~ 1)) ()
d+1

occurs dn — ( 2 ) times.

» Coupling: Use independent U(0,1)’s to decide if (!) occurs:
P <|Cd(G(n,M))| < a(g)) <P <Bin(M, 1—a)<dn-— (d; 1)> )
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Proof idea 2: From Large closure to rigidity
Set M := 7(min-deg = d) = 1(nlogn+(d—1)loglogn+Op(1)).

L |Ca(G(n, M))| = (1 —o(1))(3)-
2. Cg(G(n, M)) is K _,-free.
3. G(n,M) C Cy(G(n,M))
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Proof idea 2: From Large closure to rigidity

Set M := 7(min-deg = d) = 1(nlogn+(d—1)loglogn+Op(1)).

L |Ca(G(n, M))| = (1 —o(1))(3)-
2. Cg(G(n, M)) is K _,-free.
3. G(n,M) C Cy(G(n,M))

Lemma: A.a.s, the only graph satisfying 1,2,3 is

Ca(G(n,M)) = K,
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Open problems:

» Emergence of a giant d-rigid component in G(n,p)?
(Known: p. = O4(1/n), precise constant for d = 1,2)

» Higher dimensions: Prove that G(n,1/2) is rigid in R"?
(Krivelevich, Michaeli, Lew conjecture: c ~1— /1 —1/2).

» When is a random k-regular graph a.a.s d-rigid?
(Plausible conjecture Vd > 2: iff k > 2d. Known for d = 2.)
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