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The underlying geometry

n⇥ n box in Zd
with nearest-neighbor edges v ⇠ w

d = 2:

d = 3:
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The Ising model

Ising model: probability of assignment � of {+,�} to the vertices.

⇡�,n(�) / e�H(�)
where H(�) = �

X

v⇠w

1{�v 6=�w}

H is the Hamiltonian or energy of a configuration;

� is an inverse-temperature parameter.
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H(�) = 14�
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Glauber dynamics for the Ising model

1 Assign every site a rate-1 Poisson clock.

2 If the clock at site v rings at time t,

3 Resample Xt(v) conditionally on its neighbors (Xt(w))w⇠v.
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Glauber dynamics for the Ising model

1 Assign every site a rate-1 Poisson clock.

2 If the clock at site v rings at time t,

3 Resample Xt(v) conditionally on its neighbors (Xt(w))w⇠v.
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Equilibrium distribution is exactly ⇡!
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Quantifying the rate of convergence

Mixing time:

tmix = inf{t : max
X0

kPX0(Xt 2 ·)� ⇡ktv < 1/4} .
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Quantifying the rate of convergence

Mixing time:

tmix = inf{t : max
X0

kPX0(Xt 2 ·)� ⇡ktv < 1/4} .

Poincaré inequality i.e., spectral gap: closely related to tmix

Var⇡(f)  ��1 · E(f, f)

Governs exponential rate of convergence to ⇡:

��P tf � ⇡[f ]
��2
2,⇡


��f

��2
2,⇡

e��t .
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Mixing time of the Ising model on Zd

Consider the mixing time tmix

⇣ ⌘

� < �c(d) � = �c(d) � > �c(d)

Optimal O(logn) mixing

“Weak/strong spatial mixing"

[Martinelli Oliveiri ’94]

[Cesi ’99] [Lubetzky Sly ’10, ’13]

d = 2: Poly O(nc) mixing

[Lubetzky Sly ’12]

d = 3, 4: ???

d � 5: Poly O(nc) mixing

[Bauerschmidt Dagallier ’22]

Slow mixing: exp(c�n
d�1)

d = 2: [Chayes et al ’87]

d � 3: Pisztora ’96, Bodineau ’05
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The random-field Ising model

The random field (hv)v are i.i.d. symmetric (e.g., N (0, b2))

Random field Ising model (RFIM): probability of � 2 {+,�}V ,

⇡(�) / e�H(�)
where H(�) = �

X

v⇠w

1{�v 6=�w} �
X

v

hv�v
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The RFIM: phase diagram at equilibrium

d = 2 Imry-Ma phenomenon: exponential decay of correlations (in

expectation or for typical (hv)v) at all temperatures in Z2
.

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]
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The RFIM: phase diagram at equilibrium

d = 2 Imry-Ma phenomenon: exponential decay of correlations (in

expectation or for typical (hv)v) at all temperatures in Z2
.

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]

d � 3 Phase transition: At � large, Var(h) small: long range order

[Imbrie ’85, Bricmont Kupiainen ’88, Ding Liu Xia ’19]
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The RFIM: phase diagram at equilibrium

d = 2 Imry-Ma phenomenon: exponential decay of correlations (in

expectation or for typical (hv)v) at all temperatures in Z2
.

[Chatterjee ’17, Aizenman Peled ’18, Aizenman Harel Peled ’19, Ding Xia ’19]

d � 3 Phase transition: At � large, Var(h) small: long range order

[Imbrie ’85, Bricmont Kupiainen ’88, Ding Liu Xia ’19]
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The Griffiths phase

[Griffiths ’69]: Regime of (�,Var(h)) where we have:

exponential decay of correlations on average over (hv)v;

O(log n) size regions where hv ⇡ 0; get low temperature behavior.
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The Griffiths phase

[Griffiths ’69]: Regime of (�,Var(h)) where we have:

exponential decay of correlations on average over (hv)v;

O(log n) size regions where hv ⇡ 0; get low temperature behavior.

This slows down dynamics somewhat, destroys many standard

approaches to bounding Glauber dynamics mixing time.

Recently: [Helmuth et al ’21] showed on general graphs at sufficiently

large Var(h), there exists poly-time (approximate) sampling algorithm
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Weak spatial mixing (WSM) in expectation

Definition

RFIM has weak spatial mixing (WSM) in expectation if

Eh[k⇡+
Br

(�o 2 ·)� ⇡�
Br

(�o 2 ·)ktv]  Ce�r/C .
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Weak spatial mixing (WSM) in expectation

Definition

RFIM has weak spatial mixing (WSM) in expectation if

Eh[k⇡+
Br

(�o 2 ·)� ⇡�
Br

(�o 2 ·)ktv]  Ce�r/C .

E.g., Z2
for all � > 0 and Var(h) > 0 [Ding, Xia ’19]

d � 3: Expect to hold throughout non-critical uniqueness regime
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WSM in expectation and weak Poincaré inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp (hv)v is such that RFIM dynamics

has a weak Poincaré inequality with constant nC
, i.e., 9p, q : 1

p
+ 1

q
= 1:

Var⇡(f)  nCkfk1/q1 · E(f, f)1/p

Test functions converge algebraically on polynomial timescales:

kP tf � ⇡[f ]k22,⇡  kfk21nC1 · t�C2 .
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WSM in expectation and weak Poincaré inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp (hv)v is such that RFIM dynamics

has a weak Poincaré inequality with constant nC
, i.e., 9p, q : 1

p
+ 1

q
= 1:

Var⇡(f)  nCkfk1/q1 · E(f, f)1/p

Test functions converge algebraically on polynomial timescales:

kP tf � ⇡[f ]k22,⇡  kfk21nC1 · t�C2 .

Weak PI’s date e.g., to critical interacting particle systems [Liggett ’91]
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Consequences under WSM in expectation

Theorem (El Alaoui, Eldan, G., Piana ’23)

If WSM in expectation holds, whp (hv)v is such that RFIM dynamics

has a weak Poincaré inequality with constant nC
, i.e., 9p, q : 1

p
+ 1

q
= 1:

Var⇡(f)  nCkfk1/q1 · E(f, f)1/p

Test functions converge algebraically on polynomial timescales:

kP tf � ⇡[f ]k22,⇡  kfk21nC1 · t�C2 .

Implications:
1 Poly(n) mixing from warm starts following [Lovasz Siminovits ’93];

2 Markov chain based sampling algorithm

[Repeatedly run Glauber on domains adding one vertex]
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Strong spatial mixing (SSM) in expectation

Definition

RFIM has strong spatial mixing (SSM) in expectation if for all v 2 ⇤,

Eh

h
max

⇠2{±1}@⇤\{z}
k⇡⇠,+

⇤ (�v 2 ·)� ⇡⇠,�
⇤ (�v 2 ·)ktv

i
 Ce�d(v,z)/C .
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Strong spatial mixing (SSM) in expectation

Definition

RFIM has strong spatial mixing (SSM) in expectation if for all v 2 ⇤,

Eh

h
max

⇠2{±1}@⇤\{z}
k⇡⇠,+

⇤ (�v 2 ·)� ⇡⇠,�
⇤ (�v 2 ·)ktv

i
 Ce�d(v,z)/C .

(1) holds for � < �c and arbitrary h [Ding Song Sun ’22]

(2) holds for arbitrary � for Var(h) large enough (“not hard")
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SSM in expectation and full Poincare inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If SSM in expectation holds, whp (hv)v is such that the RFIM Glauber

dynamics has Poincaré inequality with constant no(1)
, i.e.,

Var⇡(f)  no(1)E(f, f)

In particular, test functions converge exponentially on no(1)
timescales:

kP tf � ⇡[f ]k22,⇡  kfk22,⇡ · e�t/n
o(1)

.
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SSM in expectation and full Poincare inequality

Theorem (El Alaoui, Eldan, G., Piana ’23)

If SSM in expectation holds, whp (hv)v is such that the RFIM Glauber

dynamics has Poincaré inequality with constant no(1)
, i.e.,

Var⇡(f)  no(1)E(f, f)

In particular, test functions converge exponentially on no(1)
timescales:

kP tf � ⇡[f ]k22,⇡  kfk22,⇡ · e�t/n
o(1)

.

Note: the no(1)
is actually exp((log n)

d�1
d )

Corresponding lower bound of exp((log n)
d�1
4d ) when � > �c.
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A "standard" argument giving polynomial in 2D

1. Tile (Z/nZ)d by boxes BR(v) for R = C log n

2. Whp, (hv)v s.t. for all v, @BR(v)-to-v influence less than N�10
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A “standard" proof of polynomial in 2D

1. Tile (Z/nZ)d by boxes BR(v) for R = C log n

2. Whp, (hv)v s.t. for all v, @BR(v)-to-v influence less than N�10

3. By monotonicity, sandwich marginal at v started from + and � by

chains on BR(v) with + and � boundary conditions
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A “standard" proof of polynomial in 2D

1. Tile (Z/nZ)d by boxes BR(v) for R = C log n

2. Whp, (hv)v s.t. for all v, @BR(v)-to-v influence less than N�10

3. By monotonicity, sandwich marginal at v started from + and � by

chains on BR(v) with + and � boundary conditions

4. Deduce that if T � maxv tmix(B
±
R
(v)),

kP+(Xt(v) 2 ·)� P�(Xt(v) 2 ·)ktv  N�10

from which monotonicity and a union bound imply mixing.
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A “standard" proof of polynomial in 2D

1. Tile (Z/nZ)d by boxes BR(v) for R = C log n

2. Whp, (hv)v s.t. for all v, @BR(v)-to-v influence less than N�10

3. By monotonicity, sandwich marginal at v started from + and � by

chains on BR(v) with + and � boundary conditions

4. Deduce that if t � maxv tmix(B
±
R
(v)),

kP+(Xt(v) 2 ·)� P�(Xt(v) 2 ·)ktv  N�10

from which monotonicity and a union bound imply mixing.

5. Mixing time of a Blogn is exp((log n)d�1) (exponential in cut-width)

– Polynomial for d = 2; super-polynomial for d � 3
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Going beyond 2D

Question: Why should I expect to be able to do better?

Largest low-field region has volume log n, so cut-width (log n)
d�1
d !
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Going beyond 2D

Question: Why should I expect to be able to do better?

Largest low-field region has volume log n, so cut-width (log n)
d�1
d !

Proof structure: Combine two types of ideas:

1 When field variance is large (e.g., under SSM in expectation):

do a smarter coarsening, irregular (hv)v-dependent tiles

2 Use stochastic localization scheme to reduce RFIM with WSM in

expectation to RFIM with large field.
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Inverse gap with sufficiently large field

Goal: pick (hv)-dependent blocks (Bv)v to reduce mixing time on ⇤n:

1 The mixing time on each block is at most nC

2 Expected # of discrepancies in Bv from a @Bv-discrepancy is O(1)

3 # blocks containing v in interior ⌧ # containing v on boundary
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Coarse-graining the field

Def: Call a box BR(v) good if SSM holds with constant C on BR(v)
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Coarse-graining the field

Def: Call a box BR(v) good if SSM holds with constant C on BR(v)

Take R = log log n and take as blocks

single good boxes;

union of the bad boxes in a connected bad-box component
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Stochastic localization to boost the field

What is stochastic localization?

µt(�) = ehyt,�iµ0(�)

(i.e., a random linear tilt in the direction of yt) where

yt = t�⇤ +Bt �⇤ ⇠ µ0 indep.
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Stochastic localization to boost the field

What is stochastic localization?

µt(�) = ehyt,�iµ0(�)

(i.e., a random linear tilt in the direction of yt) where

yt = t�⇤ +Bt �⇤ ⇠ µ0 indep.

Upshots:
Dirichlet form is a supermartingale under SL

Stays in family of RFIMs, but with a growing field variance as t "
If you control variance decay along localization, then let’s us reduce

PI of µ0 to that under µt for which previous argument applies.
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Decay of variance along localization process

d

dt
E[Varµt

(')] � �E[Varµt
(')kCov(µt)kop]

Under WSM in expectation, kCov(µ0)kop isn’t badly behaved.
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Decay of variance along localization process

d

dt
E[Varµt

(')] � �E[Varµt
(')kCov(µt)kop]

Under WSM in expectation, kCov(µ0)kop isn’t badly behaved.

1 A new use of FKG + Ito: Point-to-point influences are

super-martingales under the stochastic localization process,

E[kCov(µt)kop] "controlled by" kCov(µ0)kop
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Decay of variance along localization process

d

dt
E[Varµt

(')] � �E[Varµt
(')kCov(µt)kop]

Under WSM in expectation, kCov(µ0)kop isn’t badly behaved.

1 A new use of FKG + Ito: Point-to-point influences are

super-martingales under the stochastic localization process,

E[kCov(µt)kop] "controlled by" kCov(µ0)kop

2 But only have probabilistic bound on this, not deterministic:

–on bad event, covariance matrix can have order nd
operator norm.
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Thank you!
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