Sharp threshold for rigidity of random graphs

Alan Lew (CMU), Eran Nevo, Yuval Peled, Orit Raz (HUJI)

Workshop III: Statistical Mechanics Beyond 2D, IPAM, UCLA, May 6-10, 2024

A framework
$$(G = (V, E), \varphi : V \to \mathbb{R}^d)$$
 is called:

- A framework $(G=(V,E) \ , \ \varphi:V \to \mathbb{R}^d)$ is called:
 - Globally-rigid: if every $\varphi': V \to \mathbb{R}^d$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.

- A framework $(G=(V,E) \ , \ \varphi:V \to \mathbb{R}^d)$ is called:
 - Globally-rigid: if every $\varphi': V \to \mathbb{R}^d$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
 - Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

- A framework $(G=(V,E) \ , \ \varphi:V \to \mathbb{R}^d)$ is called:
 - Globally-rigid: if every $\varphi': V \to \mathbb{R}^d$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
 - Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

Observation: Rigidity \implies min-degree at least d

- A framework $(G=(V,E) \ , \ \varphi:V \to \mathbb{R}^d)$ is called:
 - Globally-rigid: if every $\varphi': V \to \mathbb{R}^d$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
 - Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

Observation: Global Rigidity \implies min-degree at least d+1

Basic question: Is a given framework rigid?

- Cauchy's rigidity theorem (1813), Maxwell's criterion (1864).
- A hard problem in general (may depend on φ).
 E.g., Abbot '08: coNP-hard for d = 2.
- Asimow and Roth '79: For a generic φ, rigidity is a simpler linear-algebraic property of G.

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is *d*-rigid if $\operatorname{rank}(R) = d|V| - \binom{d+1}{2}$ for a generic φ .

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is d-rigid if $\operatorname{rank}(R) = d|V| - {d+1 \choose 2}$ for a generic φ .

Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time t = 0.

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is d-rigid if $\operatorname{rank}(R) = d|V| - {d+1 \choose 2}$ for a generic φ .

Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time t = 0.

• d = 1: 1-rigidity = Graph connectivity.

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is d-rigid if $\operatorname{rank}(R) = d|V| - {d+1 \choose 2}$ for a generic φ .

Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time t = 0.

• d = 1: 1-rigidity = Graph connectivity.

 d = 2: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is d-rigid if $\operatorname{rank}(R) = d|V| - {d+1 \choose 2}$ for a generic φ .

Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time t = 0.

• d = 1: 1-rigidity = Graph connectivity.

- d = 2: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).
- ► d ≥ 3: No combinatorial characterization (major open problem).

The rigidity matrix R of a framework (G, φ) is a $d|V| \times |E|$ matrix:

$$R(x,xy) = \varphi(x) - \varphi(y) \quad , \quad R(y,xy) = \varphi(y) - \varphi(x)$$

A graph is d-rigid if $\operatorname{rank}(R) = d|V| - {d+1 \choose 2}$ for a generic φ .

Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time t = 0.

• d = 1: 1-rigidity = Graph connectivity.

 d = 2: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).

► d ≥ 3: No combinatorial characterization (major open problem).

Problem: When is G(n, p) *d*-rigid?

When is a G(n, p) graph *d*-rigid?

- d = 1: (Connectivity)
 - Erdős-Rényi: $p_c = (\log n + O(1))/n$.
 - ▶ Bollobás-Thomason: In $(G(n, M) : 0 \le M \le {n \choose 2})$, a.a.s τ (connectivity) = τ (min-degree 1).

When is a G(n, p) graph *d*-rigid?

- d = 1: (Connectivity)
 - Erdős-Rényi: $p_c = (\log n + O(1))/n$.
 - ▶ Bollobás-Thomason: In $(G(n, M) : 0 \le M \le {n \choose 2})$, a.a.s τ (connectivity) = τ (min-degree 1).

d=2:

- ► Jackson, Servatius and Servatius: $p_c = (\log n + \log \log n + O(1))/n.$
- Coincides with threshold for having minimum degree 2.
- Builds on Lovász-Yemini characterization.

When is a G(n, p) graph *d*-rigid?

- d = 1: (Connectivity)
 - Erdős-Rényi: $p_c = (\log n + O(1))/n$.
 - ▶ Bollobás-Thomason: In $(G(n, M) : 0 \le M \le {n \choose 2})$, a.a.s τ (connectivity) = τ (min-degree 1).

d=2:

- ▶ Jackson, Servatius and Servatius: $p_c = (\log n + \log \log n + O(1))/n.$
- Coincides with threshold for having minimum degree 2.
- Builds on Lovász-Yemini characterization.

 $d\geq 3$:

• Király, Theran, and Tomioka ; Jordán and Tanigawa: $p_c = O(\log n/n)$.

Main results

Theorem Let $(G(n, M) : 0 \le M \le {n \choose 2})$. Then, a.a.s., 1. $\tau(d\text{-rigidity}) = \tau(\text{min-degree } d)$, and consequently, 2. $\tau(d\text{-global-rigidity}) = \tau(\text{min-degree } d+1)$.

Remarks:

- ▶ "≥" holds deterministically.
- ► Tanigawa, Jordán: A (*d* + 1)-rigid graph is *d*-globally-rigid.

Main results

Theorem Let $(G(n, M) : 0 \le M \le {n \choose 2})$. Then, a.a.s., 1. $\tau(d\text{-rigidity}) = \tau(\text{min-degree } d)$, and consequently, 2. $\tau(d\text{-global-rigidity}) = \tau(\text{min-degree } d+1)$.

Remarks:

- ▶ "≥" holds deterministically.
- ▶ Tanigawa, Jordán: A (d + 1)-rigid graph is *d*-globally-rigid.
- ▶ $p_c(d\text{-rigidity}) = (\log n + (d-1)\log \log n + O(1))/n.$
- ▶ $p_c(d$ -global-rigidity) = $(\log n + d \log \log n + O(1))/n$.
- Applies to all abstract rigidity matroids.

Proof idea 1: Large closure

$$C_d(G) = \left\{ xy \in \binom{V}{2} \ : \ R(\cdot, xy) \in \operatorname{column} - \operatorname{space}(R(G)) \right\},$$

i.e., edges whose addition to G does not increase rank(R).

Proof idea 1: Large closure

$$C_d(G) = \left\{ xy \in \binom{V}{2} : R(\cdot, xy) \in \operatorname{column} - \operatorname{space}(R(G)) \right\},$$

i.e., edges whose addition to G does not increase rank(R).

• Observation: in the process $G(n, M), 0 \le M \le {n \choose 2}$,

$$e_M \notin C_d(G(n, M-1)) \qquad (!)$$

occurs $dn - \binom{d+1}{2}$ times.

Proof idea 1: Large closure

$$C_d(G) = \left\{ xy \in \binom{V}{2} : R(\cdot, xy) \in \text{column} - \text{space}(R(G)) \right\},$$

i.e., edges whose addition to G does not increase $\operatorname{rank}(R)$.

• Observation: in the process $G(n, M), 0 \le M \le {n \choose 2}$,

$$e_M \notin C_d(G(n, M-1)) \qquad (!)$$

occurs $dn - \binom{d+1}{2}$ times.

Coupling: Use independent U(0, 1)'s to decide if (!) occurs: $\mathbb{P}\left(|C_d(G(n, M))| \le \alpha \binom{n}{2}\right) \le \mathbb{P}\left(\operatorname{Bin}(M, 1 - \alpha) \le dn - \binom{d+1}{2}\right).$ Proof idea 2: From Large closure to rigidity

Set $M := \tau(\mathsf{min-deg} = d) = \frac{1}{2}(n\log n + (d-1)\log\log n + O_P(1)).$

- 1. $|C_d(G(n, M))| = (1 o(1))\binom{n}{2}$.
- 2. $C_d(G(n, M))$ is K_{d+2}^- -free.
- **3**. $G(n, M) \subseteq C_d(G(n, M))$

Proof idea 2: From Large closure to rigidity

Set $M := \tau(\mathsf{min-deg} = d) = \frac{1}{2}(n\log n + (d-1)\log\log n + O_P(1)).$

1.
$$|C_d(G(n, M))| = (1 - o(1))\binom{n}{2}$$
.

2.
$$C_d(G(n, M))$$
 is K_{d+2}^- -free.

3.
$$G(n, M) \subseteq C_d(G(n, M))$$

Lemma: A.a.s, the only graph satisfying 1,2,3 is

$$C_d(G(n,M)) = K_n.$$

Open problems:

- Emergence of a giant d-rigid component in G(n, p)? (Known: p_c = O_d(1/n), precise constant for d = 1, 2)
- ▶ Higher dimensions: Prove that G(n, 1/2) is rigid in \mathbb{R}^{cn} ? (Krivelevich, Michaeli, Lew conjecture: $c \approx 1 - \sqrt{1 - 1/2}$).
- When is a random k-regular graph a.a.s d-rigid? (Plausible conjecture ∀d ≥ 2: iff k ≥ 2d. Known for d = 2.)