Geometry of the doubly periodic Aztec dimer model

Tomas Berggren

Department of Mathematics, MIT

Workshop I: Statistical Mechanics and Discrete Geometry, IPAM, March 25, 2024

Joint work with Alexei Borodin
arXiv:2306.07482

Random domino tilings of the Aztec diamond with periodic edge weights.

The amoeba of the spectral curve.

Outline of the talk

The dimer model

Spectral curves and their amoebas

The action function

Main results

The dimer model

Dimer coverings of the Aztec diamond

The Aztec diamond of size 4.

A dimer cover of the Aztec diamond.

Dimer coverings and domino tilings of the Aztec diamond

Uniformly distributed domino tilings of the Aztec diamond

The tiling pictures are generated using programs that were kindly provided by S. Chhita and C. Charlier. Elkies-Kuperberg-Larsen-Propp '92, Jockusch-Propp-Shor '95, Cohn-Elkies-Propp '96, Johansson '02, '05,...

The fundamental domain and the probability measure
We fix $k, \ell \in \mathbb{Z}_{>0}$ and edge weights $\alpha_{j, i}, \beta_{j, i}, \gamma_{j, i}>0$ for $i=1, \ldots, \ell, j=1, \ldots, k$. The probability measure on the set of all dimer coverings of the Aztec diamond of size $k \ell N$ is defined by

$$
\mathbb{P}(M)=\frac{1}{Z} \prod_{e \in M} w(e), \quad \text { where } \quad Z=\sum_{M^{\prime}} \prod_{e \in M^{\prime}} w(e),
$$

and $w(e) \in\left\{\alpha_{j, i}, \beta_{j, i}, \gamma_{j, i}\right\}$.

Uniform: $k=\ell=1$ and $\alpha_{j, i}=\beta_{j, i}=\gamma_{j, i}=1$.

Doubly periodic edge weights

Wallpaper in Philadelphia

Previously studied doubly periodic Aztec diamond models

The two-periodic Aztec diamond

Chhita-Young '14, Chhita-Johansson '16, Beffara-Chhita-Johansson '18 '20, DuitsKuijlaars '17, Johansson-Mason '21 '23, Bain '22 '23

The $2 \times \ell$-periodic Aztec diamond

Di Francesco-Soto-Garrido '14, Berggren '21

Biased 2×2-periodic Aztec diamond

Borodin-Duits '23

In all previously asymptotically studied doubly periodic models $k=2$ and the edge weights are at so-called torsion points (repeatedly applying the domino shuffling recovers the initial edge weights).

Spectral curves and their amoebas

The magnetically altered Kasteleyn matrix

We define the magnetically altered Kasteleyn matrix $K_{G_{1}}(z, w)$, as defined in Kenyon-Okounkov-Sheffield '06. That is, the adjacency matrix with the rows indexed by the white vertices and the columns by the black vertices of the above graph.

The spectral curve and its amoeba

The characteristic polynomial is defined by

$$
P(z, w)=\operatorname{det} K_{G_{1}}(z, w) .
$$

It is a degree k polynomials in z^{-1} and a degree ℓ polynomial in w. The spectral curve is the zero set

$$
\left\{(z, w) \in \mathbb{C}^{2}: P(z, w)=0\right\}
$$

and the amoeba is the image of the spectral curve under the map

$$
\log (z, w)=(\log |z|, \log |w|)=\left(r_{1}, r_{2}\right) \in \mathbb{R}^{2}
$$

Uniform weights

Uniform: $k=\ell=1$ and $\alpha_{j, i}=\beta_{j, i}=\gamma_{j, i}=1$.
Characteristic polynomial:

$$
P(z, w)=1+z^{-1}-w+z^{-1} w .
$$

Spectral curve:

$$
\left\{(z, w) \in \mathbb{C}^{2}: w=\frac{1+z^{-1}}{1-z^{-1}}\right\}
$$

Amoeba:

Amoebas

Generically there are $2 k$ horizontal tentacles, 2ℓ vertical tentacles and $(k-1)(\ell-1)$ compact ovals.

Harnack curves

Kenyon-Okounkov-Sheffield '06 proved that the spectral curve is a Harnack curve. This means that the map $\log (z, w)=(\log |z|, \log |w|)$ is at most 2-to-1.

The spectral curve can be thought of as gluing together two copies of the amoeba along their boundaries.

The action function

The action function

Let $(\xi, \eta) \in(-1,1)^{2}$ be global coordinates. The action function F is defined for $q=(z, w) \in \mathcal{R}$ by

$$
F(q ; \xi, \eta)=\frac{k}{2}(1-\xi) \log w-\frac{\ell}{2}(1-\eta) \log z-\log \frac{\prod_{i=1}^{\ell} E\left(q_{0, i}, q\right)^{k}}{\prod_{j=1}^{k} E\left(p_{0, j}, q\right)^{\ell}}
$$

where E is a prime form (locally meromorphic with $E(p, q)=0$ iff $q=p$).

The action function

$$
F(q ; \xi, \eta)=\frac{k}{2}(1-\xi) \log w-\frac{\ell}{2}(1-\eta) \log z-\log \frac{\prod_{i=1}^{\ell} E\left(q_{0, i}, q\right)^{k}}{\prod_{j=1}^{k} E\left(p_{0, j}, q\right)^{\ell}}
$$

Let $K_{A z}$ be the Kasteleyn matrix for the Aztec diamond of size $k \ell N$. Then

$$
K_{A z}^{-1}=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{\gamma_{1}} \int_{\gamma_{2}} \mathrm{e}^{N\left(F\left(q_{1} ; \xi, \eta\right)-F\left(q_{2} ; \xi, \eta\right)\right)} G\left(q_{1}, q_{2}\right) \frac{z_{1}^{\zeta^{\prime}}}{w_{1}^{\kappa^{\prime}}} \frac{w_{2}^{\kappa}}{z_{2}^{\zeta}} \frac{\mathrm{d} z_{2} \mathrm{~d} z_{1}}{z_{2}\left(z_{2}-z_{1}\right)}
$$

where $(\zeta, \kappa),\left(\zeta^{\prime}, \kappa^{\prime}\right) \in \mathbb{Z}^{2}$ are the local coordinates, and γ_{1} and γ_{2} are curves in \mathcal{R}.
The proof goes via non-intersecting paths, a Wiener-Hopf factorization using a result from B-Duits '19, and a linear flow on the Jacobian of the spectral curve.

The action function

Let $(\xi, \eta) \in(-1,1)^{2}$ be global coordinates. The action function F is defined for $q=(z, w) \in \mathcal{R}$ by

$$
F(q ; \xi, \eta)=\frac{k}{2}(1-\xi) \log w-\frac{\ell}{2}(1-\eta) \log z-\log \frac{\prod_{i=1}^{\ell} E\left(q_{0, i}, q\right)^{k}}{\prod_{j=1}^{k} E\left(p_{0, j}, q\right)^{\ell}} .
$$

All but two of the critical points of F :

Definition of the frozen, rough and smooth regions

The final two critical points of the F are both real or comes as conjugate pairs. The location of the these critical points determines the phases: (ξ, η) is in the frozen region, rough disordered region and smooth disordered region.

Definition of the map Ω

We define the map Ω from the rough region to the interior of the amoeba.

Main results

Assumptions

- $\beta_{i}^{\vee}<1<\alpha_{i}^{v} / \gamma_{i}^{v}$ for $i=1, \ldots, \ell$.
- There are $2 k$ horizontal tentacles, 2ℓ vertical tentacles and $g=(k-1)(\ell-1)$ compact ovals (holds generically.)

The arctic curve

Theorem (Berggren-Borodin '23)

The critical point map Ω is a homeomorphism from the closure of the rough region to the amoeba. Moreover, the induced map between the boundaries, in a correct coordinate system, preserves the slope of the tangent lines of the respective curves.

The coordinates (ξ, η) are chosen so that the scaled Aztec diamond is the square $(-1,1)^{2}$. The coordinate system in which the homeomorphism of the theorem preserves the slope is given by $u=-\frac{\xi+1}{2 \ell}$ and $v=-\frac{\eta+1}{2 k}$

The arctic curve

- The number of smooth (frozen) regions is equal to the number of bounded (unbounded) components of the complement of the amoeba.
- The rough region is locally convex at all smooth points of the arctic curve.

Known fact by the work of Astala-Duse-Prause-Zhong '20

- The arctic curve has four cusps in each smooth region, and one cusp in each frozen region, except the north, east, south and west frozen regions.

Height function

If f and f^{\prime} are two faces in $G_{A z}$ (the Aztec diamond graph), we define the height function h for a dimer covering M so that

$$
h\left(\mathrm{f}^{\prime}\right)-h(\mathrm{f})=\sum_{e=\mathrm{wb}}(\pm)\left(1_{e \in M}-1_{e \in \mathrm{~N}}\right)
$$

where the sum runs over the edges intersecting the edges of a dual path of $G_{A z}$ going from f to f^{\prime}, the sign is + if the path intersects the edge e with the white vertex on the right, and - if it is on the left, and N is the set of north edges.

Limit shape

Theorem (BB23)
The limit of the normalized height function \bar{h} and its gradient $\nabla \bar{h}$ are given by

$$
\bar{h}(\xi, \eta)=\frac{1}{k \ell} \frac{1}{2 \pi \mathrm{i}} \int_{\gamma_{\xi, \eta}} \mathrm{d} F+1 \quad \text { and } \quad \nabla \bar{h}(u, v)=\left(\frac{1}{2 \pi \mathrm{i}} \int_{\gamma_{\xi, \eta}} \frac{\mathrm{d} w}{w},-\frac{1}{2 \pi \mathrm{i}} \int_{\gamma_{\xi, \eta}} \frac{\mathrm{d} z}{z}\right),
$$

where the curve $\gamma_{\xi, \eta}$ is as indicated in the figure.

Frozen region, Rough region, Smooth Region.

Limit shape in the rough region

In the rough region, we obtain an explicit parametrization of the limit shape:

$$
\mathcal{R}_{0} \ni(z, w) \mapsto\left(\Omega^{-1}(z, w), \frac{1}{k \ell} \frac{1}{2 \pi \mathrm{i}} \int_{\gamma_{\Omega^{-1}(z, w)}} \mathrm{d} F+1\right) \in \mathbb{R}^{3} .
$$

The inverse $\Omega^{-1}(z, w)$ is explicitly given.

Local fluctuations

Theorem (BB23)

The local statistics of the dimer model (away from the arctic curve) converge to those of the ergodic translation-invariant Gibbs measure with slope given by $\nabla \bar{h}(u, v)$.

Let $K_{A z}$ be the Kasteleyn matrix for the Aztec diamond of size $k \ell N$, then

$$
\lim _{N \rightarrow \infty} K_{\mathrm{Az}}^{-1}=\frac{1}{(2 \pi \mathrm{i})^{2}} \int_{|z|=\mathrm{e}^{r_{1}}} \int_{|w|=\mathrm{e}^{r_{2}}}\left(K_{G_{1}}(z, w)^{-1}\right)_{\mathrm{b}_{i, j} \mathrm{w}_{i^{\prime}, j^{\prime}}} \frac{z^{\zeta^{\prime}-\zeta}}{w^{\kappa^{\prime}-\kappa}} \frac{\mathrm{d} w}{w} \frac{\mathrm{~d} z}{z}
$$

Recap

The amoeba of the spectral curve.

Thank you for your attention!

