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Motivation 1 - Spanning tree or Dimer entropy and
hyperbolic volume

Temperley (1974)
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Motivation 1 - Spanning tree or Dimer entropy and
hyperbolic volume

Temperley (1974)
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where C is Catalan’s constant, C =1 — 32 + 27 +...~0.916

4C = Vot = volume of regular ideal octahedron =~ 3.66386



Motivation 2 - Mahler measure

Mahler measure of polynomial p(z) is defined as

1 dz
@) = 5 [ oelele) S Y sl
" ai>1

2-variable Mahler measure:

1 dz dw
w(plz.w) = s [ ToBlplz.w)l S5

2-variable Mahler measures are related to hyperbolic volume

because they can be often computed using the dilograrithm
n

Lir(z) = Z%

n=1



Mahler measure of 2-variable polynomials

vol(@) = 2V;er = 2 volume of regular ideal tetrahedron ~ 2.0298



Mahler measure of 2-variable polynomials

vol(@) = 2V;er = 2 volume of regular ideal tetrahedron ~ 2.0298

(Smyth '1981) VOI(@) =2rm(l+x+y)= 3\2/§L(X_3,2)

(Boyd '2000) VOI(@ ) =rm(A(L, M))

A—polynomials

=7 m(M4+L(1—-M2—2M*— MO+ M8)— 12 *)

(Kenyon '2000) VOI(@) _2m m(p(z,w))

Dimer entropy 5
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Geometric bounds for the number of spanning trees

Conjecture 1 Let I be a finite connected planar graph. If
vol(I") > 0 then

vol(I) < 2mlog 7(I') < |ET |oct-



Geometric bounds for the number of spanning trees

Conjecture 1 Let I be a finite connected planar graph. If
vol(I") > 0 then

vol(I) < 2mlog 7(I') < |ET |oct-

» 7(I') = number of spanning trees of I'.
» |ET| = number of edges of I'.

» v,c+ = the hyperbolic volume of a regular ideal octahedron =
4C ~ 3.66386 ( C is the Catalan’s constant)

» vol(I') = hyperbolic volume of a graph defined below.



Alternating links and planar graphs

We can recover an alternating knot or link diagram (up to mirror
image) from its Tait graph:

The other checkerboard coloring gives the planar dual of the Tait
graph.



Knot or link determinant

The ‘ link determinant det(K) ‘ was one of the first computable knot

invariants (computable means not of the form “minimize something
over all diagrams”).

For alternating link K with Tait graph Gg:

det(K) = 4 spanning trees 7(Gk)



Knot or link determinant

The ‘ link determinant det(K) ‘ was one of the first computable knot

invariants (computable means not of the form “minimize something
over all diagrams”).

For alternating link K with Tait graph Gg:

det(K) = 4 spanning trees 7(Gk)
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Hyperbolic knots and links

A link K is hyperbolic if S3> — K is a finite-volume hyperbolic
3-manifold i.e. 71(S% — K) acts properly discontinuously on H3 by
isometries i.e. m1(S3 — K) C Isom™ (H3).



Hyperbolic knots and links

A link K is hyperbolic if S3> — K is a finite-volume hyperbolic
3-manifold i.e. 71(S% — K) acts properly discontinuously on H3 by
isometries i.e. m1(S3 — K) C Isom™ (H3).

Hyperbolic alternating links are easy to spot.
Theorem (Menasco) If K has a connected prime alternating link

diagram, except the standard (2, g)-torus diagram, then K is
hyperbolic.

(2, g)—torus diagrams:

& L3O



Knot invariants from geometry

Hyperbolic structure on S3 — K is unique (Mostow-Prasad Rigidity)
— geometric invariants are topological invariants !

For e.g. | volume vol(K) = vol(S3 — K) |.




Knot invariants from geometry

Hyperbolic structure on S3 — K is unique (Mostow-Prasad Rigidity)
— geometric invariants are topological invariants !

For e.g. | volume vol(K) = vol(S3 — K) |.
Examples

> S3 c@ can be decomposed into two regular hyperbolic
ideal tetrahedra — vol(@) = 2vier = 2.0298. ..

> S3 @ can be decomposed into two regular hyperbolic

ideal octahedra = vol( @ ) = 2Vt = 7.3277 ...



Geometric bounds for the number of spanning tree

Conjecture 1 Let I be a finite connected planar graph: If
vol(T') > 0 then

v

vol(I) < 2mlog 7(I") < |ET |voct-

7(I") = number of spanning trees of I'.
|ET| = number of edges of T'.

Voct = the hyperbolic volume of a regular ideal octahedron =
4C ~3.66386 ( C is the Catalan’s constant)

vol(I') = vol(K) where K is the alternating link whose Tait
graph is T.



Geometric bounds for the number of spanning tree

Conjecture 1 Let I be a finite connected planar graph: If
vol(I") > 0 then

vol(I) < 2mlog 7(I') < |ET |voct-

» The upper bound is conjectured by Kenyon in 1996.



Geometric bounds for the number of spanning tree

Conjecture 1 Let I be a finite connected planar graph: If
vol(I") > 0 then

vol(I) < 2mlog 7(I') < |ET |voct-

» The upper bound is conjectured by Kenyon in 1996.

» The lower bound is the Vol-Det Conjecture by
C-Kofman-Purcell in 2016.

» Conjecture is verified for Tait graphs of all prime alternating
knots up to 16 crossings.



Geometric bounds for the number of spanning tree

Conjecture 1 Let I be a finite connected planar graph: If
vol(I") > 0 then

vol(I) < 2mlog 7(I') < |ET |voct-

» The upper bound is conjectured by Kenyon in 1996.

» The lower bound is the Vol-Det Conjecture by
C-Kofman-Purcell in 2016.

» Conjecture is verified for Tait graphs of all prime alternating
knots up to 16 crossings.

» (C-Kofman-Purcell '2016) 27 is sharp !



Volume of a toroidal graph
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Volume of a toroidal graph
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G = planar lattice graph, preserved by 2-dim lattice A acting on R?

L = biperiodic alternating link in R? x / with Tait graph G
L = link in T2 x /, such that L = L/A.
G = G/, graph on T2, which is Tait graph of L.

Define the volume of G and of G as

vol(G) =vol(T? x I —L) and vol(G) = ).




Geometry of biperiodic alternating links

For a biperiodic link £, the Z2- i e

quotient of R3 — £ is a link com- FZSs2sasny

plement in a thickened torus: ;ﬁc j‘ltjj\?é;
T2 x1—L. S EAERERERY

T2 x| x~S3— @ so it's also the
complement of a link LU H in S3
with a Hopf sublink H.




Geometry of biperiodic alternating links

For a biperiodic link £, the Z2-
quotient of R3 — £ is a link com-
plement in a thickened torus:

T2x 1 — L.

T2 x| x~S3— @ so it's also the
complement of a link LU H in S3
with a Hopf sublink H.

Example: £ = W the infinite
square weave, S3 — (W U H) has a
complete hyperbolic structure with

A

four regular ideal octahedra. >
Generally, vol(T2 x | — W) = ¢(W) - Voer




Hyperbolic structure on T2 x | — W

AR

FIGURE 7. Face pairings for a fundamental domain Py of R® — W. The
shaded part indicates the fundamental domain of §% — L.



Geometric bounds for spanning tree entropy

G = planar lattice graph, preserved by 2-dim lattice A acting on R?
I'n = G N (nA), exhaustive nested sequence of finite planar graphs
Define the spanning tree entropy of G:

This is related to the dimer entropy for the overlaid bipartite graph.



Geometric bounds for spanning tree entropy

G = planar lattice graph, preserved by 2-dim lattice A acting on R?
I'n = G N (nA), exhaustive nested sequence of finite planar graphs
Define the spanning tree entropy of G:

L log (')
2= 0 ]

This is related to the dimer entropy for the overlaid bipartite graph.
Conjecture 2 (C-Kofman 2023)

vol(G) < 2mzg < 7(G).

where




Examples: Regular lattice graphs

G go
VGa| =1 VG| = 1

2w zg, = 10Viet 27 Zg, = 2Voct

For these regular lattice graphs,

27 zg = vol(G).

Ggo
|VGo| =2

2T 2GH = 5Viet



Motivation for upper bound

Where is the upper bound in Conjecture 1 and 2 coming from 7

N 7

We can decompose S3 — K into octahedra, one octahedron at each
crossing:
= vol(K) < c(K)Voct



Motivation for bipyramid volume




Bipyramid volume

Let B, be the hyperbolic regular ideal bipyramid over a regular
n—gon.

0
vol(B,) = 2nJ1(w/n), for J1() = / log |2'sin t| dt,
0

where J1(0) is the Lobachevsky function.

e.g. Bs = regular ideal octahedron

Y‘\



Bipyramid volume

Theorem (Adams)  vol(B,) < 2mlog(5) and
vol(By) ~ 27 log(5).

n vol(Bn)

2 0
3 2.02988
4 3.66386
5 4.98677
6 6.08965
7 7.03257
8 7.85498
9 8.58367
10 9.23755
11 9.83040
12 10.37255
13 10.87192
14 11.33474
15 11.76597
20 13.56682
100 23.67095
1,000 38.13817
1,000,000 81.5409




Bipyramid volume of a toroidal link

Define the bipyramid volume of L as

vol®(L) = Y~ vol(By).

fe{faces of L}
Theorem (C-Kofman-Purcell '2019)

0 < vol(T?x 1 —1L) < vol¥(L)

G



Bipyramid volume of a toroidal link

Define the bipyramid volume of L as
vol®(L) = Z vol (Byf) -
fe{faces of L}

Theorem (C-Kofman-Purcell '2019)

0 < vol(T?x 1 —1L) < vol¥(L)

Let G, G* be dual 2-connected graphs with disk faces on T2.
Define the bipyramid volume of G as

vol?(G) = > vol (Byf)) .

feFG

Theorem (C-Kofman-Purcell '2019)  For Tait graph G of L on
T2,
0 < vol(G) < vol®(G) +vol°(G*).



Lower bound using the bipyramid volume

Define the bipyramid volume of the lattice graph G

vol? vol®(G*
VO(g) _ 1 (G)$G| 1 (G )

We can prove Conjecture 2 when zg satisfies the inequality:

vol(G) < 1v9(Q) < 21zg < T(G).



Lower bound using the bipyramid volume

Define the bipyramid volume of the lattice graph G

vol?(G) + vol®(G*)
VG|

v(G) =

We can prove Conjecture 2 when zg satisfies the inequality:

vol(G) < 1v9(Q) < 21zg < T(G).

vO(Gp) =21 zg,, v¥(Gn) = 2 zg, (Go) =2 zg4

Question: s there a G, other than Ga, GO, Go, for which
v9(G) = 21 z57?

Often, 1°(G) ~ 2 zg are numerically very close!



Lattice graph G VG| | v°(G)/2n zg v(G) /2w
1. Triangular GA (3°) 1 1.61533 1.61533 | 1.74937
2. Square Go (44) 1 1.16624 1.16624 | 1.16624
3. Hexagonal G (6%) 2 0.80766 | 0.80766 | 0.87468
4. Kagome (3-6-3-6) 3 1.12157 | 1.13570 | 1.16624
5. Square-octagon (4-8-8) 4 0.78139 | 0.78668 | 0.87468
6. Medial(4-8-8) 6 1.10405 | 1.12171 | 1.16624
7. 3-12-12 6 0.70590 | 0.72056 | 0.87468
8. 3-4-6-4 6 1.14390 1.14480 | 1.16624
9. 4-6-12 12 0.76795 | 0.77780 | 0.87468
10. Cairo pentagonal lattice 6 0.93886 | 0.94057 | 0.97187
11. Lattice 11 9 0.84361 | 0.84744 | 0.90708
12. Lattice 12 2 1.39079 | 1.39928 | 1.74937
13. 3%-4-3-4 4 1.40830 | 1.41086 | 1.45780
14. 4% 3347 3 1.32761 | 1.32774 | 1.36062
15. 3% 33-42 3 1.47731 | 1.47739 | 1.55499
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Lower bound using the bipyramid volume — a non-example

VAVAVAVAVAVAVAVAVAVAY

Lattice graph G | VG| \ANNANANAN/
3 2 VAVAVAVAVAVAVAVAVAVA
3°-4 2 AANANANANAN/
JAVAVAVAVAVAVAVAVAVA
In this case,

vol(G) < 2rzg < yo(g) < 7(G)

omx (139717 < 140693 < 140830 < 145780 )

Question: For which other planar lattice graphs is 27 z5 < v9(G)?



Infinitely many cases for Conjecture 2

Theorem (C-Kofman '2023)

(1) Parallel edges: Replace every edge of G by s > 2 parallel edges
to get Gs.

If uo(g) < 2mzg < 7(G), then uo(gs) < 2mzg, < U(Gs).

(2) Truncating 3-regular lattice graph: If G is 3-regular, replace
every vertex of G by K3 to get G'. If uo(g) < 2w zg < 7(G), then
Vo(g/) < 2w Zgr < ﬂ(g/).



Infinitely many cases for Conjecture 2

(3) Medial graph of 3-regular lattice graph: Let G, be 3-regular
lattice graphs by truncating Go = Go. Let G, be 4-regular medial
graph of G,. Then 19(G") < 2n zgr < v(G,) for all n > 0.

Sketch of Proof:
» (Teufl-Wagner '2010) Compute growth rate of zg under above
operations.
» Growth rate of bipyramid volume is similar to that of zg.



Application to Conjecture 1 - Diagrammatic convergence

K, 5> L denotes {Kn} Fglner converges almost everywhere to L.

This means the alternating links K|, satisfy:

1. K, contain increasing subsets of £ which exhaust £:
3 G, C G(Kp,) such that G, C Gpy1, and |J G, = G(L),

2. Fglner condition for G, C G(£): lim 0G| _ 0,

n—oo |G,

3. The K, do not have too many other crossings:

|Gl
| = 1.
0o c(Kp)

ap £
L 4 J ; T
% ) o b ] J | 4 J F o o ]
— |
P C 5
ov0 A W JYIIIY vy

—~




Biperiodic overlaid graph

Biperiodic alternating link £ — Biperiodic bipartite graph QZ.




Determinant density convergence

Theorem (Kenyon-Okounkov-Sheffield '2006)
If G = GP/nA is a toroidal exhaustion of G?, then

. logZ(Gh)
lim E2500) v (p(z, w)).
where p(z, w) is characteristic polynomial for toroidal dimer model

on G,

Corollary If G =G/A,  zH¥ =|VG|zg = m(p(z, w)).



Determinant density convergence

Theorem (Kenyon-Okounkov-Sheffield '2006)
If G = GP/nA is a toroidal exhaustion of G?, then

. log Z(GP)
lim E2500) v (p(z, w)).
where p(z, w) is characteristic polynomial for toroidal dimer model

on Gb.
Corollary If G =G/A,  zH¥ =|VG|zg = m(p(z, w)).
Theorem (C-Kofman '2016)

logdet(K,) m(p(z,w))

F .
K, = | =
o= T K =0

‘ ~ (. .,., 2TaTs ~ -’ ;é.[
 « » ] » } > E} -
VUV ‘- v VUV J LS




Infinitely many cases for Conjecture 1

Theorem (C-Kofman '2023) Let G be a planar lattice that satisfies

vol?(G) +vol®(G*) < 2rz¥ < |EG|veet.

Let I, be a sequence of connected planar graphs with bounded
average degree that Folner converges to G almost everywhere.
Then for all but finitely many n,

vol(l'p) < 2mlog7(,) < |ETh|Voer-
Sketch of Proof:

> (C-Kofman-Lalin '2019) v°(I") behaves well under Folner
convergence namely,

=G = lim 9, =v°Q).

n—oo

» Determinant Density convergence.
» For the upper bound, the convergence is similar:
|ET,|/|VT | — |EG|/|VG].



Rhombitrihexagonal link R

vol(T? x | — R) = vol®(L) = 10vset + 3Voer = 21.14100 . ..
p(z,w)=6(6—-w—-1/w—z—-1/z—w/z—2z/w)

2nm(p(z, w)) = 10v¢er + 27 log 6 = 21.40737 ...

2w logdet(K,)  2mm(p(z, w)) vol(T? x | — R)
e oK) B dR)




A typical biperiodic alternating link (Lattice graph #11)

By AT ey AN ey AN
Y \I/\/ \I;Y/ T Faces of L = FG U FG*:
L/LTL/\,TL/\,T 1 octagon
1)\ \/\ T/{ T/ 4 pentagons
L"/ d Vi vy
)\,\L/\l \,,_/\/)_ 1 square
:)\ d { }/l T/ 8 triangles
'/’\'/\.—Iffﬁ—l’\‘ —~

vol(G) = vol((T? x 1) — L) = 47.644829
vol?(L) = vol(Bg) 4 4vol(Bs) + Voct + 16vier = 47.704628

p(Z,W) = wz? + 2% — 2wz + 10422 — 223 /w + w + 510z + 51022 /w + 23 /w? — 2456z/w + 10423 /w?
+510/w + 1/z + 510z/w? + 22 /w3 + 104/w? — 2/(wz) — 2z/w> + 1/w? + 1/(w?z) + 104
Numerically, 27 m(p(z, w)) ~ 47.9214
So G satisfies the Conjecture 1 inequality within a range of 0.6%,
vol((T? x 1) — L) < vol¥(L) < 2w m(p(z, w))
vol(G) < v¥(G) < 2mzg.



Right-angled volume of planar lattice graphs

G,G* (resp. G, G*) are orthogonally dual lattice graphs if inscribed
circles in their faces can form an orthogonal circle pattern.

On OHB3, this circle pattern defines a right-angled ideal hyperbolic
polyhedron P in H3 and let P = P/A.

If G and G* are orthogonally dual graphs, define the right-angled
volume:

volt(G)

vol™(G) = 2vol(P) = > 2/1(f.) and Vow(g)zw.

ecEG)
Theorem (C-Kofman-Purcell '2022) If G and G* are dual simple
3—connected graphs on T2 with disk faces, then G and G* admit
an orthogonally dual embedding on T2, unique up to Mé&bius
transformations, such that

volH(G) < vol(G) < vol°(G) + vol®(G*).



Many well-known planar lattice graphs G satisfy orthogonal duality:

Lattice graph #4 Lattice graph #5

nenene

Lattice graph #8 Lattice graph #9  Lattice graphs #10 & 14

For all of the lattice graphs shown, vol(G) < vol(G) < 2m zg.



33.42 |attice

Like 29(G), vol*(G) is exactly computable using the local geometry
of G. If G satisfies orthogonal duality, the weaker lower bound
should always hold:

volt(G) < 2mzg

VAVAVAVAVAVAVAVAVAVAN
\VAVAVAVAVAVAVAVAVAVA

VAVAVAVAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVAVAV/
VAVAVAVAVAVAVAVAVAVAN

In this case,
volt(G) < wol(G) < 2mzg < vOG)

27r*( 1.39079 < 139717 < 1.40693 < 1.40830 )
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