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Scaling limit and GFF
e Height function (planar G):

— choose a reference cover Dy

—loops DUDy - ‘level lines’ of hp, p,

e Height fluctuations:
h= hD,Do — EhD,Dov indep. of Do

e X - simply-connected planar domain
e Gj graphs ‘approximating’ X

e if G5 is ‘nice’ along 0L, then we expect hs to converge to GFF

e The case of Temperley graphs is well-understood:

[Kenyon'00], [Berestycki—Laslier—-Ray'16]
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Scaling limit and GFF
e > — a Riemann surface of genus g with n boundary components

e G embedded in X properly

e still can define hp p, locally l
O 0 Of -1y -1

e globally hp p, is multivalued

e monodromy — cohomology class O 1f 0 -1} -1

[WD:Do] e HY(Z,7Z)

e NB! height changes between components of X are also random
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Scaling limit and GFF
e h= hp p, — Ehp p, — multivalued, monodromy [V] € H'(L,R)
o W =YD _EYD:Lo where [WD-Po] € HY(Z, 7Z)

e Hodge decomposition dh = d® + W, W — harmonic 1-form

scalar component instanton component
® — local fluctuations V¥ — global behavior

e Compactified free field m" = d¢ + ¥ s.t. ¢, 1" — independent

scalar component instanton component
¢ — GFF on 1Y — random harmonic
differential such that
[" — u] € Hl(Z Z) a.s. and
Plyp" = v] ~ exp(—5 [¢ vA*v).
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e Temperley graph is superposition NI NI /NI
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Universality result of Beresticky, Laslier and Ray

e Temperley graph is superposition """ ‘.
G of primal graph I and dual I'*. 6"“"‘"
N Sond Sond
s aVaaVaaY;

Theorem (Beresticky, Laslier, Ray): Assume that a sequence
Gs =5 UT of Temperley graphs on X be given. Assume that

Black vertices = vertices of [ UT*,
White vertices = midpoints of edges

— RW on I's converges to the Brownian motion on ¥ and satisfies
uniform crossing estimates up to any scale
— removed white vertices converge to p1,...,p2g-24n € L

Then dhs has a limit which depends only on X, p1,...,p2g—24n.

Problem: to identify the limit with the compactitied free field
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Riemann surfaces with a flat metric with conical singularities
e We assume that 0¥ = @& (otherwise we consider the double)
® p1,...,P2g—2 € X fixed. There exists a metric ds® on ¥ s.t.

ds? is flat on =~ {p1,...,Pog—2}

ds® has conical singularities at p; with cone angles 4

¥

) has genus 2

—



Riemann surfaces with a flat metric with conical singularities
e We assume that 0¥ = @& (otherwise we consider the double)

e ds? may have a holonomy: parallel transport of a vector along
results in multiplication by exp(—2mi [, u), u — harmonic 1-form

e We call u a holonomy 1-form.

) has genus 2

—

winding of the curve is ¢



Nice graphs on (X, ds?)
e Remark: locally at p; we have ds? = |d(z?)|?

e We approximate (X, ds?) with graphs Gs on it s.t.
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Nice graphs on (X, ds?)
e Remark: locally at p; we have ds? = |d(z?)|?
e We approximate (X, ds?) with graphs Gs on it s.t.
(i) Gs is ‘nice’ t-embedding in the bulk of ¥ \ {p1,..., p2g—2}

(ii) locally at p; Gy is a double cover of an isoradial graph
branched over a center of a face

2=z
—




Example: pillow surface

e f: ¥ — C/Z? — branched cover ramified over the origin
: - N BT RN W

e G is the preimage of the square lattice 33 + syZ

e Any ¥ can be approximated by pillow surfaces
(but can't control positions of conical singularities)

© Nicholas Schmitt



Convergence result
Theorem(B). Let &, p1, ..., p_,(x) be given, G5 approximate ¥.

— If {dhs — Edhs}s0 is tight, then any subsequential limit of
dhs — Edhs is the compactified free field m“ — Em" where u is
some harmonic 1-form.

— If Gs are Temperley and removed white vertices converge to
P1,---,P—y(x), then u is the holonomy 1-form.

— If X is generic, then {dhs — Edhs}s~0 is tight.
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Convergence result
Theorem(B). Let &, p1, ..., p_,(x) be given, G5 approximate ¥.

— If {dhs — Edhs}s0 is tight, then any subsequential limit of
dhs — Edhs is the compactified free field m“ — Em" where u is
some harmonic 1-form.

— If Gs are Temperley and removed white vertices converge to
P1,---,P—y(x), then u is the holonomy 1-form.

— If X is generic, then {dhs — Edhs}s~0 is tight.
To link with the result of Beresticky, Laslier and Ray: need to

generalize the latter to metrics with conical singularities
(work in progress)
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Proof ideas
o Let X, p1,...,p_\(x) be given, Gs approximate ¥.

e There is a natural choice of Kasteleyn weights K(w, b) on Gs
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Kasteleyn theorem implies:
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Proof ideas
Kasteleyn theorem implies:

e P(det Ky = ZgimeEexp[mig(Ws—u) + 2i [y Ima A (dhs + M)]
b

P(a) =2i Y, K(w, b)K, fu11 planc (W D) Im [«

wn~b
Following Dubédat:
(0 +a) Y (b,w) = m + ro(w) + O(b—w), rq—1-form
4 log(e P det Ko) = Tr[( £ Ka) K Y] — P(d) ~
~2i Y K(w, b)(K; (b, w) — K]

b .
—full— plane(b'/ W)) fw Ima ~
b~w
~ %fz(d Alaeta — 0N fae—q)

Resembles Quillen’s variation identity for det¢(0 +a)*(0 +a)!
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How to recover the instanton component
e P det K, = ZgimerE exp [m’q(\lig—u) +2i fz Ima A (dhs + /\/l)]
(0 +a) (b, w) = m + ro(w) +O(b—w), rq—1-form

% log(e=P(®) det K,,) ~ %fz(d A faeta — QN fac—a)

Reminder: we expect W5 — 1)¥, where [¢¥ — u] € HY(X,Z) a.s
PlyY = v] ~ exp(—5 [5 v A *v)
«a — antiholomorphic. Poisson resummation:

Eexp [mig(y — u) + 2i [y Ima A Y] =
= Z-0]—ag/2 + a](0)0[-ao/2 — a](0) - e'(®)

3j =7 [oIma, bj =1 [p Ima, Aj,Bj—symp. basis of Hi(X,Z)

0lc](z) = > exp(mi(m+ a)-Q(m+ a) + 2mi(z — b) - (m+ a))

mezZg

Express (0 +a)~! via theta functions to link Ws and ¢".



Relation between combinatorial setups
e Remark: locally at p; we have ds? = |d(z?)|?
e We approximate (X, ds?) with graphs Gs on it s.t.

(i) Gs is ‘nice’ t-embedding in the bulk of ¥ \ {p1,..., pog—2}

(ii) locally at p; Gy is a double cover of an isoradial graph
branched over a center of a face
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Relation between combinatorial setups

Zr=Z
e

On the left the graph is still On the right the graph is
isoradial, but not Temperley Temperley: superposition of
anymore red primal and blue dual



Relation between combinatorial setups

2 22 )

B —— L]
It is Temperley with one On the right the graph is
white vertex removed! Temperley: superposition of

red primal and blue dual



Relation between combinatorial setups

Zr—=Zz
_—

Conclusion: Temperley graph with removed white vertices is
embedded naturally into a surface with conical singularities.
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THANK YOU FOR YOUR ATTENTION!



