Geometric bounds for spanning tree entropy of planar lattices

Abhijit Champanerkar

College of Staten Island and The Graduate Center CUNY

Statistical Mechanics and Discrete Geometry MARCH 25 - 29, 2024 Institute for Pure & Applied Mathematics, UCLA

joint work with Ilya Kofman (CUNY)

Theme of today's talk

Motivation

Geometry and finite planar graphs

Geometry and planar lattice graphs

Infinite families

Applications to finite case

Motivation 1 - Spanning tree or Dimer entropy and hyperbolic volume

Temperley (1974) $\lim_{m,n\to\infty} \frac{\pi \log \tau(G_{m\times n})}{m \cdot n} = \frac{1}{\pi} \int_0^{\pi} \int_0^{\pi} \log |4-2\cos\theta-2\cos\phi| d\theta \, d\phi = 4C$ where C is Catalan's constant, $C = 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \approx 0.916$

Motivation 1 - Spanning tree or Dimer entropy and hyperbolic volume

Temperley (1974)

$$\lim_{m,n\to\infty}\frac{\pi\log\tau(G_{m\times n})}{m\cdot n}=\frac{1}{\pi}\int_0^{\pi}\int_0^{\pi}\log|4-2\cos\theta-2\cos\phi|d\theta\,d\phi=4C$$

where C is Catalan's constant,
$$C=1-rac{1}{3^2}+rac{1}{5^2}-rac{1}{7^2}+\dotspprox 0.916$$

 $4C = v_{oct} =$ volume of regular ideal octahedron ≈ 3.66386

Motivation 2 - Mahler measure

Mahler measure of polynomial p(z) is defined as

$$m(p(z)) := \frac{1}{2\pi i} \int_{S^1} \log |p(z)| \frac{dz}{z} \quad \stackrel{\text{Jensen}}{=} \sum_{\substack{\alpha_i \text{ roots of } p \\ |\alpha_i| \ge 1}} \log |\alpha_i|$$

2-variable Mahler measure:

$$\mathrm{m}(p(z,w)) := \frac{1}{(2\pi i)^2} \int_{S^1 \times S^1} \log |p(z,w)| \frac{dz}{z} \frac{dw}{w}$$

2-variable Mahler measures are related to hyperbolic volume because they can be often computed using the dilograrithm

$$Li_2(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}.$$

Mahler measure of 2-variable polynomials

 $vol(\mathbf{O}) = 2v_{tet} = 2$ volume of regular ideal tetrahedron ≈ 2.0298

Mahler measure of 2-variable polynomials

 $vol(w) = 2v_{tet} = 2$ volume of regular ideal tetrahedron ≈ 2.0298

(Smyth '1981) vol())
$$= 2\pi m(1 + x + y) = \frac{3\sqrt{3}}{2}L(\chi_{-3}, 2)$$

$$(Boyd '2000) \quad \text{vol}(\textcircled{O}) = \pi \operatorname{m}(A(L, M))$$
$$= \pi \operatorname{m}(M^4 + L(1 - M^2 - 2M^4 - M^6 + M^8) - L^2 M^4)$$

(Kenyon '2000)
$$\operatorname{vol}(\bigotimes) = \frac{2\pi}{5} \operatorname{m}(p(z, w))$$
$$= \frac{2\pi}{5} \operatorname{m}\left(6 - w - \frac{1}{w} - z - \frac{1}{z} - \frac{w}{z} - \frac{z}{w}\right)$$

Conjecture 1 Let Γ be a finite connected planar graph. If $\mathrm{vol}(\Gamma)>0$ then

 $\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$

Conjecture 1 Let Γ be a finite connected planar graph. If $\mathrm{vol}(\Gamma)>0$ then

$$\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$$

- $\tau(\Gamma) =$ number of spanning trees of Γ .
- $|E\Gamma|$ = number of edges of Γ .
- ▶ v_{oct} = the hyperbolic volume of a regular ideal octahedron = $4C \approx 3.66386$ (*C* is the Catalan's constant)
- $vol(\Gamma) = hyperbolic volume of a graph defined below.$

Alternating links and planar graphs

We can recover an alternating knot or link diagram (up to mirror image) from its Tait graph:

The other checkerboard coloring gives the planar dual of the Tait graph.

Knot or link determinant

The link determinant det(K) was one of the first computable knot invariants (computable means not of the form "minimize something over all diagrams").

For alternating link K with Tait graph G_K :

 $det(K) = \# spanning trees \tau(G_K)$

Knot or link determinant

The link determinant det(K) was one of the first computable knot invariants (computable means not of the form "minimize something over all diagrams").

For alternating link K with Tait graph G_K :

 $det(K) = \# spanning trees \tau(G_K)$

Hyperbolic knots and links

A link K is hyperbolic if $S^3 - K$ is a finite-volume hyperbolic 3-manifold i.e. $\pi_1(S^3 - K)$ acts properly discontinuously on \mathbb{H}^3 by isometries i.e. $\pi_1(S^3 - K) \subset \text{Isom}^+(\mathbb{H}^3)$.

Hyperbolic knots and links

A link K is hyperbolic if $S^3 - K$ is a finite-volume hyperbolic 3-manifold i.e. $\pi_1(S^3 - K)$ acts properly discontinuously on \mathbb{H}^3 by isometries i.e. $\pi_1(S^3 - K) \subset \text{Isom}^+(\mathbb{H}^3)$.

Hyperbolic alternating links are easy to spot.

Theorem (Menasco) If K has a connected prime alternating link diagram, except the standard (2, q)-torus diagram, then K is hyperbolic.

(2, q)-torus diagrams:

Knot invariants from geometry

Hyperbolic structure on $S^3 - K$ is unique (Mostow-Prasad Rigidity) \implies geometric invariants are topological invariants !

For e.g. volume $\operatorname{vol}(K) = \operatorname{vol}(S^3 - K)$.

Knot invariants from geometry

Hyperbolic structure on $S^3 - K$ is unique (Mostow-Prasad Rigidity) \implies geometric invariants are topological invariants ! For e.g. volume $\operatorname{vol}(K) = \operatorname{vol}(S^3 - K)$. Examples ▶ $S^3 - \bigotimes$ can be decomposed into two regular hyperbolic ideal tetrahedra \implies vol $(\bigcirc) = 2v_{tet} = 2.0298...$ \triangleright $S^3 - \bigotimes$ can be decomposed into two regular hyperbolic ideal octahedra \implies vol(\bigcirc) = 2 v_{oct} = 7.3277...

Conjecture 1 Let Γ be a finite connected planar graph: If $\mathrm{vol}(\Gamma)>0$ then

$\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$

- $\tau(\Gamma) =$ number of spanning trees of Γ .
- $|E\Gamma| =$ number of edges of Γ .
- ▶ v_{oct} = the hyperbolic volume of a regular ideal octahedron = $4C \approx 3.66386$ (*C* is the Catalan's constant)
- vol(Γ) = vol(K) where K is the alternating link whose Tait graph is Γ.

Conjecture 1 Let Γ be a finite connected planar graph: If $\mathrm{vol}(\Gamma)>0$ then

$$\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$$

The upper bound is conjectured by Kenyon in 1996.

Conjecture 1 Let Γ be a finite connected planar graph: If $\mathrm{vol}(\Gamma)>0$ then

$$\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$$

- The upper bound is conjectured by Kenyon in 1996.
- The lower bound is the Vol-Det Conjecture by C-Kofman-Purcell in 2016.
- Conjecture is verified for Tait graphs of all prime alternating knots up to 16 crossings.

Conjecture 1 Let Γ be a finite connected planar graph: If $\mathrm{vol}(\Gamma)>0$ then

$$\operatorname{vol}(\Gamma) < 2\pi \log \tau(\Gamma) < |E\Gamma| v_{oct}.$$

- The upper bound is conjectured by Kenyon in 1996.
- The lower bound is the Vol-Det Conjecture by C-Kofman-Purcell in 2016.
- Conjecture is verified for Tait graphs of all prime alternating knots up to 16 crossings.
- (C-Kofman-Purcell '2016) 2π is sharp !

Volume of a toroidal graph

Volume of a toroidal graph

 $\mathcal{G}=$ planar lattice graph, preserved by 2-dim lattice Λ acting on \mathbb{R}^2

 $\mathcal{L}=$ biperiodic alternating link in $\mathbb{R}^2 \times \mathit{I}$ with Tait graph \mathcal{G}

$$L = \text{link in } T^2 \times I$$
, such that $L = \mathcal{L}/\Lambda$.

 $G = \mathcal{G}/\Lambda$, graph on T^2 , which is Tait graph of L.

Define the volume of G and of G as

$$\operatorname{vol}(G) = \operatorname{vol}(T^2 \times I - L) \quad \text{and} \quad \operatorname{vol}(G) = \frac{\operatorname{vol}(G)}{|VG|}.$$

Geometry of biperiodic alternating links

For a biperiodic link \mathcal{L} , the \mathbb{Z}^2 quotient of $\mathbb{R}^3 - \mathcal{L}$ is a link complement in a thickened torus:

 $T^2 \times I - L$.

 $T^2 \times I \cong S^3 - \bigcirc$, so it's also the complement of a link $L \cup H$ in S^3 with a Hopf sublink H.

Geometry of biperiodic alternating links

For a biperiodic link \mathcal{L} , the \mathbb{Z}^2 quotient of $\mathbb{R}^3 - \mathcal{L}$ is a link complement in a thickened torus:

 $T^2 \times I - L$.

 $T^2 \times I \cong S^3 - \bigcirc$, so it's also the complement of a link $L \cup H$ in S^3 with a Hopf sublink H.

Example: $\mathcal{L} = \mathcal{W}$ the infinite square weave, $S^3 - (W \cup H)$ has a complete hyperbolic structure with

four regular ideal octahedra.

Generally, $\operatorname{vol}(\mathcal{T}^2 \times I - W) = c(W) \cdot v_{oct}$

Hyperbolic structure on $T^2 \times I - W$

FIGURE 7. Face pairings for a fundamental domain $\mathcal{P}_{\mathcal{W}}$ of $\mathbb{R}^3 - \mathcal{W}$. The shaded part indicates the fundamental domain of $S^3 - L$.

Geometric bounds for spanning tree entropy

 $\mathcal{G} =$ planar lattice graph, preserved by 2-dim lattice Λ acting on \mathbb{R}^2 $\Gamma_n = \mathcal{G} \cap (n\Lambda)$, exhaustive nested sequence of finite planar graphs Define the spanning tree entropy of \mathcal{G} :

$$z_{\mathcal{G}} = \lim_{n \to \infty} \frac{\log \tau(\Gamma_n)}{|V\Gamma_n|}.$$

This is related to the dimer entropy for the overlaid bipartite graph.

Geometric bounds for spanning tree entropy

 $\mathcal{G} =$ planar lattice graph, preserved by 2-dim lattice Λ acting on \mathbb{R}^2 $\Gamma_n = \mathcal{G} \cap (n\Lambda)$, exhaustive nested sequence of finite planar graphs Define the spanning tree entropy of \mathcal{G} :

$$\mathsf{z}_{\mathcal{G}} = \lim_{n \to \infty} \frac{\log \tau(\Gamma_n)}{|V\Gamma_n|}$$

This is related to the dimer entropy for the overlaid bipartite graph.

Conjecture 2 (C-Kofman 2023)

$$\operatorname{vol}(\mathcal{G}) \leq 2\pi z_{\mathcal{G}} \leq \overline{\nu}(\mathcal{G}).$$

where

$$\operatorname{vol}(\mathcal{G}) = \frac{\operatorname{vol}(\mathcal{G})}{|VG|}$$
 and $\overline{\nu}(\mathcal{G}) = \frac{|EG|v_{oct}}{|VG|}$

Examples: Regular lattice graphs

$$\begin{split} |VG_{\triangle}| &= 1 \qquad |VG_{\Box}| = 1 \qquad |VG_{\bigcirc}| = 2 \\ 2\pi \, z_{\mathcal{G}_{\bigtriangleup}} &= 10 v_{tet} \qquad 2\pi \, z_{\mathcal{G}_{\Box}} = 2 v_{oct} \qquad 2\pi \, z_{\mathcal{G}_{\bigcirc}} = 5 v_{tet} \end{split}$$

For these regular lattice graphs,

$$2\pi z_{\mathcal{G}} = \operatorname{vol}(\mathcal{G}).$$

Motivation for upper bound

Where is the upper bound in Conjecture 1 and 2 coming from ?

We can decompose $S^3 - K$ into octahedra, one octahedron at each crossing:

$$\implies \operatorname{vol}(K) < c(K)v_{oct}$$

Motivation for bipyramid volume

Bipyramid volume

Let B_n be the hyperbolic regular ideal bipyramid over a regular n-gon.

$$\operatorname{vol}(B_n) = 2n \, \Pi(\pi/n), \quad \text{for } \Pi(\theta) = - \int_0^\theta \log |2 \sin t| \, dt,$$

where $\Pi(\theta)$ is the Lobachevsky function.

e.g. B_4 = regular ideal octahedron

Bipyramid volume

Theorem (Adams) $\operatorname{vol}(B_n) < 2\pi \log(\frac{n}{2})$ and $\operatorname{vol}(B_n) \underset{n \to \infty}{\sim} 2\pi \log(\frac{n}{2})$.

п	$\operatorname{vol}(B_n)$			
2	0			
3	2.02988			
4	3.66386			
5	4.98677			
6	6.08965			
7	7.03257			
8	7.85498			
9	8.58367			
10	9.23755			
11	9.83040			
12	10.37255			
13	10.87192			
14	11.33474			
15	11.76597			
20	13.56682			
100	23.67095			
1,000	38.13817			
1,000,000	81.5409			

Bipyramid volume of a toroidal link

Define the bipyramid volume of L as

$$\mathrm{vol}^{\Diamond}(L) = \sum_{f \in \{ \mathrm{faces of } L \}} \mathrm{vol}\left(B_{|f|}\right).$$

Theorem (C-Kofman-Purcell '2019)

$$0 < \operatorname{vol}(T^2 \times I - L) \leq \operatorname{vol}^{\diamond}(L)$$

Bipyramid volume of a toroidal link

Define the bipyramid volume of L as

$$\operatorname{vol}^{\Diamond}(L) = \sum_{f \in \{ \text{faces of } L \}} \operatorname{vol} \left(B_{|f|} \right).$$

Theorem (C-Kofman-Purcell '2019)

$$0 < \operatorname{vol}(T^2 \times I - L) \leq \operatorname{vol}^{\diamond}(L)$$

Let G, G^* be dual 2-connected graphs with disk faces on T^2 . Define the bipyramid volume of G as

$$\operatorname{vol}^{\Diamond}(G) = \sum_{f \in FG} \operatorname{vol}(B_{|f|}).$$

Theorem (C-Kofman-Purcell '2019) For Tait graph G of L on T^2 ,

 $0 < \operatorname{vol}(G) \le \operatorname{vol}^{\Diamond}(G) + \operatorname{vol}^{\Diamond}(G^*).$

Lower bound using the bipyramid volume

Define the bipyramid volume of the lattice graph $\mathcal G$

$$u^{\Diamond}(\mathcal{G}) = rac{\mathrm{vol}^{\Diamond}(\mathcal{G}) + \mathrm{vol}^{\Diamond}(\mathcal{G}^*)}{|V\mathcal{G}|}.$$

We can prove Conjecture 2 when $z_{\mathcal{G}}$ satisfies the inequality:

$$\operatorname{vol}(\mathcal{G}) \ \le \ \nu^{\Diamond}(\mathcal{G}) \ \le \ 2\pi \, \mathsf{z}_{\mathcal{G}} \ \le \ \overline{\nu}(\mathcal{G}).$$

Lower bound using the bipyramid volume

Define the bipyramid volume of the lattice graph ${\mathcal{G}}$

$$u^{\Diamond}(\mathcal{G}) = rac{\mathrm{vol}^{\Diamond}(\mathcal{G}) + \mathrm{vol}^{\Diamond}(\mathcal{G}^*)}{|V\mathcal{G}|}$$

We can prove Conjecture 2 when z_G satisfies the inequality:

$$\operatorname{vol}(\mathcal{G}) \ \le \ \nu^{\Diamond}(\mathcal{G}) \ \le \ 2\pi \, \mathsf{z}_{\mathcal{G}} \ \le \ \overline{
u}(\mathcal{G}).$$

$$u^{\Diamond}(\mathcal{G}_{\bigtriangleup}) = 2\pi \, z_{\mathcal{G}_{\bigtriangleup}}, \qquad \nu^{\Diamond}(\mathcal{G}_{\Box}) = 2\pi \, z_{\mathcal{G}_{\Box}}, \qquad \nu^{\Diamond}(\mathcal{G}_{\bigcirc}) = 2\pi \, z_{\mathcal{G}_{\bigcirc}}$$

Question: Is there a \mathcal{G} , other than \mathcal{G}_{\triangle} , \mathcal{G}_{\Box} , \mathcal{G}_{\bigcirc} , for which $\nu^{\Diamond}(\mathcal{G}) = 2\pi z_{\mathcal{G}}$?

Often, $\nu^{\Diamond}(\mathcal{G}) \approx 2\pi z_{\mathcal{G}}$ are numerically very close!

	Lattice graph ${\mathcal G}$	VG	$ u^{\Diamond}(\mathcal{G})/2\pi $	ZG	$\overline{ u}(\mathcal{G})/2\pi$
1.	Triangular $\mathcal{G}_{ riangle}$ (3 ⁶)	1	1.61533	1.61533	1.74937
2.	Square \mathcal{G}_{\Box} (4 ⁴)	1	1.16624	1.16624	1.16624
3.	Hexagonal \mathcal{G}_{\bigcirc} (6 ³)	2	0.80766	0.80766	0.87468
4.	Kagome (3-6-3-6)	3	1.12157	1.13570	1.16624
5.	Square-octagon (4-8-8)	4	0.78139	0.78668	0.87468
6.	Medial(4-8-8)	6	1.10405	1.12171	1.16624
7.	3-12-12	6	0.70590	0.72056	0.87468
8.	3-4-6-4	6	1.14390	1.14480	1.16624
9.	4-6-12	12	0.76795	0.77780	0.87468
10.	Cairo pentagonal lattice	6	0.93886	0.94057	0.97187
11.	Lattice 11	9	0.84361	0.84744	0.90708
12.	Lattice 12	2	1.39079	1.39928	1.74937
13.	3 ² -4-3-4	4	1.40830	1.41086	1.45780
14.	4 ⁴ ; 3 ³ -4 ²	3	1.32761	1.32774	1.36062
15.	3^6 ; 3^3-4^2	3	1.47731	1.47739	1.55499

Lattice graph #4

Lattice graph #10

Lattice graph #5

Lattice graph #12

Lattice graph #6

Lattice graph #13

Lattice graph #7

Lattice graph #15

Lower bound using the bipyramid volume – a non-example

In this case,

$$\operatorname{vol}(\mathcal{G}) < 2\pi z_{\mathcal{G}} < \nu^{\Diamond}(\mathcal{G}) < \overline{\nu}(\mathcal{G})$$

 $2\pi * (1.39717 < 1.40693 < 1.40830 < 1.45780)$

Question: For which other planar lattice graphs is $2\pi z_{\mathcal{G}} < \nu^{\Diamond}(\mathcal{G})$?

Infinitely many cases for Conjecture 2

Theorem (C-Kofman '2023) (1) Parallel edges: Replace every edge of \mathcal{G} by $s \ge 2$ parallel edges to get \mathcal{G}_s . If $\nu^{\Diamond}(\mathcal{G}) \le 2\pi z_{\mathcal{G}} \le \overline{\nu}(\mathcal{G})$, then $\nu^{\Diamond}(\mathcal{G}_s) < 2\pi z_{\mathcal{G}_s} < \overline{\nu}(\mathcal{G}_s)$.

(2) Truncating 3-regular lattice graph: If \mathcal{G} is 3-regular, replace every vertex of \mathcal{G} by K_3 to get \mathcal{G}' . If $\nu^{\Diamond}(\mathcal{G}) \leq 2\pi z_{\mathcal{G}} \leq \overline{\nu}(\mathcal{G})$, then $\nu^{\Diamond}(\mathcal{G}') < 2\pi z_{\mathcal{G}'} < \overline{\nu}(\mathcal{G}')$.

Infinitely many cases for Conjecture 2

(3) Medial graph of 3-regular lattice graph: Let \mathcal{G}_n be 3-regular lattice graphs by truncating $\mathcal{G}_0 = \mathcal{G}_{\bigcirc}$. Let \mathcal{G}'_n be 4-regular medial graph of \mathcal{G}_n . Then $\nu^{\Diamond}(\mathcal{G}'_n) < 2\pi z_{\mathcal{G}'_n} < \overline{\nu}(\mathcal{G}'_n)$ for all $n \ge 0$.

Sketch of Proof:

- ► (Teufl-Wagner '2010) Compute growth rate of z_G under above operations.
- Growth rate of bipyramid volume is similar to that of $z_{\mathcal{G}}$.

Application to Conjecture 1 - Diagrammatic convergence

 $K_n \xrightarrow{\mathrm{F}} \mathcal{L}$ denotes $\{K_n\}$ *Følner converges almost everywhere* to \mathcal{L} .

This means the alternating links K_n satisfy:

- 1. K_n contain increasing subsets of \mathcal{L} which exhaust \mathcal{L} : $\exists G_n \subset G(K_n)$ such that $G_n \subset G_{n+1}$, and $\bigcup G_n = \mathcal{G}(\mathcal{L})$,
- 2. Følner condition for $G_n \subset \mathcal{G}(\mathcal{L})$: $\lim_{n \to \infty} \frac{|\partial G_n|}{|G_n|} = 0$,
- 3. The K_n do not have too many other crossings: $\lim_{n \to \infty} \frac{|G_n|}{c(K_n)} = 1.$

Biperiodic overlaid graph

Biperiodic alternating link $\mathcal{L} \to$ Biperiodic bipartite graph $\mathcal{G}^{b}_{\mathcal{L}}$.

Determinant density convergence

Theorem (Kenyon-Okounkov-Sheffield '2006) If $G_n^b = \mathcal{G}^b/n\Lambda$ is a toroidal exhaustion of \mathcal{G}^b , then

$$\lim_{n\to\infty}\frac{\log Z(G_n^b)}{n^2}=\mathrm{m}(p(z,w)).$$

where p(z, w) is characteristic polynomial for toroidal dimer model on \mathcal{G}^{b} .

Corollary If
$$G = \mathcal{G}/\Lambda$$
, $z_G^{\text{fd}} = |VG|z_G = m(p(z, w))$.

Determinant density convergence

Theorem (Kenyon-Okounkov-Sheffield '2006) If $G_n^b = \mathcal{G}^b/n\Lambda$ is a toroidal exhaustion of \mathcal{G}^b , then

$$\lim_{n\to\infty}\frac{\log Z(G_n^b)}{n^2}=\mathrm{m}(p(z,w)).$$

where p(z, w) is characteristic polynomial for toroidal dimer model on \mathcal{G}^{b} .

Corollary If
$$G = \mathcal{G}/\Lambda$$
, $z_G^{\text{fd}} = |VG|z_{\mathcal{G}} = m(p(z, w)).$

Theorem (C-Kofman '2016)

$$K_n \xrightarrow{\mathrm{F}} \mathcal{L} \implies \lim_{n \to \infty} \frac{\log \det(K_n)}{c(K_n)} = \frac{\mathrm{m}(p(z,w))}{c(L)}.$$

F

Infinitely many cases for Conjecture 1

Theorem (C-Kofman '2023) Let \mathcal{G} be a planar lattice that satisfies $\operatorname{vol}^{\Diamond}(\mathcal{G}) + \operatorname{vol}^{\Diamond}(\mathcal{G}^*) < 2\pi z_{\mathcal{G}}^{\mathrm{fd}} < |\mathcal{E}\mathcal{G}|v_{oct}.$

Let Γ_n be a sequence of connected planar graphs with bounded average degree that Folner converges to \mathcal{G} almost everywhere. Then for all but finitely many n,

$$\operatorname{vol}(\Gamma_n) < 2\pi \log \tau(\Gamma_n) < |E\Gamma_n| v_{oct}.$$

Sketch of Proof:

 (C-Kofman-Lalin '2019) ν[◊](Γ) behaves well under Folner convergence namely,

$$\Gamma_n \to \mathcal{G} \quad \Rightarrow \quad \lim_{n \to \infty} \nu^{\Diamond}(\Gamma_n) = \nu^{\Diamond}(\mathcal{G}).$$

- Determinant Density convergence.
- For the upper bound, the convergence is similar: $|E\Gamma_n|/|V\Gamma_n| \rightarrow |EG|/|VG|.$

Rhombitrihexagonal link ${\mathcal R}$

 $vol(T^2 \times I - R) = vol^{\Diamond}(L) = 10v_{tet} + 3v_{oct} = 21.14100...$

$$p(z,w) = 6(6 - w - 1/w - z - 1/z - w/z - z/w)$$

 $2\pi m(p(z,w)) = 10v_{tet} + 2\pi \log 6 = 21.40737...$

$$\lim_{n\to\infty}\frac{2\pi\log\det(K_n)}{c(K_n)}=\frac{2\pi\operatorname{m}(p(z,w))}{c(R)} > \frac{\operatorname{vol}(T^2\times I-R)}{c(R)}$$

A typical biperiodic alternating link (Lattice graph #11)

So $\mathcal G$ satisfies the Conjecture 1 inequality within a range of 0.6%,

$$\operatorname{vol}((T^2 imes I) - L) < \operatorname{vol}^{\Diamond}(L) < 2\pi \operatorname{m}(p(z, w))$$

 $\operatorname{vol}(\mathcal{G}) < \nu^{\Diamond}(\mathcal{G}) < 2\pi z_{\mathcal{G}}.$

Right-angled volume of planar lattice graphs

 $\mathcal{G}, \mathcal{G}^*$ (resp. G, G^*) are orthogonally dual lattice graphs if inscribed circles in their faces can form an orthogonal circle pattern.

On $\partial \mathbb{H}^3$, this circle pattern defines a right-angled ideal hyperbolic polyhedron \mathcal{P} in \mathbb{H}^3 and let $P = \mathcal{P}/\Lambda$.

If G and G^* are orthogonally dual graphs, define the right-angled volume:

$$\mathrm{vol}^{\perp}(G) = 2\mathrm{vol}(P) = \sum_{e \in EG^b} 2 \Pi(heta_e) \quad ext{and} \quad \mathrm{vol}^{\perp}(\mathcal{G}) = rac{\mathrm{vol}^{\perp}(G)}{|VG|}.$$

Theorem (C-Kofman-Purcell '2022) If G and G^* are dual simple 3-connected graphs on T^2 with disk faces, then G and G^* admit an orthogonally dual embedding on T^2 , unique up to Möbius transformations, such that

$$\mathrm{vol}^{\perp}(\mathcal{G}) \ \leq \ \mathrm{vol}(\mathcal{G}) \ \leq \ \mathrm{vol}^{\Diamond}(\mathcal{G}) + \mathrm{vol}^{\Diamond}(\mathcal{G}^*).$$

Many well-known planar lattice graphs $\mathcal G$ satisfy orthogonal duality:

For all of the lattice graphs shown, $\operatorname{vol}^{\perp}(\mathcal{G}) \leq \operatorname{vol}(\mathcal{G}) \leq 2\pi z_{\mathcal{G}}$.

3³-4² lattice

Like $\nu^{\Diamond}(\mathcal{G})$, $\mathrm{vol}^{\perp}(\mathcal{G})$ is exactly computable using the local geometry of G. If \mathcal{G} satisfies orthogonal duality, the weaker lower bound should always hold:

 $\operatorname{vol}^{\perp}(\mathcal{G}) \leq 2\pi z_{\mathcal{G}}$

In this case,

 $\mathrm{vol}^{\perp}(\mathcal{G}) \ < \ \mathrm{vol}(\mathcal{G}) \ < \ 2\pi\,z_{\mathcal{G}} \ < \
u^{\Diamond}(\mathcal{G})$

 $2\pi * ($ 1.39079 < 1.39717 < 1.40693 < 1.40830

References

- 1. Geometric bounds for spanning tree entropy of planar lattices (joint with Ilya Kofman), preprint 2023.
- Mahler Measure and the Vol-Det Conjecture (joint with Ilya Kofman and Matilde Lalin), J. London Mathematical Society Volume 99, Issue 3, June 2019, Pages: 872-900.
- 3. *Geometry of biperiodic alternating links* (joint with Ilya Kofman and Jessica Purcell), J. London Mathematical Society Volume 99, Issue 3, June 2019, Pages: 807-830.
- Geometrically and diagrammatically maximal knots (joint with Ilya Kofman and Jessica Purcell), J. London Mathematical Society Volume 94, Issue 3, December 2016, Pages: 883-908.
- Determinant density and biperiodic alternating links (joint with Ilya Kofman), New York J. Math. 22 (2016) 891-906.

