Sharp threshold for rigidity of random graphs

Alan Lew (CMU), Eran Nevo, Yuval Peled, Orit Raz (HUJI)

Workshop III: Statistical Mechanics Beyond 2D, IPAM, UCLA, May 6-10, 2024

Combinatorial Rigidity

A framework $\left(G=(V, E), \varphi: V \rightarrow \mathbb{R}^{d}\right)$ is called:

Combinatorial Rigidity

A framework $\left(G=(V, E), \varphi: V \rightarrow \mathbb{R}^{d}\right)$ is called:

- Globally-rigid: if every $\varphi^{\prime}: V \rightarrow \mathbb{R}^{d}$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.

Combinatorial Rigidity

A framework $\left(G=(V, E), \varphi: V \rightarrow \mathbb{R}^{d}\right)$ is called:

- Globally-rigid: if every $\varphi^{\prime}: V \rightarrow \mathbb{R}^{d}$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
- Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

Combinatorial Rigidity

A framework $\left(G=(V, E), \varphi: V \rightarrow \mathbb{R}^{d}\right)$ is called:

- Globally-rigid: if every $\varphi^{\prime}: V \rightarrow \mathbb{R}^{d}$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
- Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

Observation: Rigidity \Longrightarrow min-degree at least d

Combinatorial Rigidity

A framework $\left(G=(V, E), \varphi: V \rightarrow \mathbb{R}^{d}\right)$ is called:

- Globally-rigid: if every $\varphi^{\prime}: V \rightarrow \mathbb{R}^{d}$ that yields the same distances between adjacent vertices is obtained from φ by an isometry.
- Rigid if there is no non-trivial continuous motions of the vertices starting from φ that preserves the distances between adjacent vertices.

Observation: Global Rigidity \Longrightarrow min-degree at least $d+1$

Combinatorial Rigidity

Basic question: Is a given framework rigid?

- Cauchy's rigidity theorem (1813), Maxwell's criterion (1864).
- A hard problem in general (may depend on φ). E.g., Abbot '08: coNP-hard for $d=2$.
- Asimow and Roth '79: For a generic φ, rigidity is a simpler linear-algebraic property of G.

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ.

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ. Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time $t=0$.

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ. Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time $t=0$.

- $d=1$: 1-rigidity $=$ Graph connectivity.

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ.
Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time $t=0$.

- $d=1$: 1-rigidity $=$ Graph connectivity.
- $d=2$: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ.
Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time $t=0$.

- $d=1$: 1-rigidity $=$ Graph connectivity.
- $d=2$: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).
- $d \geq 3$: No combinatorial characterization (major open problem).

Infinitesimal Rigidity (Asimow-Roth)

The rigidity matrix R of a framework (G, φ) is a $d|V| \times|E|$ matrix:

$$
R(x, x y)=\varphi(x)-\varphi(y) \quad, \quad R(y, x y)=\varphi(y)-\varphi(x)
$$

A graph is d-rigid if $\operatorname{rank}(R)=d|V|-\binom{d+1}{2}$ for a generic φ.
Idea: Left kernel of $R \leftrightarrow$ motions infinitesimally preserving distances of adjacent vertices at time $t=0$.

- $d=1$: 1-rigidity $=$ Graph connectivity.
- $d=2$: 2-rigidity is well-understood (Laman, Lovász-Yemini, Hendrickson, Crapo).
- $d \geq 3$: No combinatorial characterization (major open problem).

Problem: When is $G(n, p) d$-rigid?

When is a $G(n, p)$ graph d-rigid?
$d=1$: (Connectivity)

- Erdős-Rényi: $p_{c}=(\log n+O(1)) / n$.
- Bollobás-Thomason: $\ln \left(G(n, M): 0 \leq M \leq\binom{ n}{2}\right)$, a.a.s $\tau($ connectivity $)=\tau($ min-degree 1$)$.

When is a $G(n, p)$ graph d-rigid?

$d=1$: (Connectivity)

- Erdős-Rényi: $p_{c}=(\log n+O(1)) / n$.
- Bollobás-Thomason: $\ln \left(G(n, M): 0 \leq M \leq\binom{ n}{2}\right)$, a.a.s $\tau($ connectivity $)=\tau($ min-degree 1$)$.
$d=2$:
- Jackson, Servatius and Servatius: $p_{c}=(\log n+\log \log n+O(1)) / n$.
- Coincides with threshold for having minimum degree 2.
- Builds on Lovász-Yemini characterization.

When is a $G(n, p)$ graph d-rigid?

$d=1$: (Connectivity)

- Erdős-Rényi: $p_{c}=(\log n+O(1)) / n$.
- Bollobás-Thomason: $\ln \left(G(n, M): 0 \leq M \leq\binom{ n}{2}\right)$, a.a.s $\tau($ connectivity $)=\tau($ min-degree 1$)$.
$d=2$:
- Jackson, Servatius and Servatius: $p_{c}=(\log n+\log \log n+O(1)) / n$.
- Coincides with threshold for having minimum degree 2 .
- Builds on Lovász-Yemini characterization.
$d \geq 3$:
- Király, Theran, and Tomioka ; Jordán and Tanigawa:

$$
p_{c}=O(\log n / n) .
$$

Main results

Theorem
Let $\left(G(n, M): 0 \leq M \leq\binom{ n}{2}\right)$. Then, a.a.s.,

1. $\tau(d$-rigidity $)=\tau($ min-degree $d)$, and consequently,
2. $\tau(d$-global-rigidity $)=\tau($ min-degree $d+1)$.

Remarks:

- " \geq " holds deterministically.
- Tanigawa, Jordán: A $(d+1)$-rigid graph is d-globally-rigid.

Main results

Theorem
Let $\left(G(n, M): 0 \leq M \leq\binom{ n}{2}\right)$. Then, a.a.s.,

1. $\tau(d$-rigidity $)=\tau($ min-degree $d)$, and consequently,
2. $\tau(d$-global-rigidity $)=\tau($ min-degree $d+1)$.

Remarks:

- " \geq " holds deterministically.
- Tanigawa, Jordán: A $(d+1)$-rigid graph is d-globally-rigid.
- $p_{c}(d$-rigidity $)=(\log n+(d-1) \log \log n+O(1)) / n$.
- $p_{c}(d$-global-rigidity $)=(\log n+d \log \log n+O(1)) / n$.
- Applies to all abstract rigidity matroids.

Proof idea 1: Large closure

- Key definition: (Matroid closure)

$$
C_{d}(G)=\left\{x y \in\binom{V}{2}: R(\cdot, x y) \in \operatorname{column}-\operatorname{space}(R(G))\right\}
$$

i.e., edges whose addition to G does not increase $\operatorname{rank}(R)$.

Proof idea 1: Large closure

- Key definition: (Matroid closure)

$$
C_{d}(G)=\left\{x y \in\binom{V}{2}: R(\cdot, x y) \in \operatorname{column}-\operatorname{space}(R(G))\right\}
$$

i.e., edges whose addition to G does not increase $\operatorname{rank}(R)$.

- Observation: in the process $G(n, M), 0 \leq M \leq\binom{ n}{2}$,

$$
\begin{equation*}
e_{M} \notin C_{d}(G(n, M-1)) \tag{!}
\end{equation*}
$$

occurs $d n-\binom{d+1}{2}$ times.

Proof idea 1: Large closure

- Key definition: (Matroid closure)

$$
C_{d}(G)=\left\{x y \in\binom{V}{2}: R(\cdot, x y) \in \operatorname{column}-\operatorname{space}(R(G))\right\}
$$

i.e., edges whose addition to G does not increase $\operatorname{rank}(R)$.

- Observation: in the process $G(n, M), 0 \leq M \leq\binom{ n}{2}$,

$$
\begin{equation*}
e_{M} \notin C_{d}(G(n, M-1)) \tag{!}
\end{equation*}
$$

occurs $d n-\binom{d+1}{2}$ times.

- Coupling: Use independent $U(0,1)$'s to decide if (!) occurs:
$\mathbb{P}\left(\left|C_{d}(G(n, M))\right| \leq \alpha\binom{n}{2}\right) \leq \mathbb{P}\left(\operatorname{Bin}(M, 1-\alpha) \leq d n-\binom{d+1}{2}\right)$.

Proof idea 2: From Large closure to rigidity

Set $M:=\tau(\min -\operatorname{deg}=d)=\frac{1}{2}\left(n \log n+(d-1) \log \log n+O_{P}(1)\right)$.

1. $\left|C_{d}(G(n, M))\right|=(1-o(1))\binom{n}{2}$.
2. $C_{d}(G(n, M))$ is K_{d+2}^{-}-free.
3. $G(n, M) \subseteq C_{d}(G(n, M))$

Proof idea 2: From Large closure to rigidity

Set $M:=\tau(\min -\operatorname{deg}=d)=\frac{1}{2}\left(n \log n+(d-1) \log \log n+O_{P}(1)\right)$.

$$
\begin{aligned}
& \text { 1. }\left|C_{d}(G(n, M))\right|=(1-o(1))\binom{n}{2} \text {. } \\
& \text { 2. } C_{d}(G(n, M)) \text { is } K_{d+2}^{-} \text {-free. } \\
& \text { 3. } G(n, M) \subseteq C_{d}(G(n, M))
\end{aligned}
$$

Lemma: A.a.s, the only graph satisfying $1,2,3$ is

$$
C_{d}(G(n, M))=K_{n} .
$$

Open problems:

- Emergence of a giant d-rigid component in $G(n, p)$? (Known: $p_{c}=O_{d}(1 / n)$, precise constant for $d=1,2$)
- Higher dimensions: Prove that $G(n, 1 / 2)$ is rigid in $\mathbb{R}^{c n}$? (Krivelevich, Michaeli, Lew conjecture: $c \approx 1-\sqrt{1-1 / 2}$).
- When is a random k-regular graph a.a.s d-rigid? (Plausible conjecture $\forall d \geq 2$: iff $k \geq 2 d$. Known for $d=2$.)

