DIMERS ON A RIEMANN SURFACE AND COMPACTIFIED FREE FIELD

Mikhail Basok (University of Helsinki)

28.03.2024

• **Dimer model on a bipartite** *G*: perfect matching *D*, sampled with probability

- **Dimer model on a bipartite** *G*: perfect matching *D*, sampled with probability
- $\mathbb{P}[D] \sim \mathbf{w}(D) = \prod_{bw \in D} \mathbf{w}(bw).$
- Height function (planar G):
- choose a reference cover D_0

• **Dimer model on a bipartite** *G*: perfect matching *D*, sampled with probability

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}

• **Dimer model on a bipartite** *G*: perfect matching *D*, sampled with probability

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}

$$-h_{D,D_1} = h_{D,D_0} + h_{D_0,D_1}$$

• **Dimer model on a bipartite** *G*: perfect matching *D*, sampled with probability

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- $-h_{D,D_1} = h_{D,D_0} + h_{D_0,D_1}$
- Height fluctuations: $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$, indep. of D_0

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- Height fluctuations:
- $h = h_{D,D_0} \mathbb{E}h_{D,D_0}$, indep. of D_0

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- Height fluctuations:
- $h = h_{D,D_0} \mathbb{E}h_{D,D_0}$, indep. of D_0
- Σ simply-connected planar domain

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- Height fluctuations:
- $h = h_{D,D_0} \mathbb{E}h_{D,D_0}$, indep. of D_0
- Σ simply-connected planar domain
- G_{δ} graphs 'approximating' Σ

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- Height fluctuations:

 $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$, indep. of D_0

- Σ simply-connected planar domain
- G_{δ} graphs 'approximating' Σ
- if G_{δ} is 'nice' along $\partial \Sigma$, then we expect h_{δ} to converge to GFF

- Height function (planar G):
- choose a reference cover D_0
- loops $D \cup D_0$ 'level lines' of h_{D,D_0}
- Height fluctuations:

 $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$, indep. of D_0

- Σ simply-connected planar domain
- G_{δ} graphs 'approximating' Σ
- if G_{δ} is 'nice' along $\partial \Sigma$, then we expect h_{δ} to converge to GFF
- The case of Temperley graphs is well-understood:

[Kenyon'00], [Berestycki–Laslier–Ray'16]

• Σ — a Riemann surface of genus g with n boundary components

- Σ a Riemann surface of genus g with n boundary components
- G embedded in Σ properly

- Σ a Riemann surface of genus g with n boundary components
- G embedded in Σ properly
- still can define h_{D,D_0} locally

- Σ a Riemann surface of genus g with n boundary components
- G embedded in Σ properly
- still can define h_{D,D_0} locally
- globally h_{D,D_0} is multivalued

- Σ a Riemann surface of genus g with n boundary components
- G embedded in Σ properly
- still can define h_{D,D_0} locally
- globally h_{D,D_0} is multivalued
- monodromy cohomology class $[\Psi^{D,D_0}]\in H^1(\Sigma,\mathbb{Z})$

- Σ a Riemann surface of genus g with n boundary components
- G embedded in Σ properly
- still can define h_{D,D_0} locally
- globally h_{D,D_0} is multivalued
- monodromy cohomology class $[\Psi^{D,D_0}]\in H^1(\Sigma,\mathbb{Z})$

• NB! height changes between components of $\partial\Sigma$ are also random

- $h = h_{D,D_0} \mathbb{E}h_{D,D_0}$ multivalued, monodromy $[\Psi] \in H^1(\Sigma,\mathbb{R})$
- $\Psi = \Psi^{D,D_0} \mathbb{E}\Psi^{D,D_0}$ where $[\Psi^{D,D_0}] \in H^1(\Sigma,\mathbb{Z})$

• $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$ – multivalued, monodromy $[\Psi] \in H^1(\Sigma,\mathbb{R})$

•
$$\Psi = \Psi^{D,D_0} - \mathbb{E}\Psi^{D,D_0}$$
 where $[\Psi^{D,D_0}] \in H^1(\Sigma,\mathbb{Z})$

• Hodge decomposition $dh = d\Phi + \Psi$, Ψ — harmonic 1-form

• $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$ - multivalued, monodromy $[\Psi] \in H^1(\Sigma, \mathbb{R})$

• $\Psi = \Psi^{D,D_0} - \mathbb{E}\Psi^{D,D_0}$ where $[\Psi^{D,D_0}] \in H^1(\Sigma,\mathbb{Z})$

• Hodge decomposition $dh = d\Phi + \Psi$, Ψ — harmonic 1-form

scalar componentinstanton component Φ — local fluctuations Ψ — global behavior scalar component

instanton component

• $h = h_{D,D_0} - \mathbb{E}h_{D,D_0}$ - multivalued, monodromy $[\Psi] \in H^1(\Sigma, \mathbb{R})$

• $\Psi = \Psi^{D,D_0} - \mathbb{E} \Psi^{D,D_0}$ where $[\Psi^{D,D_0}] \in H^1(\Sigma,\mathbb{Z})$

• Hodge decomposition $dh = d\Phi + \Psi$, Ψ — harmonic 1-form

scalar component Φ — local fluctuations instanton component Ψ — global behavior

• Compactified free field $\mathfrak{m}^u = d\phi + \psi^u$ s.t. ϕ, ψ^u — independent

scalar component $\phi - \text{GFF}$ on Σ

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{instanton component} \\ \psi^u & - \text{ random harmonic} \\ \text{differential such that} \\ [\psi^u - u] \in H^1(\Sigma, \mathbb{Z}) \text{ a.s. and} \\ \mathbb{P}[\psi^u = v] \sim \exp(-\frac{\pi}{2}\int_{\Sigma} v \wedge *v). \end{array}$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

Primal graph F

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

Dual graph Γ^{\times}

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

Bipartite graph $G = \Gamma \cup \Gamma^{\times}$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

On a Riemann surface Σ : remove $-\chi(\Sigma)$ white vertices

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

- Dimer covers of $G \iff$ cycle rooted spanning forests of Γ
- Height function increments ++++ winding of branches of trees

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

- Dimer covers of $G \iff$ cycle rooted spanning forests of Γ
- Height function increments <---> winding of branches of trees

Theorem (Beresticky, Laslier, Ray): Assume that a sequence $G_{\delta} = \Gamma_{\delta} \cup \Gamma_{\delta}^{\times}$ of Temperley graphs on Σ be given. Assume that

– RW on Γ_δ converges to the Brownian motion on Σ and satisfies uniform crossing estimates up to any scale

– removed white vertices converge to $p_1,\ldots,p_{2g-2+n}\in\Sigma$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

- Dimer covers of $G \iff$ cycle rooted spanning forests of Γ
- Height function increments <---> winding of branches of trees

Theorem (Beresticky, Laslier, Ray): Assume that a sequence $G_{\delta} = \Gamma_{\delta} \cup \Gamma_{\delta}^{\times}$ of Temperley graphs on Σ be given. Assume that

- RW on Γ_δ converges to the Brownian motion on Σ and satisfies uniform crossing estimates up to any scale
- removed white vertices converge to $p_1,\ldots,p_{2g-2+n}\in\Sigma$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

- Dimer covers of $G \iff$ cycle rooted spanning forests of Γ
- Height function increments <---> winding of branches of trees

Theorem (Beresticky, Laslier, Ray): Assume that a sequence $G_{\delta} = \Gamma_{\delta} \cup \Gamma_{\delta}^{\times}$ of Temperley graphs on Σ be given. Assume that

- RW on Γ_δ converges to the Brownian motion on Σ and satisfies uniform crossing estimates up to any scale
- removed white vertices converge to $p_1,\ldots,p_{2g-2+n}\in\Sigma$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

- Dimer covers of $G \iff$ cycle rooted spanning forests of Γ
- Height function increments ++++ winding of branches of trees

Theorem (Beresticky, Laslier, Ray): Assume that a sequence $G_{\delta} = \Gamma_{\delta} \cup \Gamma_{\delta}^{\times}$ of Temperley graphs on Σ be given. Assume that

– RW on Γ_δ converges to the Brownian motion on Σ and satisfies uniform crossing estimates up to any scale

– removed white vertices converge to $p_1,\ldots,p_{2g-2+n}\in\Sigma$

• Temperley graph is superposition G of primal graph Γ and dual Γ^{\times} .

Black vertices = vertices of $\Gamma \cup \Gamma^{\times}$, White vertices = midpoints of edges

Theorem (Beresticky, Laslier, Ray): Assume that a sequence $G_{\delta} = \Gamma_{\delta} \cup \Gamma_{\delta}^{\times}$ of Temperley graphs on Σ be given. Assume that

– RW on Γ_δ converges to the Brownian motion on Σ and satisfies uniform crossing estimates up to any scale

– removed white vertices converge to $p_1, \ldots, p_{2g-2+n} \in \Sigma$

Then dh_{δ} has a limit which depends only on $\Sigma, p_1, \ldots, p_{2g-2+n}$.

Problem: to identify the limit with the compactitied free field

• We assume that $\partial \Sigma = \emptyset$ (otherwise we consider the double)

- We assume that $\partial \Sigma = \emptyset$ (otherwise we consider the double)
- p₁,..., p_{2g-2} ∈ Σ fixed. There exists a metric ds² on Σ s.t. ds² is flat on Σ \ {p₁,..., p_{2g-2}}

- We assume that $\partial \Sigma = \varnothing$ (otherwise we consider the double)
- p₁,..., p_{2g-2} ∈ Σ fixed. There exists a metric ds² on Σ s.t. ds² is flat on Σ \ {p₁,..., p_{2g-2}}

 ds^2 has conical singularities at p_i with cone angles 4π

• We assume that $\partial \Sigma = \varnothing$ (otherwise we consider the double)

• ds^2 may have a holonomy: parallel transport of a vector along γ results in multiplication by $\exp(-2\pi i \int_{\gamma} u)$, u — harmonic 1-form

• We call u a holonomy 1-form.

Nice graphs on (Σ, ds^2)

- Remark: locally at p_i we have $ds^2 = |d(z^2)|^2$
- We approximate (Σ, ds^2) with graphs G_{δ} on it s.t.

Nice graphs on (Σ, ds^2)

- Remark: locally at p_i we have $ds^2 = |d(z^2)|^2$
- We approximate (Σ, ds^2) with graphs G_{δ} on it s.t.

(i) G_{δ} is 'nice' t-embedding in the bulk of $\Sigma \setminus \{p_1, \ldots, p_{2g-2}\}$

Nice graphs on (Σ, ds^2)

- Remark: locally at p_i we have $ds^2 = |d(z^2)|^2$
- We approximate (Σ, ds^2) with graphs G_{δ} on it s.t.
 - (i) G_{δ} is 'nice' t-embedding in the bulk of $\Sigma \smallsetminus \{p_1, \ldots, p_{2g-2}\}$
 - (ii) locally at $p_i \ G_{\delta}$ is a double cover of an isoradial graph branched over a center of a face

Example: pillow surface

- $f:\Sigma\to \mathbb{C}/\mathbb{Z}^2$ branched cover ramified over the origin
- G is the preimage of the square lattice $\frac{1+i}{4N} + \frac{1}{2N}\mathbb{Z}^2$
- Any Σ can be approximated by pillow surfaces (but can't control positions of conical singularities)

© Nicholas Schmitt

Theorem(B). Let Σ , p_1 , ..., $p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- If $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta>0}$ is tight, then any subsequential limit of $dh_{\delta} - \mathbb{E}dh_{\delta}$ is the compactified free field $\mathfrak{m}^{u} - \mathbb{E}\mathfrak{m}^{u}$ where u is some harmonic 1-form.

- If G_{δ} are Temperley and removed white vertices converge to $p_1, \ldots, p_{-\chi(\Sigma)}$, then *u* is the holonomy 1-form.

- If Σ is generic, then $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta > 0}$ is tight.

Theorem(B). Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- If $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta>0}$ is tight, then any subsequential limit of $dh_{\delta} - \mathbb{E}dh_{\delta}$ is the compactified free field $\mathfrak{m}^{u} - \mathbb{E}\mathfrak{m}^{u}$ where u is some harmonic 1-form.

- If G_{δ} are Temperley and removed white vertices converge to $p_1, \ldots, p_{-\chi(\Sigma)}$, then *u* is the holonomy 1-form.

- If Σ is generic, then $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta > 0}$ is tight.

Theorem(B). Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- If $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta>0}$ is tight, then any subsequential limit of $dh_{\delta} - \mathbb{E}dh_{\delta}$ is the compactified free field $\mathfrak{m}^{u} - \mathbb{E}\mathfrak{m}^{u}$ where u is some harmonic 1-form.

- If G_{δ} are Temperley and removed white vertices converge to $p_1, \ldots, p_{-\chi(\Sigma)}$, then *u* is the holonomy 1-form.

– If Σ is generic, then $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta > 0}$ is tight.

Theorem(B). Let Σ , p_1 , ..., $p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- If $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta>0}$ is tight, then any subsequential limit of $dh_{\delta} - \mathbb{E}dh_{\delta}$ is the compactified free field $\mathfrak{m}^{u} - \mathbb{E}\mathfrak{m}^{u}$ where u is some harmonic 1-form.

- If G_{δ} are Temperley and removed white vertices converge to $p_1, \ldots, p_{-\chi(\Sigma)}$, then *u* is the holonomy 1-form.

– If Σ is generic, then $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta > 0}$ is tight.

Theorem(B). Let Σ , p_1 , ..., $p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- If $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta>0}$ is tight, then any subsequential limit of $dh_{\delta} - \mathbb{E}dh_{\delta}$ is the compactified free field $\mathfrak{m}^{u} - \mathbb{E}\mathfrak{m}^{u}$ where u is some harmonic 1-form.

- If G_{δ} are Temperley and removed white vertices converge to $p_1, \ldots, p_{-\chi(\Sigma)}$, then *u* is the holonomy 1-form.

- If Σ is generic, then $\{dh_{\delta} - \mathbb{E}dh_{\delta}\}_{\delta > 0}$ is tight.

To link with the result of Beresticky, Laslier and Ray: need to generalize the latter to metrics with conical singularities (work in progress)

• Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

•
$$K \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G \\ \partial + \bar{\alpha}_G & 0 \end{pmatrix}$$
 and $K_{\alpha} \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G + \alpha \\ \partial + \bar{\alpha}_G - \bar{\alpha} & 0 \end{pmatrix}$

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

•
$$K \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G \\ \partial + \bar{\alpha}_G & 0 \end{pmatrix}$$
 and $K_{\alpha} \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G + \alpha \\ \partial + \bar{\alpha}_G - \bar{\alpha} & 0 \end{pmatrix}$

Kasteleyn theorem implies:

 $e^{-P(\alpha)} \det K_{lpha} = \mathcal{Z}_{ ext{dimer}} \mathbb{E} \exp \left[\pi i q (\Psi_{\delta} - u) + 2i \int_{\Sigma} \operatorname{Im} lpha \wedge (dh_{\delta} + M) \right]$

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

•
$$K \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G \\ \partial + \bar{\alpha}_G & 0 \end{pmatrix}$$
 and $K_{\alpha} \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G + \alpha \\ \partial + \bar{\alpha}_G - \bar{\alpha} & 0 \end{pmatrix}$

Kasteleyn theorem implies:

 $e^{-P(lpha)} \det K_{lpha} = \mathcal{Z}_{ ext{dimer}} \mathbb{E} \exp \left[\pi i q (\Psi_{\delta} - u) + 2i \int_{\Sigma} \operatorname{Im} lpha \wedge (dh_{\delta} + M)
ight]$

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

•
$$K \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G \\ \partial + \bar{\alpha}_G & 0 \end{pmatrix}$$
 and $K_{\alpha} \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G + \alpha \\ \partial + \bar{\alpha}_G - \bar{\alpha} & 0 \end{pmatrix}$

Kasteleyn theorem implies:

 $e^{-P(\alpha)} \det K_{lpha} = \mathcal{Z}_{ ext{dimer}} \mathbb{E} \exp \left[\pi i q (\Psi_{\delta} - u) + 2i \int_{\Sigma} \operatorname{Im} lpha \wedge (dh_{\delta} + M)
ight]$

- Let $\Sigma, p_1, \ldots, p_{-\chi(\Sigma)}$ be given, G_{δ} approximate Σ .
- There is a natural choice of Kasteleyn weights K(w, b) on G_{δ}
- Perturb it: $K_{\alpha}(w, b) = e^{2i \int_{w}^{b} \operatorname{Im} \alpha} K(w, b)$, where $\alpha (0, 1)$ -form

•
$$K \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G \\ \partial + \bar{\alpha}_G & 0 \end{pmatrix}$$
 and $K_{\alpha} \approx \begin{pmatrix} 0 & \bar{\partial} + \alpha_G + \alpha \\ \partial + \bar{\alpha}_G - \bar{\alpha} & 0 \end{pmatrix}$

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

$$(\bar{\partial}+\alpha)^{-1}(b,w)=rac{1}{\pi i(b-w)}+r_{\alpha}(w)+O(b-w),$$
 r_{α} – 1-form

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

$$egin{aligned} & (ar{\partial}+lpha)^{-1}(b,w) = rac{1}{\pi i(b-w)} + r_lpha(w) + O(b-w), & r_lpha - 1 ext{-form} \ & rac{d}{dt}\log(e^{-P(lpha)}\det K_lpha) = ext{Tr}[(rac{d}{dt}K_lpha)K_lpha^{-1}] - P(\dot{lpha}) &pprox \end{aligned}$$

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

$$(\bar{\partial} + \alpha)^{-1}(b, w) = \frac{1}{\pi i (b - w)} + r_{\alpha}(w) + O(b - w), \quad r_{\alpha} - 1 \text{-form}$$
$$\frac{d}{dt} \log(e^{-P(\alpha)} \det K_{\alpha}) = \operatorname{Tr}[(\frac{d}{dt} K_{\alpha}) K_{\alpha}^{-1}] - P(\dot{\alpha}) \approx$$
$$\approx 2i \sum_{b \sim w} K(w, b) (K_{\alpha}^{-1}(b, w) - \underline{K}_{\text{full-plane}}^{-1}(b, w)) \int_{w}^{b} \operatorname{Im} \dot{\alpha} \approx$$

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

$$\begin{split} &(\bar{\partial} + \alpha)^{-1}(b, w) = \frac{1}{\pi i (b - w)} + r_{\alpha}(w) + O(b - w), \quad r_{\alpha} - 1 \text{-form} \\ &\frac{d}{dt} \log(e^{-P(\alpha)} \det K_{\alpha}) = \operatorname{Tr}[(\frac{d}{dt} K_{\alpha}) K_{\alpha}^{-1}] - P(\dot{\alpha}) \approx \\ &\approx 2i \sum_{b \sim w} K(w, b) (K_{\alpha}^{-1}(b, w) - \underline{K}_{\text{full-plane}}^{-1}(b, w)) \int_{w}^{b} \operatorname{Im} \dot{\alpha} \approx \\ &\approx \frac{1}{4} \int_{\Sigma} (\dot{\alpha} \wedge r_{\alpha_{G} + \alpha} - \overline{\dot{\alpha} \wedge r_{\alpha_{G} - \alpha}}) \end{split}$$

Kasteleyn theorem implies:

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{dimer}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$P(\alpha) = 2i\sum_{w\sim b}K(w,b)K_{full-plane}^{-1}(w,b)\operatorname{Im}\int_{w}^{b}\alpha$$

Following Dubédat:

$$\begin{split} &(\bar{\partial} + \alpha)^{-1}(b, w) = \frac{1}{\pi i (b - w)} + r_{\alpha}(w) + O(b - w), \quad r_{\alpha} - 1 \text{-form} \\ &\frac{d}{dt} \log(e^{-P(\alpha)} \det K_{\alpha}) = \operatorname{Tr}[(\frac{d}{dt} K_{\alpha}) K_{\alpha}^{-1}] - P(\dot{\alpha}) \approx \\ &\approx 2i \sum_{b \sim w} K(w, b) (K_{\alpha}^{-1}(b, w) - \underline{K}_{\text{full-plane}}^{-1}(b, w)) \int_{w}^{b} \operatorname{Im} \dot{\alpha} \approx \\ &\approx \frac{1}{4} \int_{\Sigma} (\dot{\alpha} \wedge r_{\alpha_{G} + \alpha} - \overline{\dot{\alpha} \wedge r_{\alpha_{G} - \alpha}}) \end{split}$$

Resembles Quillen's variation identity for $\det_{\zeta}(\bar{\partial} + \alpha)^*(\bar{\partial} + \alpha)!$

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{\operatorname{dimer}}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$(\bar{\partial}+\alpha)^{-1}(b,w) = \frac{1}{\pi i(b-w)} + r_{\alpha}(w) + O(b-w), \quad r_{\alpha} - 1\text{-form}$$
$$\frac{d}{dt}\log(e^{-P(\alpha)}\det K_{\alpha}) \approx \frac{1}{4}\int_{\Sigma}(\dot{\alpha}\wedge r_{\alpha_{G}+\alpha} - \overline{\dot{\alpha}\wedge r_{\alpha_{G}-\alpha}})$$

Reminder: we expect $\Psi_{\delta} \rightarrow \psi^{u}$, where $[\psi^{u} - u] \in H^{1}(\Sigma, \mathbb{Z})$ a.s.

$$\mathbb{P}[\psi^u = v] \sim \exp(-rac{\pi}{2}\int_{\Sigma}v \wedge *v)$$

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{\operatorname{dimer}}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$(\bar{\partial}+\alpha)^{-1}(b,w) = \frac{1}{\pi i(b-w)} + r_{\alpha}(w) + O(b-w), \quad r_{\alpha} - 1\text{-form}$$
$$\frac{d}{dt}\log(e^{-P(\alpha)}\det K_{\alpha}) \approx \frac{1}{4}\int_{\Sigma}(\dot{\alpha}\wedge r_{\alpha_{G}+\alpha} - \overline{\dot{\alpha}\wedge r_{\alpha_{G}-\alpha}})$$

Reminder: we expect $\Psi_{\delta} \to \psi^{u}$, where $[\psi^{u} - u] \in H^{1}(\Sigma, \mathbb{Z})$ a.s. $\mathbb{P}[\psi^{u} = v] \sim \exp(-\frac{\pi}{2}\int_{\Sigma} v \wedge *v)$

 α – antiholomorphic. Poisson resummation:

$$\mathbb{E} \exp \left[\pi i q(\psi^{\boldsymbol{u}} - \boldsymbol{u}) + 2i \int_{\Sigma} \operatorname{Im} \alpha \wedge \psi^{\boldsymbol{u}} \right] = \\ = \mathcal{Z} \cdot \theta[-\alpha_0/2 + \alpha](0) \overline{\theta[-\alpha_0/2 - \alpha](0)} \cdot e^{l(\alpha)}$$

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{\operatorname{dimer}}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$(\bar{\partial}+\alpha)^{-1}(b,w) = \frac{1}{\pi i(b-w)} + r_{\alpha}(w) + O(b-w), \quad r_{\alpha} - 1\text{-form}$$
$$\frac{d}{dt}\log(e^{-P(\alpha)}\det K_{\alpha}) \approx \frac{1}{4}\int_{\Sigma}(\dot{\alpha}\wedge r_{\alpha_{G}+\alpha} - \overline{\dot{\alpha}\wedge r_{\alpha_{G}-\alpha}})$$

Reminder: we expect $\Psi_{\delta} \to \psi^{u}$, where $[\psi^{u} - u] \in H^{1}(\Sigma, \mathbb{Z})$ a.s. $\mathbb{P}[\psi^{u} = v] \sim \exp(-\frac{\pi}{2}\int_{\Sigma} v \wedge *v)$

 α – antiholomorphic. Poisson resummation:

$$\mathbb{E} \exp \left[\pi i q(\psi^{u} - u) + 2i \int_{\Sigma} \operatorname{Im} \alpha \wedge \psi^{u} \right] =$$

= $\mathcal{Z} \cdot \theta [-\alpha_{0}/2 + \alpha](0) \overline{\theta} [-\alpha_{0}/2 - \alpha](0) \cdot e^{l(\alpha)}$
 $a_{j} = \frac{1}{\pi} \int_{A_{j}} \operatorname{Im} \alpha, \ b_{j} = \frac{1}{\pi} \int_{B_{j}} \operatorname{Im} \alpha, \ A_{j}, B_{j} - \text{symp. basis of } H_{1}(\Sigma, \mathbb{Z})$
 $\theta[\alpha](z) = \sum_{m \in \mathbb{Z}^{g}} \exp(\pi i (m + a) \cdot \Omega(m + a) + 2\pi i (z - b) \cdot (m + a))$

$$e^{-P(\alpha)}\det K_{\alpha} = \mathcal{Z}_{\operatorname{dimer}}\mathbb{E}\exp\left[\pi iq(\Psi_{\delta}-u) + 2i\int_{\Sigma}\operatorname{Im}\alpha\wedge(dh_{\delta}+M)\right]$$
$$(\bar{\partial}+\alpha)^{-1}(b,w) = \frac{1}{\pi i(b-w)} + r_{\alpha}(w) + O(b-w), \quad r_{\alpha} - 1\text{-form}$$
$$\frac{d}{dt}\log(e^{-P(\alpha)}\det K_{\alpha}) \approx \frac{1}{4}\int_{\Sigma}(\dot{\alpha}\wedge r_{\alpha_{G}+\alpha} - \overline{\dot{\alpha}\wedge r_{\alpha_{G}-\alpha}})$$

Reminder: we expect $\Psi_{\delta} \to \psi^{u}$, where $[\psi^{u} - u] \in H^{1}(\Sigma, \mathbb{Z})$ a.s. $\mathbb{P}[\psi^{u} = v] \sim \exp(-\frac{\pi}{2}\int_{\Sigma} v \wedge *v)$

 α – antiholomorphic. Poisson resummation:

$$\mathbb{E} \exp \left[\pi i q(\psi^{u} - u) + 2i \int_{\Sigma} \operatorname{Im} \alpha \wedge \psi^{u} \right] =$$

$$= \mathcal{Z} \cdot \theta [-\alpha_{0}/2 + \alpha](0) \overline{\theta} [-\alpha_{0}/2 - \alpha](0) \cdot e^{l(\alpha)}$$

$$a_{j} = \frac{1}{\pi} \int_{A_{j}} \operatorname{Im} \alpha, \ b_{j} = \frac{1}{\pi} \int_{B_{j}} \operatorname{Im} \alpha, \ A_{j}, B_{j} - \text{symp. basis of } H_{1}(\Sigma, \mathbb{Z})$$

$$\theta [\alpha](z) = \sum_{m \in \mathbb{Z}^{g}} \exp(\pi i (m + a) \cdot \Omega(m + a) + 2\pi i (z - b) \cdot (m + a))$$
Express $(\overline{\partial} + \alpha)^{-1}$ via theta functions to link Ψ_{δ} and ψ^{u} .

- Remark: locally at p_i we have $ds^2 = |d(z^2)|^2$
- We approximate (Σ, ds^2) with graphs G_{δ} on it s.t.
 - (i) G_{δ} is 'nice' t-embedding in the bulk of $\Sigma \smallsetminus \{p_1, \ldots, p_{2g-2}\}$
 - (ii) locally at $p_i \ G_{\delta}$ is a double cover of an isoradial graph branched over a center of a face

On the left the graph is still isoradial,

On the right the graph is Temperley: superposition of red primal and blue dual

On the left the graph is still isoradial, but not Temperley anymore

On the right the graph is Temperley: superposition of red primal and blue dual

It is Temperley with one white vertex removed!

On the right the graph is Temperley: superposition of red primal and blue dual

Conclusion: Temperley graph with removed white vertices is embedded naturally into a surface with conical singularities.

- $\Gamma \subset \Sigma$ is δ -separated $C\delta$ -net, triangular lattice pattern near p_i 's
- $\bullet\ \Gamma^{\times}$ the associated Voronoi diagram, G the Temperley graph
- The dual graph G* is t-embedded discrete complex analysis tools available (Chelkak–Laslier–Russkikh)

- $\Gamma \subset \Sigma$ is δ -separated $C\delta$ -net, triangular lattice pattern near p_i 's
- $\bullet\ \Gamma^{\times}$ the associated Voronoi diagram, G the Temperley graph
- The dual graph G* is t-embedded discrete complex analysis tools available (Chelkak–Laslier–Russkikh)

- $\Gamma \subset \Sigma$ is δ -separated $C\delta$ -net, triangular lattice pattern near p_i 's
- $\bullet\ \Gamma^{\times}$ the associated Voronoi diagram, G the Temperley graph
- The dual graph G* is t-embedded discrete complex analysis tools available (Chelkak–Laslier–Russkikh)

- $\Gamma \subset \Sigma$ is δ -separated $C\delta$ -net, triangular lattice pattern near p_i 's
- $\bullet\ \Gamma^{\times}$ the associated Voronoi diagram, G the Temperley graph
- The dual graph G* is t-embedded discrete complex analysis tools available (Chelkak–Laslier–Russkikh)

THANK YOU FOR YOUR ATTENTION!