Geometric objects associated to planar bipartite graphs

Pavel Galashin (UCLA)

IPAM Workshop "Statistical Mechanics and Discrete Geometry"
March 26, 2024

Contents

Contents

- Mostly will focus on reduced bipartite graphs embedded in a disk.

Contents

- Mostly will focus on reduced bipartite graphs embedded in a disk.
- Other interesting classes to keep in mind are non-reduced graphs and graphs on a torus and other surfaces.

Part 1: Plabic graphs

Part 1: Planar bipartite graphs

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1 , and the remaining vertices colored black and white.

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

Plabic graphs

Definition

A plabic graph is a planar graph embedded in a disk, with n boundary vertices of degree 1, and the remaining vertices colored black and white. A strand (a.k.a. zig-zag path) in a plabic graph is a path that

- turns maximally right at each black vertex
- turns maximally left at each white vertex

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

"Good double crossings" are OK!

(k, n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

"Good double crossings" are OK!

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

(k, n)-plabic graphs

Definition (Postnikov)

A (k, n)-plabic graph is a reduced plabic graph such that:

- the strand that starts at i ends at $i+k$ modulo n for all i.

3

Face labels

Face labels

Label each face of a (k, n)-plabic graph by a k-element set:

Face labels

Label each face of a (k, n)-plabic graph by a k-element set: include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set:
include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set: include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set:
include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set:
include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set: include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set: include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Face labels

Label each face of a (k, n)-plabic graph by a k-element set:
include j in this set iff the face is to the left of the strand $i \rightarrow j$.

Related work: [Oh-Postnikov-Speyer], [Danilov-Karzanov-Koshevoy], [Leclerc-Zelevinsky].

Part 1: Zonotopal tilings

Zonotopes

Definition (Minkowski sum)

$$
A, B \subseteq \mathbb{R}^{d}, \quad A+B:=\{a+b \mid a \in A, b \in B\}
$$

Zonotopes

Definition (Minkowski sum)

$$
A, B \subseteq \mathbb{R}^{d}, \quad A+B:=\{a+b \mid a \in A, b \in B\} .
$$

Definition

Vector configuration:

$$
\mathbf{V}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \quad \text { where } v_{i} \in \mathbb{R}^{d}
$$

Zonotopes

Definition (Minkowski sum)

$$
A, B \subseteq \mathbb{R}^{d}, \quad A+B:=\{a+b \mid a \in A, b \in B\}
$$

Definition

Vector configuration:

$$
\mathbf{V}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \quad \text { where } v_{i} \in \mathbb{R}^{d}
$$

Zonotope:

$$
\mathcal{Z}_{\mathbf{V}}:=\left[0, v_{1}\right]+\left[0, v_{2}\right]+\cdots+\left[0, v_{n}\right] \subseteq \mathbb{R}^{d}
$$

Two-dimensional zonotopes

\mapsto

Two-dimensional zonotopes

\mapsto

Two-dimensional zonotopes

Two-dimensional zonotopes

\mapsto

Zonotopal tilings

Definition

A fine zonotopal tiling of $\mathcal{Z}_{\mathbf{V}}$ is a polyhedral subdivision Δ of $\mathcal{Z}_{\mathbf{V}}$ into zonotopes of the form $\sum_{i \in B}\left[0, v_{i}\right]$, where $\left\{v_{i} \mid i \in B\right\}$ form a basis of \mathbb{R}^{d}.

Zonotopal tilings

Definition

A fine zonotopal tiling of $\mathcal{Z}_{\mathbf{V}}$ is a polyhedral subdivision Δ of $\mathcal{Z}_{\mathbf{V}}$ into zonotopes of the form $\sum_{i \in B}\left[0, v_{i}\right]$, where $\left\{v_{i} \mid i \in B\right\}$ form a basis of \mathbb{R}^{d}.

Zonotopal tilings

Definition

A fine zonotopal tiling of $\mathcal{Z}_{\mathbf{V}}$ is a polyhedral subdivision Δ of $\mathcal{Z}_{\mathbf{V}}$ into zonotopes of the form $\sum_{i \in B}\left[0, v_{i}\right]$, where $\left\{v_{i} \mid i \in B\right\}$ form a basis of \mathbb{R}^{d}.

Zonotopal tilings

Definition

A fine zonotopal tiling of $\mathcal{Z}_{\mathbf{V}}$ is a polyhedral subdivision Δ of $\mathcal{Z}_{\mathbf{V}}$ into zonotopes of the form $\sum_{i \in B}\left[0, v_{i}\right]$, where $\left\{v_{i} \mid i \in B\right\}$ form a basis of \mathbb{R}^{d}.

3D zonotopes

Definition

- C($n, 3$): endpoints of $v_{1}, v_{2}, \ldots, v_{n}$ form a convex n-gon in the $z=1$ plane.

3D zonotopes

Definition

- $\mathbf{C}(n, 3)$: endpoints of $v_{1}, v_{2}, \ldots, v_{n}$ form a convex n-gon in the $z=1$ plane.
- $\mathcal{Z}(n, 3):=\mathcal{Z}_{\mathbf{C}(n, 3)}$.

Sections of tiles

Sections of tiles

Plabic graphs vs zonotopal tilings

Theorem (G.)
trivalent (k, n)-plabic graphs $\xrightarrow[\text { dual }]{\stackrel{\text { planar }}{ }} \begin{aligned} & \text { horizontal sections at level } k \text { of } \\ & \text { fine zonotopal tilings of } \mathcal{Z}(n, 3)\end{aligned}$

Plabic graphs vs zonotopal tilings

Theorem (G.)
trivalent (k, n)-plabic graphs $\underset{\text { dual }}{\stackrel{\text { planar }}{\leftrightarrows}}$
horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

Plabic graphs vs zonotopal tilings

Theorem (G.)

$$
\text { level }=5 \quad 12345
$$

(125) — (123)
level $=3$

$$
\text { level }=2
$$

(45)

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$
level $=1$

$\mathcal{Z}(n, 3)$ for $n=5$

Plabic graphs vs zonotopal tilings

Theorem (G.)

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

$$
\text { level }=5 \quad 12345
$$

level $=4$

level $=3$

level $=2$

level $=1$

level $=0$

$\mathcal{Z}(n, 3)$ for $n=5$

Plabic graphs vs zonotopal tilings

Theorem (G.)

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

$$
\text { level }=5 \quad 12345
$$

level $=4$

level $=1$

level $=0$

$$
\mathcal{Z}(n, 3) \text { for } n=5
$$

Plabic graphs vs zonotopal tilings

Theorem (G.)

trivalent (k, n)-plabic graphs $\underset{\text { dual }}{\stackrel{\text { planar }}{ }}$
horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

Plabic graphs vs zonotopal tilings

Theorem (G.)

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

Plabic graphs vs zonotopal tilings

Theorem (G.)

trivalent (k, n)-plabic graphs $\underset{\text { dual }}{\stackrel{\text { planar }}{\leftrightarrows}}$

horizontal sections at level k of fine zonotopal tilings of $\mathcal{Z}(n, 3)$

a trivalent $(2,5)$-plabic graph

$\mathcal{Z}(n, 3)$ for $n=5$

Flips of zonotopal tilings

Lemma

$\mathcal{Z}(d+1, d)$ admits exactly two fine zonotopal tilings.

Flips of zonotopal tilings

Lemma

$\mathcal{Z}(d+1, d)$ admits exactly two fine zonotopal tilings.

Definition

The local transformation interchanging them is called a flip.

Fine zonotopal tilings of $\mathcal{Z}(4,3)$

Fine zonotopal tilings of $\mathcal{Z}(4,3)$

(23)

Fine zonotopal tilings of $\mathcal{Z}(4,3)$

Fine zonotopal tilings of $\mathcal{Z}(4,3)$

Fine zonotopal tilings of $\mathcal{Z}(4,3)$

Moves and flips

Theorem (Postnikov)

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

(M1)

Moves and flips

Theorem (Postnikov)

Any two trivalent (k, n)-plabic graphs are connected by a sequence of moves:

(M1)

Theorem (Ziegler)

Any two fine zonotopal tilings of $\mathcal{Z}(n, 3)$ are connected by a sequence of flips.

Example: $n=4$

1234

(0)

Example: $n=4$

Example: $n=4$

(a)

Example: $n=4$

1234

©

Example: $n=4$

(a)

Example: $n=4$

1234

©

Example: $n=4$

(0)

Moves $=$ sections of flips

$\stackrel{(M 1)}{\longleftrightarrow}$

(5)
(5)

Further comments

- Any trivalent (k, n)-plabic graph appears as a section of some fine zonotopal tiling [G.].

Further comments

- Any trivalent (k, n)-plabic graph appears as a section of some fine zonotopal tiling [G.].
- Higher secondary polytopes: there exists a polytope ("Higher Associahedron") whose vertices correspond to (k, n)-plabic graphs and edges to square moves between them. [G.-Postnikov-Williams].

Example: higher associahedron for $k=3, n=6$

There are $34(k, n)$-plabic graphs for $k=3$ and $n=6$. Connecting them by square moves, we get the following picture:

Example: higher associahedron for $k=3, n=6$

There are $34(k, n)$-plabic graphs for $k=3$ and $n=6$.
Connecting them by square moves, we get the following picture:

Example: higher associahedron for $k=3, n=6$

There are $34(k, n)$-plabic graphs for $k=3$ and $n=6$.
Connecting them by square moves, we get the following picture:

Example: higher associahedron for $k=3, n=6$

There are $34(k, n)$-plabic graphs for $k=3$ and $n=6$.
Connecting them by square moves, we get the following picture:

The 32 "regular" plabic graphs form a (3, 6)-Higher Associahedron.

Further comments

- Any trivalent (k, n)-plabic graph appears as a section of some fine zonotopal tiling [G.].
- Higher secondary polytopes: there exists a polytope ("Higher Associahedron") whose vertices correspond to (k, n)-plabic graphs and edges to square moves between them. [G.-Postnikov-Williams].

Further comments

- Any trivalent (k, n)-plabic graph appears as a section of some fine zonotopal tiling [G.].
- Higher secondary polytopes: there exists a polytope ("Higher Associahedron") whose vertices correspond to (k, n)-plabic graphs and edges to square moves between them. [G.-Postnikov-Williams].
- If endpoints of $v_{1}, v_{2}, \ldots, v_{n}$ lie on a circle, get isoradial embeddings [Mercat, Kenyon].

Further comments

- Any trivalent (k, n)-plabic graph appears as a section of some fine zonotopal tiling [G.].
- Higher secondary polytopes: there exists a polytope ("Higher Associahedron") whose vertices correspond to (k, n)-plabic graphs and edges to square moves between them. [G.-Postnikov-Williams].
- If endpoints of $v_{1}, v_{2}, \ldots, v_{n}$ lie on a circle, get isoradial embeddings [Mercat, Kenyon].
- For minimal planar bipartite graphs on a torus [Goncharov-Kenyon], get horizontal sections of periodic fine zonotopal tilings of \mathbb{R}^{3} [G.-George].

Part 2: Cluster varieties

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2.

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc.

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

- Each quiver Q gives rise to a cluster algebra $\mathcal{A}(Q)$, which is a certain commutative ring [Fomin-Zelevinsky].

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

- Each quiver Q gives rise to a cluster algebra $\mathcal{A}(Q)$, which is a certain commutative ring [Fomin-Zelevinsky].
- $\mathcal{A}(Q)$ is generated as an algebra by a (potentially infinite) collection of cluster variables, obtained by mutating Q in all possible ways.

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

- Each quiver Q gives rise to a cluster algebra $\mathcal{A}(Q)$, which is a certain commutative ring [Fomin-Zelevinsky].
- $\mathcal{A}(Q)$ is generated as an algebra by a (potentially infinite) collection of cluster variables, obtained by mutating Q in all possible ways.
- Still, in a lot of "nice" cases, it produces a tractable geometric object: $\mathcal{A}(Q)$ is isomorphic to the ring of polynomial functions on some interesting algebraic variety.

Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

- Each quiver Q gives rise to a cluster algebra $\mathcal{A}(Q)$, which is a certain commutative ring [Fomin-Zelevinsky].
- $\mathcal{A}(Q)$ is generated as an algebra by a (potentially infinite) collection of cluster variables, obtained by mutating Q in all possible ways.
- Still, in a lot of "nice" cases, it produces a tractable geometric object: $\mathcal{A}(Q)$ is isomorphic to the ring of polynomial functions on some interesting algebraic variety.
- For any Q, the cluster variety $\mathcal{X}(Q)$ is defined as $\operatorname{Spec} \mathcal{A}(Q)$.

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

The planar dual of any plabic graph is naturally a quiver. (Ignore unicolored edges. Orient each arrow so that white vertex is to the left.)

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2. Usually, some vertices of Q are designated as frozen \square and the rest are mutable \bigcirc. Arrows between frozen vertices are omitted.

The planar dual of any plabic graph is naturally a quiver.
(Ignore unicolored edges. Orient each arrow so that white vertex is to the left.)

- The planar dual of any plabic graph G is naturally a quiver Q_{G}.

- The planar dual of any plabic graph G is naturally a quiver Q_{G}.
- This gives rise to a cluster variety $\mathcal{X}\left(Q_{G}\right)=\operatorname{Spec} \mathcal{A}\left(Q_{G}\right)$.

- The planar dual of any plabic graph G is naturally a quiver Q_{G}.
- This gives rise to a cluster variety $\mathcal{X}\left(Q_{G}\right)=\operatorname{Spec} \mathcal{A}\left(Q_{G}\right)$.
- When G is a reduced plabic graph in a disk, these are open positroid varieties, which are well-understood.

- The planar dual of any plabic graph G is naturally a quiver Q_{G}.
- This gives rise to a cluster variety $\mathcal{X}\left(Q_{G}\right)=\operatorname{Spec} \mathcal{A}\left(Q_{G}\right)$.
- When G is a reduced plabic graph in a disk, these are open positroid varieties, which are well-understood.
- When G is not reduced on a disk, or minimal on a torus, not much is known about these varieties.

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$$
f_{M}=(\quad)
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

$$
f_{M}=\left(\begin{array}{ll}
1 & \\
5
\end{array} \quad .\right.
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

$$
f_{M}=\left(\begin{array}{ll}
1 & 2 \\
5 & 3
\end{array} \quad\right)
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

$$
f_{M}=\left(\begin{array}{lll}
1 & 2 & 3 \\
5 & 3 & 6
\end{array} \quad .\right.
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

$$
f_{M}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 3 & 6 & 4
\end{array}\right)
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$

$$
f_{M}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 6 & 4 & 2
\end{array}\right)
$$

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example

$\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 0\end{array}\right]$ $M_{1} M_{2} M_{3} M_{4} \quad M_{5} \quad M_{6} \quad M_{1} M_{2} M_{3} M_{4} M_{5} \quad M_{6}$

$$
f_{M}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 3 & 6 & 4 & 2 & 1
\end{array}\right) .
$$

Open positroid varieties [Knutson-Lam-Speyer]

 $\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.
Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

Open positroid varieties [Knutson-Lam-Speyer]

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

Example (Generic case)

$\left[\begin{array}{lllll}* & * & * & * & * \\ * & * & * & * & *\end{array}\right]$
$\left[\begin{array}{lllll}* & * & * & * & * \\ * & * & * & * & *\end{array}\right]$ $M_{1} M_{2} M_{3} M_{4} M_{5} M_{1} M_{2} M_{3} M_{4} M_{5}$

Let $f_{k, n}(i) \equiv i+k(\bmod n)$ for all $i=1,2, \ldots, n$. Then

$$
f_{M}=f_{k, n} \quad \Longleftrightarrow \quad \Delta_{1, \ldots, k}, \Delta_{2, \ldots, k+1} \ldots, \Delta_{n, 1, \ldots, k-1} \neq 0
$$

where $\Delta_{i_{1} \cdots i_{k}}(M)=\operatorname{det}\left(M_{i_{1}} M_{i_{2}} \cdots M_{i_{k}}\right)$.
$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

- For all matrices M, f_{M} is a permutation.
$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n) .
$$

- For all matrices M, f_{M} is a permutation.
- Let $\operatorname{Gr}(k, n):=\{$ full rank $k \times n$ matrices $M\} /($ row operations).
$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

- For all matrices M, f_{M} is a permutation.
- Let $\operatorname{Gr}(k, n):=\{$ full rank $k \times n$ matrices $M\} /($ row operations).
- The map $M \mapsto f_{M}$ descends to $\operatorname{Gr}(k, n)$.
$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

- For all matrices M, f_{M} is a permutation.
- Let $\operatorname{Gr}(k, n):=\{$ full rank $k \times n$ matrices $M\} /($ row operations).
- The map $M \mapsto f_{M}$ descends to $\operatorname{Gr}(k, n)$.
- Positroid stratification: [Knutson-Lam-Speyer]

$$
\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}, \quad \text { where } \quad \Pi_{f}^{\circ}:=\left\{M \in \operatorname{Gr}(k, n) \mid f_{M}=f\right\}
$$

$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

- For all matrices M, f_{M} is a permutation.
- Let $\operatorname{Gr}(k, n):=\{$ full rank $k \times n$ matrices $M\} /($ row operations).
- The map $M \mapsto f_{M}$ descends to $\operatorname{Gr}(k, n)$.
- Positroid stratification: [Knutson-Lam-Speyer]

$$
\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}, \quad \text { where } \quad \Pi_{f}^{\circ}:=\left\{M \in \operatorname{Gr}(k, n) \mid f_{M}=f\right\}
$$

- Open dense stratum: $\Pi_{f_{k, n}}^{\circ}=\left\{\Delta_{1, \ldots, k}, \Delta_{2, \ldots, k+1} \ldots, \Delta_{n, 1, \ldots, k-1} \neq 0\right\}$.
$\{k \times n$ matrices $M\} \longrightarrow$ Permutation $f_{M}:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

Definition

Label the columns of M by $M_{1}, M_{2}, \ldots, M_{n} \in \mathbb{R}^{k}$. Set

$$
f_{M}(i) \equiv \min \left\{j \geqslant i \mid M_{i} \in \operatorname{Span}\left(M_{i+1}, \ldots, M_{j}\right)\right\} \quad(\bmod n)
$$

- For all matrices M, f_{M} is a permutation.
- Let $\operatorname{Gr}(k, n):=\{$ full rank $k \times n$ matrices $M\} /($ row operations).
- The map $M \mapsto f_{M}$ descends to $\operatorname{Gr}(k, n)$.
- Positroid stratification: [Knutson-Lam-Speyer]

$$
\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}, \quad \text { where } \quad \Pi_{f}^{\circ}:=\left\{M \in \operatorname{Gr}(k, n) \mid f_{M}=f\right\}
$$

- Open dense stratum: $\Pi_{f_{k, n}}^{\circ}=\left\{\Delta_{1, \ldots, k}, \Delta_{2, \ldots, k+1} \ldots, \Delta_{n, 1, \ldots, k-1} \neq 0\right\}$.

Theorem (G.-Lam)

If G is a reduced plabic graph with strand permutation f then $\mathcal{X}\left(Q_{G}\right) \cong \Pi_{f}^{\circ}$.

Partial progress: [Serhiyenko-Sherman-Bennett-Williams], [Leclerc], [Muller-Speyer], [Scott].

- Weighted planar bipartite graph $G \mapsto$ point $M=M(G) \in \operatorname{Gr}(k, n)$: $\Delta_{l}(M)=$ dimer partition function of $G \backslash\left\{b_{j}\right\}_{j \neq I}$.

- Weighted planar bipartite graph $G \mapsto$ point $M=M(G) \in \operatorname{Gr}(k, n)$:

$$
\Delta_{l}(M)=\text { dimer partition function of } G \backslash\left\{b_{j}\right\}_{j \notin I}
$$

- We have $M(G) \in \Pi_{f}^{\circ}$, where f is the strand permutation of G.

Knots and links from plabic graphs

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow], [Fomin-Pylyavskyy-Shustin-Thurston].

Knots and links from plabic graphs

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow], [Fomin-Pylyavskyy-Shustin-Thurston].
- Lift each point x on a strand of G to a point $(x, v) \in \mathbb{S} \times S^{1}$, where v is the unit tangent vector to the strand at x.

Knots and links from plabic graphs

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow], [Fomin-Pylyavskyy-Shustin-Thurston].
- Lift each point x on a strand of G to a point $(x, v) \in \mathbb{S} \times S^{1}$, where v is the unit tangent vector to the strand at x.
- This construction is invariant under square/spider moves.

Knots and links from plabic graphs

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow], [Fomin-Pylyavskyy-Shustin-Thurston].
- Lift each point x on a strand of G to a point $(x, v) \in \mathbb{S} \times S^{1}$, where v is the unit tangent vector to the strand at x.
- This construction is invariant under square/spider moves.
- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2 -disk, this quotient is a 3-sphere.

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17].
- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2 -disk, this quotient is a 3-sphere.

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17].
- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2 -disk, this quotient is a 3-sphere.
- In this case, the construction can be made more concrete as follows:

- A plabic graph G on a surface \mathbb{S} gives rise to a link L_{G} in $\mathbb{S} \times S^{1}$ [Shende-Treumann-Williams-Zaslow '15], [Fomin-Pylyavskyy-Shustin-Thurston '17].
- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2-disk, this quotient is a 3-sphere.
- In this case, the construction can be made more concrete as follows:
- At each crossing, the strand with higher complex argument of the tangent vector (in $[0,2 \pi)$) is drawn above the other one.

- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2-disk, this quotient is a 3-sphere.
- In this case, the construction can be made more concrete as follows:
- At each crossing, the strand with higher complex argument of the tangent vector (in $[0,2 \pi)$) is drawn above the other one.

- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2-disk, this quotient is a 3-sphere.
- In this case, the construction can be made more concrete as follows:
- At each crossing, the strand with higher complex argument of the tangent vector (in $[0,2 \pi)$) is drawn above the other one.
- When a strand changes the argument from $0+\epsilon$ to $2 \pi-\epsilon$, it has to travel to the boundary below all other strands and then come back above all other strands.

- We may take the quotient of $\mathbb{S} \times S^{1}$ by the equivalence relation $(x, v) \sim\left(x, v^{\prime}\right)$ for $x \in \partial \mathbb{S}$. When \mathbb{S} is a 2-disk, this quotient is a 3-sphere.
- In this case, the construction can be made more concrete as follows:
- At each crossing, the strand with higher complex argument of the tangent vector (in $[0,2 \pi)$) is drawn above the other one.
- When a strand changes the argument from $0+\epsilon$ to $2 \pi-\epsilon$, it has to travel to the boundary below all other strands and then come back above all other strands.

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right) \quad \longrightarrow
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right) \quad \longrightarrow
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right) \quad \longrightarrow
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

Positroid links [G.-Lam]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- We can draw the link diagram of L_{f} on a torus as follows:
- Draw an arrow $i \rightarrow f(i)$ in the NE direction for each $i=1,2, \ldots, n$.
- Arrows with higher slope go above arrows with lower slope.

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 6 & 3 & 1 & 2
\end{array}\right)
$$

This construction: [G.-Lam]. Related constructions: [Shende-Treumann-Williams-Zaslow], [Fomin-Pylyavskyy-Shustin-Thurston], [Casals-Gorsky-Gorsky-Simental]

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.
- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.

Theorem (G.-Lam)

The cohomology of $\Pi_{f}^{\circ}(\mathbb{C})$ and the point count $\# \Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ are specializations of Khovanov-Rozansky homology of L_{f}.

- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.

Theorem (G.-Lam)

The cohomology of $\Pi_{f}^{\circ}(\mathbb{C})$ and the point count $\# \Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ are specializations of Khovanov-Rozansky homology of L_{f}.

Corollary (G.-Lam)

- The Euler characteristic of $\Pi_{f_{k, n}}^{\circ}$ is a Catalan number.
- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.

Theorem (G.-Lam)

The cohomology of $\Pi_{f}^{\circ}(\mathbb{C})$ and the point count $\# \Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ are specializations of Khovanov-Rozansky homology of L_{f}.

Corollary (G.-Lam)

- The Euler characteristic of $\Pi_{f_{k, n}}^{\circ}$ is a Catalan number.
- The Poincaré polynomial/point count of $\Pi_{f_{k, n}}^{\circ}$ are specializations of (q, t)-Catalan numbers.
- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.

Theorem (G.-Lam)

The cohomology of $\Pi_{f}^{\circ}(\mathbb{C})$ and the point count $\# \Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ are specializations of Khovanov-Rozansky homology of L_{f}.

Corollary (G.-Lam)

- The Euler characteristic of $\Pi_{f_{k, n}}^{\circ}$ is a Catalan number.
- The Poincaré polynomial/point count of $\Pi_{f_{k, n}}^{\circ}$ are specializations of (q, t)-Catalan numbers.
- The point count $\Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ is a specialization of the HOMFLY polynomial of L_{f}.
- For reduced plabic graphs G, the link L_{G} depends only on the strand permutation f of G. Denote it L_{f}.
- Positroid stratification: $\operatorname{Gr}(k, n)=\bigsqcup_{f} \Pi_{f}^{\circ}$.

Theorem (G.-Lam)

The cohomology of $\Pi_{f}^{\circ}(\mathbb{C})$ and the point count $\# \Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ are specializations of Khovanov-Rozansky homology of L_{f}.

Corollary (G.-Lam)

- The Euler characteristic of $\Pi_{f_{k, n}}^{\circ}$ is a Catalan number.
- The Poincaré polynomial/point count of $\Pi_{f_{k, n}}^{\circ}$ are specializations of (q, t)-Catalan numbers.
- The point count $\Pi_{f}^{\circ}\left(\mathbb{F}_{q}\right)$ is a specialization of the HOMFLY polynomial of L_{f}.

Question

What happens for other classes of plabic graphs?

Simple plabic graphs

Definition (G.-Lam)

A plabic graph G is called simple if its dual directed graph Q_{G} is a quiver, i.e., has no directed cycles of length 1 and 2.

Simple plabic graphs

Definition (G.-Lam)

A plabic graph G is called simple if its dual directed graph Q_{G} is a quiver, i.e., has no directed cycles of length 1 and 2.

simple

not simple

simple

not simple

Simple plabic graphs

Definition (G.-Lam)

A plabic graph G is called simple if its dual directed graph Q_{G} is a quiver, i.e., has no directed cycles of length 1 and 2.

simple

not simple

simple

not simple

Conjecture (G.-Lam)

When G is simple, the \mathbb{F}_{q}-point count of $\mathcal{X}\left(Q_{G}\right)$ is a specialization of the HOMFLY polynomial of L_{G}.

Simple plabic graphs

Definition (G.-Lam)

A plabic graph G is called simple if its dual directed graph Q_{G} is a quiver, i.e., has no directed cycles of length 1 and 2.

simple

not simple

simple

not simple

Conjecture (G.-Lam)

When G is simple, the \mathbb{F}_{q}-point count of $\mathcal{X}\left(Q_{G}\right)$ is a specialization of the HOMFLY polynomial of L_{G}.

Thanks!

