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Random domino tilings of the Aztec diamond with
periodic edge weights.
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The amoeba of the spectral curve.
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The dimer model



Dimer coverings of the Aztec diamond

The Aztec diamond of size 4.
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A dimer cover of the Aztec diamond.



Dimer coverings and domino tilings of the Aztec diamond
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Uniformly distributed domino tilings of the Aztec diamond
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The tiling pictures are generated using programs that were kindly provided by S. Chhita and C. Charlier.
Elkies–Kuperberg–Larsen–Propp ’92, Jockusch–Propp–Shor ’95,

Cohn–Elkies–Propp ’96, Johansson ’02, ’05,...



The fundamental domain and the probability measure
We fix k, ` ∈ Z>0 and edge weights αj,i , βj,i , γj,i > 0 for i = 1, . . . , `, j = 1, . . . , k.
The probability measure on the set of all dimer coverings of the Aztec diamond of size
k`N is defined by

P(M) = 1
Z
∏

e∈M
w(e), where Z =

∑
M′

∏
e∈M′

w(e),

and w(e) ∈ {αj,i , βj,i , γj,i}.
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Uniform: k = ` = 1 and αj,i = βj,i = γj,i = 1.



Doubly periodic edge weights

3D figures

https://sketchfab.com/3d-models/figure-2-from-berggren-borodin-of-size-500-28c1a53c1e6146bfa34c41df10a1b7d8


Wallpaper in Philadelphia



Previously studied doubly periodic Aztec diamond models

The two-periodic Aztec diamond

Chhita–Young ’14, Chhita–Johansson ’16,
Beffara–Chhita–Johansson ’18 ’20, Duits–
Kuijlaars ’17, Johansson–Mason ’21 ’23, Bain
’22 ’23

The 2× `-periodic Aztec diamond

Di Francesco–Soto-Garrido ’14, Berggren ’21

Biased 2× 2-periodic Aztec
diamond

Borodin–Duits ’23

In all previously asymptotically studied doubly periodic models k = 2 and the edge
weights are at so-called torsion points (repeatedly applying the domino shuffling
recovers the initial edge weights).



Spectral curves and their amoebas



The magnetically altered Kasteleyn matrix
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We define the magnetically altered Kasteleyn matrix KG1(z ,w), as defined in
Kenyon–Okounkov–Sheffield ’06. That is, the adjacency matrix with the rows indexed
by the white vertices and the columns by the black vertices of the above graph.



The spectral curve and its amoeba

The characteristic polynomial is defined by

P(z ,w) = detKG1(z ,w).

It is a degree k polynomials in z−1 and a degree ` polynomial in w .
The spectral curve is the zero set

{(z ,w) ∈ C2 : P(z ,w) = 0},

and the amoeba is the image of the spectral curve under the map

Log(z ,w) = (log |z |, log |w |) = (r1, r2) ∈ R2.



Uniform weights
Uniform: k = ` = 1 and αj,i = βj,i = γj,i = 1.
Characteristic polynomial:

P(z ,w) = 1 + z−1 − w + z−1w .

Spectral curve: {
(z ,w) ∈ C2 : w = 1 + z−1

1− z−1

}
.

Amoeba:

|z | → 0 |z | → ∞

|w | → 0

|w | → ∞

r1 = log |z |

r2 = log |w |



Amoebas
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q0,i = ((−1)kαv
i /γ

v
i , 0), q∞,i = (βv

i ,∞), i = 1, . . . , `,

p0,j = (0, (−1)`αh
j /β

h
j ), p∞,j = (∞, γh

j ), j = 1, . . . , k,
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j=1 γj,i

, βv
i =

k∏
j=1

βj,i ,
αh

j

βh
j

=
∏`

i=1 αj,i∏`
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Generically there are 2k horizontal tentacles, 2` vertical tentacles and (k − 1)(`− 1)
compact ovals.



Harnack curves

Kenyon–Okounkov–Sheffield ’06 proved that the spectral curve is a Harnack curve.
This means that the map Log(z ,w) = (log |z |, log |w |) is at most 2-to-1.
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The spectral curve can be thought of as gluing together two copies of the amoeba
along their boundaries.



The action function



The action function
Let (ξ, η) ∈ (−1, 1)2 be global coordinates. The action function F is defined for
q = (z ,w) ∈ R by

F (q; ξ, η) = k
2 (1− ξ) logw − `

2(1− η) log z − log
∏`

i=1 E (q0,i , q)k∏k
j=1 E (p0,j , q)`

,

where E is a prime form (locally meromorphic with E (p, q) = 0 iff q = p).
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The action function

F (q; ξ, η) = k
2 (1− ξ) logw − `

2(1− η) log z − log
∏`

i=1 E (q0,i , q)k∏k
j=1 E (p0,j , q)`

Let KAz be the Kasteleyn matrix for the Aztec diamond of size k`N. Then

K−1Az = 1
(2πi)2

∫
γ1

∫
γ2

eN(F (q1;ξ,η)−F (q2;ξ,η))G(q1, q2) z
ζ′

1
wκ′
1

wκ
2

zζ2

dz2 dz1
z2(z2 − z1)

where (ζ, κ), (ζ ′, κ′) ∈ Z2 are the local coordinates, and γ1 and γ2 are curves in R.

The proof goes via non-intersecting paths, a Wiener–Hopf factorization using a result
from B–Duits ’19, and a linear flow on the Jacobian of the spectral curve.



The action function
Let (ξ, η) ∈ (−1, 1)2 be global coordinates. The action function F is defined for
q = (z ,w) ∈ R by

F (q; ξ, η) = k
2 (1− ξ) logw − `

2(1− η) log z − log
∏`

i=1 E (q0,i , q)k∏k
j=1 E (p0,j , q)`

.

All but two of the critical points of F :
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Definition of the frozen, rough and smooth regions

The final two critical points of the F are both real or comes as conjugate pairs. The
location of the these critical points determines the phases: (ξ, η) is in the frozen
region, rough disordered region and smooth disordered region.
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Definition of the map Ω

We define the map Ω from the rough region to the interior of the amoeba.
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Main results



Assumptions
I βv

i < 1 < αv
i /γ

v
i for i = 1, . . . , `.

I There are 2k horizontal tentacles, 2` vertical tentacles and g = (k − 1)(`− 1)
compact ovals (holds generically.)
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The arctic curve

Theorem (Berggren–Borodin ’23)
The critical point map Ω is a homeomorphism from the closure of the rough region to
the amoeba. Moreover, the induced map between the boundaries, in a correct
coordinate system, preserves the slope of the tangent lines of the respective curves.
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Ω(u, v)

The coordinates (ξ, η) are chosen so that the scaled Aztec diamond is the square (−1, 1)2. The coordinate system in which the homeomorphism of
the theorem preserves the slope is given by u = − ξ+1

2` and v = − η+1
2k .



The arctic curve
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I The number of smooth (frozen) regions is equal to the number of bounded
(unbounded) components of the complement of the amoeba.

I The rough region is locally convex at all smooth points of the arctic curve.
Known fact by the work of Astala–Duse–Prause–Zhong ’20

I The arctic curve has four cusps in each smooth region, and one cusp in each
frozen region, except the north, east, south and west frozen regions.



Height function
If f and f ′ are two faces in GAz (the Aztec diamond graph), we define the height
function h for a dimer covering M so that

h(f ′)− h(f) =
∑

e=wb
(±) (1e∈M − 1e∈N) ,

where the sum runs over the edges intersecting the edges of a dual path of GAz going
from f to f ′, the sign is + if the path intersects the edge e with the white vertex on
the right, and − if it is on the left, and N is the set of north edges.
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3D figures

https://sketchfab.com/3d-models/figure-2-from-berggren-borodin-of-size-500-28c1a53c1e6146bfa34c41df10a1b7d8


Limit shape
Theorem (BB23)
The limit of the normalized height function h̄ and its gradient ∇h̄ are given by

h̄(ξ, η) = 1
k`

1
2πi

∫
γξ,η

dF + 1 and ∇h̄(u, v) =
(

1
2πi

∫
γξ,η

dw
w ,− 1

2πi

∫
γξ,η

dz
z

)
,

where the curve γξ,η is as indicated in the figure.

A0

A1 A4

q∞,3 q∞,1

p0,1

p0,3

q0,3q0,1

p∞,3

p∞,1

Frozen region, Rough region, Smooth Region.



Limit shape in the rough region

In the rough region, we obtain an explicit parametrization of the limit shape:

R0 3 (z ,w) 7→
(

Ω−1(z ,w), 1
k`

1
2πi

∫
γΩ−1(z,w)

dF + 1
)
∈ R3.

γΩ−1(z,w)

The inverse Ω−1(z ,w) is explicitly given.



Local fluctuations
Theorem (BB23)
The local statistics of the dimer model (away from the arctic curve) converge to those
of the ergodic translation-invariant Gibbs measure with slope given by ∇h̄(u, v).
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Let KAz be the Kasteleyn matrix for the Aztec diamond of size k`N, then

lim
N→∞

K−1Az = 1
(2πi)2

∫
|z|=er1

∫
|w |=er2

(
KG1(z ,w)−1

)
bi,j wi′,j′

zζ′−ζ
wκ′−κ

dw
w

dz
z .



Recap
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Random domino tilings of the Aztec diamond with
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The amoeba of the spectral curve.



Thank you for your attention!
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