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Combinatorial Rigidity
A framework (G = (V,E) , φ : V → Rd) is called:

▶ Globally-rigid: if every φ′ : V → Rd that yields the same
distances between adjacent vertices is obtained from φ by an
isometry.

▶ Rigid if there is no non-trivial continuous motions of the
vertices starting from φ that preserves the distances between
adjacent vertices.

Observation: Rigidity =⇒ min-degree at least d
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Combinatorial Rigidity
Basic question: Is a given framework rigid?
▶ Cauchy’s rigidity theorem (1813), Maxwell’s criterion (1864).
▶ A hard problem in general (may depend on φ).

E.g., Abbot ’08: coNP-hard for d = 2 .
▶ Asimow and Roth ’79: For a generic φ, rigidity is a simpler

linear-algebraic property of G.
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Infinitesimal Rigidity (Asimow-Roth)
The rigidity matrix R of a framework (G,φ) is a d|V | × |E| matrix:

R(x, xy) = φ(x)− φ(y) , R(y, xy) = φ(y)− φ(x)

A graph is d-rigid if rank(R) = d|V | −
(
d+1
2

)
for a generic φ.

Idea: Left kernel of R ↔ motions infinitesimally preserving
distances of adjacent vertices at time t = 0.
▶ d = 1: 1-rigidity = Graph connectivity.
▶ d = 2: 2-rigidity is well-understood (Laman, Lovász-Yemini,

Hendrickson, Crapo).
▶ d ≥ 3: No combinatorial characterization (major open

problem).

Problem: When is G(n, p) d-rigid?
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When is a G(n, p) graph d-rigid?

d = 1: (Connectivity)
▶ Erdős-Rényi: pc = (logn+O(1))/n.
▶ Bollobás-Thomason: In

(
G(n,M) : 0 ≤ M ≤

(
n
2

))
, a.a.s

τ(connectivity) = τ(min-degree 1).

d = 2 :

▶ Jackson, Servatius and Servatius:
pc = (logn+ log logn+O(1))/n.

▶ Coincides with threshold for having minimum degree 2.
▶ Builds on Lovász-Yemini characterization.

d ≥ 3 :

▶ Király, Theran, and Tomioka ; Jordán and Tanigawa:
pc = O(logn/n).

5/9



When is a G(n, p) graph d-rigid?

d = 1: (Connectivity)
▶ Erdős-Rényi: pc = (logn+O(1))/n.
▶ Bollobás-Thomason: In

(
G(n,M) : 0 ≤ M ≤

(
n
2

))
, a.a.s

τ(connectivity) = τ(min-degree 1).
d = 2 :

▶ Jackson, Servatius and Servatius:
pc = (logn+ log logn+O(1))/n.

▶ Coincides with threshold for having minimum degree 2.
▶ Builds on Lovász-Yemini characterization.

d ≥ 3 :

▶ Király, Theran, and Tomioka ; Jordán and Tanigawa:
pc = O(logn/n).

5/9



When is a G(n, p) graph d-rigid?

d = 1: (Connectivity)
▶ Erdős-Rényi: pc = (logn+O(1))/n.
▶ Bollobás-Thomason: In

(
G(n,M) : 0 ≤ M ≤

(
n
2

))
, a.a.s

τ(connectivity) = τ(min-degree 1).
d = 2 :

▶ Jackson, Servatius and Servatius:
pc = (logn+ log logn+O(1))/n.

▶ Coincides with threshold for having minimum degree 2.
▶ Builds on Lovász-Yemini characterization.

d ≥ 3 :

▶ Király, Theran, and Tomioka ; Jordán and Tanigawa:
pc = O(logn/n).

5/9



Main results

Theorem
Let

(
G(n,M) : 0 ≤ M ≤

(
n
2

))
. Then, a.a.s.,

1. τ(d-rigidity) = τ(min-degree d), and consequently,
2. τ(d-global-rigidity) = τ(min-degree d+ 1).

Remarks:
▶ ”≥” holds deterministically.
▶ Tanigawa, Jordán: A (d+ 1)-rigid graph is d-globally-rigid.

▶ pc(d-rigidity) = (logn+ (d− 1) log logn+O(1))/n.
▶ pc(d-global-rigidity) = (logn+ d log logn+O(1))/n.
▶ Applies to all abstract rigidity matroids.
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Proof idea 1: Large closure
▶ Key definition: (Matroid closure)

Cd(G) =

{
xy ∈

(
V

2

)
: R(·, xy) ∈ column − space(R(G))

}
,

i.e., edges whose addition to G does not increase rank(R).

▶ Observation: in the process G(n,M), 0 ≤ M ≤
(
n
2

)
,

eM /∈ Cd(G(n,M − 1)) (!)

occurs dn−
(
d+1
2

)
times.

▶ Coupling: Use independent U(0, 1)’s to decide if (!) occurs:

P
(
|Cd(G(n,M))| ≤ α

(
n

2

))
≤ P

(
Bin(M, 1− α) ≤ dn−

(
d+ 1

2

))
.
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Proof idea 2: From Large closure to rigidity
Set M := τ(min-deg = d) = 1

2(n logn+(d− 1) log logn+OP (1)).

1. |Cd(G(n,M))| = (1− o(1))
(
n
2

)
.

2. Cd(G(n,M)) is K−
d+2-free.

3. G(n,M) ⊆ Cd(G(n,M))

Lemma: A.a.s, the only graph satisfying 1,2,3 is

Cd(G(n,M)) = Kn.
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Open problems:

▶ Emergence of a giant d-rigid component in G(n, p)?
(Known: pc = Od(1/n), precise constant for d = 1, 2)

▶ Higher dimensions: Prove that G(n, 1/2) is rigid in Rcn?
(Krivelevich, Michaeli, Lew conjecture: c ≈ 1−

√
1− 1/2).

▶ When is a random k-regular graph a.a.s d-rigid?
(Plausible conjecture ∀d ≥ 2: iff k ≥ 2d. Known for d = 2.)
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