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Bond Percolation

Percolation theory studies the large scale properties of graphs
as vertices or edges are removed at random.

Let G be a finite graph. Bernoulli bond percolation with
parameter p is the random subgraph obtained by including
each edge of G independently at random with probability p,
so the probability of a given subgraph is given by

µp (H) = p|E(H)| (1− p)|E(G)|−|E(H)| .
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The Random-Cluster Model

The random-cluster model is a dependent generalization that
adds additional weight to the subgraphs depending on c (H) ,
the number of connected components of H, yielding

µp,q (H) =
1

Z
p|E(H)| (1− p)|E(G)|−|E(H)| qc(H) .

In this talk we will assume q ≥ 1, so the edges are positively
associated (when q = 1 this is just the Bernoulli model).

The random-cluster model is related to the Ising/Potts models
of magnetism, and can be extended to infinite graphs via
limits of finite graphs, the main graph of interest being Zd .

3



The Random-Cluster Model

The random-cluster model is a dependent generalization that
adds additional weight to the subgraphs depending on c (H) ,
the number of connected components of H, yielding

µp,q (H) =
1

Z
p|E(H)| (1− p)|E(G)|−|E(H)| qc(H) .

In this talk we will assume q ≥ 1, so the edges are positively
associated (when q = 1 this is just the Bernoulli model).

The random-cluster model is related to the Ising/Potts models
of magnetism, and can be extended to infinite graphs via
limits of finite graphs, the main graph of interest being Zd .

3



The Random-Cluster Model

The random-cluster model is a dependent generalization that
adds additional weight to the subgraphs depending on c (H) ,
the number of connected components of H, yielding

µp,q (H) =
1

Z
p|E(H)| (1− p)|E(G)|−|E(H)| qc(H) .

In this talk we will assume q ≥ 1, so the edges are positively
associated (when q = 1 this is just the Bernoulli model).

The random-cluster model is related to the Ising/Potts models
of magnetism, and can be extended to infinite graphs via
limits of finite graphs, the main graph of interest being Zd .

3



Plaquette Percolation

Aizenman, Chayes, Chayes, Frölich and Russo introduced
plaquette percolation, in which unit squares called plaquettes
are added in to the cubic lattice with probability p
independently.

We can think of this as the 2-dimensional generalization of
bond percolation, since edges are the 1-cells of the cubical
complex structure on Z3.
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The Plaquette Random-Cluster Model

The plaquette model also admits a dependent generalization,
which is naturally expressed in terms of homology.

Recall that the boundary of an oriented edge is the difference
of the tip and tail vertices.

The boundary of an oriented plaquette is an sum of the
oriented edges that it contains.
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Homology

The boundary of a sum of cells is the formal sum of the
boundaries.

The (i − 1)-dimensional boundary group of a percolation
subcomplex P with coefficients in a group G , written
Bi−1 (P; G ) is the group of G -linear sums of (i − 1)-cells
that are boundaries of sums of i-plaquettes.

The (i − 1)-dimensional cycle group Zi−1 (P; G ) is the group
of sums of (i − 1)-cells with zero boundary.

The (i − 1)-dimensional homology group is then defined as
Hi−1 (P; G ) := Zi−1 (P; G ) /Bi−1 (P; G ) .
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The Plaquette Random-Cluster Model

One can easily check that |H0 (P; Zq)| = qc(P).

We therefore define the i-dimensional plaquette
random-cluster model with parameter q ∈ N on a finite
subcomplex X ⊂ Zd by

µp,q,i (P) =
1

Z
p|P| (1− p)|X

i |−|P| |Hi−1 (P; Zq)| ,

where |P| is the number of i-plaquettes in P and
∣∣X i

∣∣ is the
number of i-cells in X .
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The Phase Transition

The study of classical percolation in Zd centers around the
phase transition for the appearance of an infinite component
at the critical probability

pc (q) = inf {p : µp,q (0 ↔ ∞) > 0} .

It is not clear how best to generalize the infinite component.
However, better topological tools are available in compact
spaces.
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Homological Percolation

Instead of Zd , consider a compact space with the same local
structure, namely the torus Td

N of dimension d and diameter
N.

First, we compare the usual 1-dimensional percolation in each
setting.

A “global” loop in the torus TN
d for large N is a natural

analogue of an infinite path in Zd .
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Giant Cycles

The global loops are the ones which are not boundaries in the
full torus.

More precisely, we say that a cycle is giant if it has a nonzero
image under the map on homology ϕ∗ : H1 (P) → H1

(
Td
N

)
induced by the inclusion P ↪→ Td

N .
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Giant Cycles

In i-dimensional plaquette percolation, we instead look for the
appearance of giant i-cycles.

For example, a giant 2-cycle is closed ”surface” of
2-plaquettes that is not the boundary of a sum of 3-cubes.
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Giant Cycles

There are many possible giant cycles, but the rank of the
homology group is

(d
i

)
.

Let A = A (F) be the event that P has a giant cycle in
homology with coefficients in a field F and S = S (F) be the
event P has representatives for all equivalence classes of giant
cycles (i.e. ϕ∗ is surjective).
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Main Results

Theorem (D., Schweinhart, 22)

For every d ≥ 2, 1 ≤ i ≤ d − 1, q ∈ N, and field F with
char (F ) ̸= 2, there is a function λ = λ (q, d , i ,N) so that for every
ϵ > 0 {

µλ−ϵ,q,i ,N (A) → 0

µλ+ϵ,q,i ,N (S) → 1

as N → ∞. When d is even, we also have

λ (q, d , d/2,N) =

√
q

1 +
√
q
.
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Proof Sketch

The proof uses 3 ingredients:

Duality between random-cluster models in
complementary dimensions

The action of the symmetries of the torus on giant cycles

Sharp thresholds in symmetric boolean functions
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The Dual Model

In the plane, the is a correspondence between percolation
subgraphs and subgraphs of the dual graph.

The dual to the classical random-cluster model with
parameters p, q in the plane is also a random-cluster model,
but with parameters p∗, q, where p∗ = (1−p)q

p+(1−p)q .
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The Dual Model

Analogously, the random complex on Td
N distributed as

µp,q,i ,N has a dual complex that differs from µp∗,q,d−i ,N by at
most a constant factor that depends only on p, q, and i .
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Planar Duality

Our main topological tool is a generalization of the square
crossing lemma used to prove the Harris-Kesten Theorem on
Bernoulli bond percolation in Z2.

Lemma (Kesten, 82)

Let V be the event that there is a vertical crossing of an
n × (n + 1) rectangle R. Then P1/2(V ) = 1/2.
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Duality

Let Z be the event that there are no giant cycles in P, i.e. ϕ∗
is zero. Let A•, S•,Z • be the corresponding events in the dual
plaquette system P• and let ψ∗ be the map on homology
induced by the inclusion P• → Td

N .

Let D = rankHi

(
Td

)
=

(d
i

)
.

Lemma (Duality)

rankϕ∗ + rankψ∗ = D. In particular, at least one of the events A
and A• occurs, S• ⇐⇒ Z , and Z • ⇐⇒ S .
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Plaquette Duality

Lemma

Td
N \ P is homotopy equivalent to P•.

The duality lemma follows from the above observation and a
version of Alexander duality, which tells us that a
decomposition of a manifold yields pieces with related
topological properties.
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Giant Cycles via Symmetries

Lemma

Suppose char (F) ̸= 2. Then there exist constants b0 = b0 (D) > 0
and b1 = b1 (D) > 0 that do not depend on N so that

µp,q,i ,N (S) ≥ b0µp,q,i ,N (A)b1 .

By the FKG inequality, the probability of the existence of two
given giant cycles is at least the product of the probabilities
that each exist.

The span of the orbit of a giant cycle under the symmetries of
the torus is the entire giant cycle space when the
characteristic of F is not 2.
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Sharp Thresholds

The theory of boolean functions on the hypercube tells us
that symmetric increasing events for FKG measures have
sharp thresholds.

Theorem (Graham, Grimmett 06)

There exists a constant 0 < C <∞ so that the following holds.
Let N ≥ 1, I = {1, . . . ,N} , Ω = {0, 1}N , and let F be the set of
subsets of Ω. Let A ∈ F be an increasing event. Let µ be a
positive monotonic probability measure on (Ω,F ). Let Xi = ω (i)
and set p = µ (Xi = 1) . If there exists a subgroup A of the
symmetric group on N elements ΠN acting transitively on I so that
µ and A are A-invariant, then

d

dp
µp (A) ≥

Cµp (X1) (1− µp (X1))

p (1− p)
min {µp (A) , 1− µp (A)} logN .
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Finishing the Proof

Take λ so that µλ,q,i ,N (A) = 1/2

Using the symmetries of the torus, we can find a c > 0 such
that µλ,q,i ,N (S) > c .

By the Graham-Grimmett Theorem, the thresholds for A and
S are sharp and coincide.

The duality lemma implies that dual models have
complementary thresholds, so in particular

λ (q, d , d/2,N) =

√
q

1 +
√
q
.
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Thanks!
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