Fast relaxation in the random field Ising model

Reza Gheissari
Northwestern University

Joint with A. El Alaoui (Cornell), R. Eldan (Microsoft Research), A. Piana (Weizmann)

IPAM
Statistical mechanics beyond 2D
May 2024
The underlying geometry

$n \times n$ box in \mathbb{Z}^d with nearest-neighbor edges $v \sim w$

d = 2:

d = 3:
The Ising model

Ising model: probability of assignment σ of $\{+, -\}$ to the vertices.

$$\pi_{\beta,n}(\sigma) \propto e^{-H(\sigma)} \quad \text{where} \quad H(\sigma) = \beta \sum_{v \sim w} 1_{\{\sigma_v \neq \sigma_w\}}$$

- H is the Hamiltonian or energy of a configuration;
- β is an inverse-temperature parameter.

$$H(\sigma) = 14\beta$$
Glauber dynamics for the Ising model

1. Assign every site a rate-1 Poisson clock.
2. If the clock at site v rings at time t,
3. Resample $X_t(v)$ conditionally on its neighbors $(X_t(w))_{w \sim v}$.
Glauber dynamics for the Ising model

1. Assign every site a rate-1 Poisson clock.
2. If the clock at site v rings at time t,
3. Resample $X_t(v)$ conditionally on its neighbors $(X_t(w))_{w \sim v}$.

Equilibrium distribution is exactly π!
Mixing time:

\[t_{mix} = \inf \{ t : \max_{X_0} \| \mathbb{P}_{X_0}(X_t \in \cdot) - \pi \|_{tv} < 1/4 \} . \]
Quantifying the rate of convergence

Mixing time:

\[t_{mix} = \inf \{ t : \max_{X_0} \| P_{X_0}(X_t \in \cdot) - \pi \|_{tv} < 1/4 \} . \]

Poincaré inequality i.e., spectral gap: closely related to \(t_{mix} \)

\[\text{Var}_\pi(f) \leq \lambda^{-1} \cdot \mathcal{E}(f, f) \]

 Governs exponential rate of convergence to \(\pi \):

\[\| P^t f - \pi[f] \|_{2,\pi}^2 \leq \| f \|_{2,\pi}^2 e^{-\lambda t} . \]
Mixing time of the Ising model on \mathbb{Z}^d

Consider the mixing time $t_{\text{MIX}}(\square)$

$\beta < \beta_c(d)$

Optimal $O(\log n)$ mixing
"Weak/strong spatial mixing"
[Martinelli Oliveiri '94] [Cesi '99] [Lubetzky Sly '10, '13]

$\beta = \beta_c(d)$

d = 2: Poly $O(n^c)$ mixing
[Lubetzky Sly '12]
d = 3, 4: ???

$\beta > \beta_c(d)$

Slow mixing: $\exp(c_\beta n^{d-1})$

d = 2: [Chayes et al '87]
d ≥ 3: Pisztora '96, Bodineau '05

R. Gheissari Northwestern
The random-field Ising model

The random field \((h_v)_v\) are i.i.d. symmetric (e.g., \(\mathcal{N}(0, b^2)\))

Random field Ising model (RFIM): probability of \(\sigma \in \{+, -\}^V\),

\[
\pi(\sigma) \propto e^{-H(\sigma)} \quad \text{where} \quad H(\sigma) = \beta \sum_{v \sim w} 1_{\{\sigma_v \neq \sigma_w\}} - \sum_v h_v \sigma_v
\]
The RFIM: phase diagram at equilibrium

\(d = 2 \) Imry-Ma phenomenon: exponential decay of correlations (in expectation or for typical \((h_v)_v\)) at all temperatures in \(\mathbb{Z}^2 \).

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]
The RFIM: phase diagram at equilibrium

\(d = 2 \) **Imry-Ma phenomenon**: exponential decay of correlations (in expectation or for typical \((h_v)_v\)) at all temperatures in \(\mathbb{Z}^2 \).

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]

\(d \geq 3 \) **Phase transition**: At \(\beta \) large, \(\text{Var}(h) \) small: long range order

[Imbrie ’85, Bricmont Kupiainen ’88, Ding Liu Xia ’19]
The RFIM: phase diagram at equilibrium

\(d = 2 \) **Imry-Ma phenomenon:** exponential decay of correlations (in expectation or for typical \((h_v)_v\)) at all temperatures in \(\mathbb{Z}^2 \).

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]

\(d \geq 3 \) **Phase transition:** At \(\beta \) large, \(\text{Var}(h) \) small: long range order

[Imbrie ’85, Bricmont Kupiainen ’88, Ding Liu Xia ’19]
The Griffiths phase

[Griffiths ’69]: Regime of $(\beta, \text{Var}(h))$ where we have:

- exponential decay of correlations on average over $(h_v)_v$;
- $O(\log n)$ size regions where $h_v \approx 0$; get low temperature behavior.
The Griffiths phase

[Griffiths ’69]: Regime of $(\beta, \text{Var}(h))$ where we have:
- exponential decay of correlations on average over $(h_v)_v$;
- $O(\log n)$ size regions where $h_v \approx 0$; get low temperature behavior.

This slows down dynamics somewhat, destroys many standard approaches to bounding Glauber dynamics mixing time.

Recently: [Helmuth et al ’21] showed on general graphs at sufficiently large $\text{Var}(h)$, there exists poly-time (approximate) sampling algorithm
Weak spatial mixing (WSM) in expectation

Definition

RFIM has weak spatial mixing (WSM) in expectation if

\[
\mathbb{E}_h[\|\pi^+_B(\sigma_o \in \cdot) - \pi^-_B(\sigma_o \in \cdot)\|_{TV}] \leq Ce^{-r/C}.
\]
Weak spatial mixing (WSM) in expectation

Definition

RFIM has weak spatial mixing (WSM) in expectation if

$$\mathbb{E}_h[\|\pi_{B_r}^+(\sigma_o \in \cdot) - \pi_{B_r}^-(\sigma_o \in \cdot)\|_{TV}] \leq Ce^{-r/C}.$$

E.g., \mathbb{Z}^2 for all $\beta > 0$ and $\text{Var}(h) > 0$ [Ding, Xia ’19]

$d \geq 3$: Expect to hold throughout non-critical uniqueness regime
Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp \((h_v)_v\) is such that RFIM dynamics has a weak Poincaré inequality with constant \(n^C\), i.e., \(\exists p, q : \frac{1}{p} + \frac{1}{q} = 1\):

\[
\text{Var}_\pi(f) \leq n^C \|f\|^{1/q}_\infty \cdot \mathcal{E}(f, f)^{1/p}
\]

Test functions converge algebraically on polynomial timescales:

\[
\|P^t f - \pi[f]\|^{2}_{2, \pi} \leq \|f\|^{2}_\infty n^C_1 \cdot t^{-C_2}.
\]
WSM in expectation and weak Poincaré inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp \((h_v)_v\) is such that RFIM dynamics has a weak Poincaré inequality with constant \(n^C\), i.e., \(\exists p, q : \frac{1}{p} + \frac{1}{q} = 1:\)

\[
\text{Var}_\pi(f) \leq n^C \|f\|^{1/q}_\infty \cdot \mathcal{E}(f, f)^{1/p}
\]

Test functions converge algebraically on polynomial timescales:

\[
\|P^t f - \pi[f]\|_{2,\pi}^2 \leq \|f\|_\infty^2 n^{C_1} \cdot t^{-C_2}.
\]

Weak PI’s date e.g., to critical interacting particle systems [Liggett ’91]
Consequences under WSM in expectation

Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp $(h_v)_v$ is such that RFIM dynamics has a weak Poincaré inequality with constant n^C, i.e., $\exists p, q : \frac{1}{p} + \frac{1}{q} = 1$:

$$\text{Var}_\pi(f) \leq n^C \|f\|_\infty^{1/q} \cdot \mathcal{E}(f, f)^{1/p}$$

Test functions converge algebraically on polynomial timescales:

$$\|P^t f - \pi[f]\|_{2,\pi}^2 \leq \|f\|_\infty^2 n^{C_1} \cdot t^{-C_2}.$$

Implications:

1. Poly(n) mixing from warm starts following [Lovasz Siminovits ’93];
2. Markov chain based sampling algorithm
 [Repeatedly run Glauber on domains adding one vertex]
Strong spatial mixing (SSM) in expectation

Definition

RFIM has strong spatial mixing (SSM) in expectation if for all \(v \in \Lambda \),

\[
\mathbb{E}_h \left[\max_{\xi \in \{\pm 1\}^{\partial \Lambda \setminus \{z\}}} \| \pi_\Lambda^{\xi, +} (\sigma_v \in \cdot) - \pi_\Lambda^{\xi, -} (\sigma_v \in \cdot) \|_{TV} \right] \leq Ce^{-d(v,z)/C}.
\]
Strong spatial mixing (SSM) in expectation

Definition

RFIM has strong spatial mixing (SSM) in expectation if for all $v \in \Lambda$,

$$\mathbb{E}_h \left[\max_{\xi \in \{\pm 1\}^{\partial \Lambda \setminus \{z\}}} \left\| \pi_{\Lambda}^{\xi, +} (\sigma_v \in \cdot) - \pi_{\Lambda}^{\xi, -} (\sigma_v \in \cdot) \right\|_{TV} \right] \leq C e^{-d(v,z)/C}.$$

(1) holds for $\beta < \beta_c$ and arbitrary h [Ding Song Sun ’22]
(2) holds for arbitrary β for $\text{Var}(h)$ large enough (“not hard”)
SSM in expectation and full Poincare inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If SSM in expectation holds, whp \((h_v)_v\) is such that the RFIM Glauber dynamics has Poincaré inequality with constant \(n^{o(1)}\), i.e.,

\[
\text{Var}_\pi(f) \leq n^{o(1)} \mathcal{E}(f, f)
\]

In particular, test functions converge exponentially on \(n^{o(1)}\) timescales:

\[
\|P^t f - \pi[f]\|_{2,\pi}^2 \leq \|f\|_{2,\pi}^2 \cdot e^{-t/n^{o(1)}}.
\]
SSM in expectation and full Poincare inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If SSM in expectation holds, whp \((h_v)_v\) is such that the RFIM Glauber dynamics has Poincaré inequality with constant \(n^{o(1)}\), i.e.,

\[
\text{Var}_\pi(f) \leq n^{o(1)} \mathcal{E}(f, f)
\]

In particular, test functions converge exponentially on \(n^{o(1)}\) timescales:

\[
\| P^t f - \pi[f] \|_{2,\pi}^2 \leq \| f \|_{2,\pi}^2 \cdot e^{-t/n^{o(1)}}
\]

Note: the \(n^{o(1)}\) is actually \(\exp((\log n)^{d-1\over d})\)

Corresponding lower bound of \(\exp((\log n)^{d-1\over 4d})\) when \(\beta > \beta_c\).
A "standard" argument giving polynomial in 2D

1. Tile \((\mathbb{Z}/n\mathbb{Z})^d\) by boxes \(B_R(v)\) for \(R = C \log n\)
2. Whp, \((h_v)_v\) s.t. for all \(v\), \(\partial B_R(v)\)-to-\(v\) influence less than \(N^{-10}\)
A “standard" proof of polynomial in 2D

1. Tile \((\mathbb{Z}/n\mathbb{Z})^d\) by boxes \(B_R(v)\) for \(R = C \log n\)
2. Whp, \((h_v)_v\) s.t. for all \(v\), \(\partial B_R(v)\)-to-\(v\) influence less than \(N^{-10}\)
3. By monotonicity, sandwich marginal at \(v\) started from + and − by chains on \(B_R(v)\) with + and − boundary conditions
A “standard" proof of polynomial in 2D

1. Tile \((\mathbb{Z}/n\mathbb{Z})^d\) by boxes \(B_R(v)\) for \(R = C \log n\)
2. Whp, \((h_v)_v\) s.t. for all \(v\), \(\partial B_R(v)\)-to-\(v\) influence less than \(N^{-10}\)
3. By monotonicity, sandwich marginal at \(v\) started from + and − by chains on \(B_R(v)\) with + and − boundary conditions
4. Deduce that if \(T \gg \max_v t_{mix}(B^{\pm}_R(v))\),

\[
||\mathbb{P}_+(X_t(v) \in \cdot) - \mathbb{P}_-(X_t(v) \in \cdot)||_{tv} \leq N^{-10}
\]

from which monotonicity and a union bound imply mixing.
A “standard" proof of polynomial in 2D

1. Tile \((\mathbb{Z}/n\mathbb{Z})^d\) by boxes \(B_R(v)\) for \(R = C \log n\)

2. Whp, \((h_v)_v\) s.t. for all \(v\), \(\partial B_R(v)\)-to-\(v\) influence less than \(N^{-10}\)

3. By monotonicity, sandwich marginal at \(v\) started from + and − by chains on \(B_R(v)\) with + and − boundary conditions

4. Deduce that if \(t \gg \max_v t_{\text{mix}}(B_R^\pm(v))\),

\[
\|\mathbb{P}_+(X_t(v) \in \cdot) - \mathbb{P}_-(X_t(v) \in \cdot)\|_{tv} \leq N^{-10}
\]

from which monotonicity and a union bound imply mixing.

5. Mixing time of a \(B_{\log n}\) is \(\exp((\log n)^{d-1})\) (exponential in cut-width)

− Polynomial for \(d = 2\); super-polynomial for \(d \geq 3\)
Question: Why should I expect to be able to do better?

Largest low-field region has *volume* $\log n$, so cut-width $(\log n)^{\frac{d-1}{d}}$!
Going beyond 2D

Question: Why should I expect to be able to do better?

Largest low-field region has *volume* $\log n$, so cut-width $(\log n)^{\frac{d-1}{d}}$!

Proof structure: Combine two types of ideas:

1. When field variance is large (e.g., under SSM in expectation):
 - do a smarter coarsening, irregular $(h_v)_v$-dependent tiles
2. Use *stochastic localization* scheme to reduce RFIM with WSM in expectation to RFIM with large field.
Inverse gap with sufficiently large field

Goal: pick \((h_v)\)-dependent blocks \((B_v)_v\) to reduce mixing time on \(\Lambda_n\):

1. The mixing time on each block is at most \(n^C\)
2. Expected \# of discrepancies in \(B_v\) from a \(\partial B_v\)-discrepancy is \(O(1)\)
3. \# blocks containing \(v\) in interior \(\gg\) \# containing \(v\) on boundary
Coarse-graining the field

Def: Call a box $B_R(v)$ *good* if SSM holds with constant C on $B_R(v)$.

![Diagram showing sites and bad boxes](image)
Coarse-graining the field

Def: Call a box $B_R(v)$ *good* if SSM holds with constant C on $B_R(v)$

Take $R = \log \log n$ and take as *blocks*:
- single *good* boxes;
- union of the bad boxes in a *connected bad-box component*
Stochastic localization to boost the field

What is stochastic localization?

\[\mu_t(\sigma) = e^{\langle y_t, \sigma \rangle} \mu_0(\sigma) \]

(i.e., a random linear tilt in the direction of \(y_t \)) where

\[y_t = t\sigma_* + B_t \quad \sigma_* \sim \mu_0 \quad \text{indep.} \]
Stochastic localization to boost the field

What is stochastic localization?

\[\mu_t(\sigma) = e^{\langle y_t, \sigma \rangle} \mu_0(\sigma) \]

(i.e., a random linear tilt in the direction of \(y_t \)) where

\[y_t = t\sigma_* + B_t \quad \sigma_* \sim \mu_0 \quad \text{indep.} \]

Upshots:

- Dirichlet form is a supermartingale under SL
- Stays in family of RFIMs, but with a growing field variance as \(t \uparrow \)
- If you control variance decay along localization, then let’s us reduce PI of \(\mu_0 \) to that under \(\mu_t \) for which previous argument applies.
Decay of variance along localization process

\[
\frac{d}{dt} \mathbb{E}[\text{Var}_{\mu_t}(\varphi)] \geq -\mathbb{E}[\text{Var}_{\mu_t}(\varphi)\|\text{Cov}(\mu_t)\|_{op}]
\]

Under WSM in expectation, $\|\text{Cov}(\mu_0)\|_{op}$ isn’t badly behaved.
Decay of variance along localization process

\[
\frac{d}{dt} \mathbb{E}[\text{Var}_{\mu_t}(\varphi)] \geq -\mathbb{E}[\text{Var}_{\mu_t}(\varphi)\|\text{Cov}(\mu_t)\|_{op}]
\]

Under WSM in expectation, \(\|\text{Cov}(\mu_0)\|_{op}\) isn’t badly behaved.

1. A new use of FKG + Ito: Point-to-point influences are super-martingales under the stochastic localization process,

\[
\mathbb{E}[\|\text{Cov}(\mu_t)\|_{op}] \text{ "controlled by" } \|\text{Cov}(\mu_0)\|_{op}
\]
Decay of variance along localization process

\[\frac{d}{dt} \mathbb{E}[\text{Var}_{\mu_t}(\varphi)] \geq -\mathbb{E}[\text{Var}_{\mu_t}(\varphi)\|\text{Cov}(\mu_t)\|_{op}] \]

Under WSM in expectation, \(\|\text{Cov}(\mu_0)\|_{op} \) isn’t badly behaved.

1. A new use of FKG + Ito: Point-to-point influences are super-martingales under the stochastic localization process,

\[\mathbb{E}[\|\text{Cov}(\mu_t)\|_{op}] \text{ "controlled by" } \|\text{Cov}(\mu_0)\|_{op} \]

2. But only have probabilistic bound on this, not deterministic:
 – on bad event, covariance matrix can have order \(n^d \) operator norm.
Thank you!