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A strand (a.k.a. zig-zag path) in a plabic graph is a path that

turns maximally right at each black vertex
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(k , n)-plabic graphs

Definition (Postnikov)

A plabic graph is reduced if it satisfies:

No closed
strands

No strand
intersects itself

No “bad double
crossings”

“Good double
crossings” are OK!

A (k, n)-plabic graph is a reduced plabic graph such that:

the strand that starts at i ends at i + k modulo n for all i .
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Face labels

Label each face of a (k, n)-plabic graph by a k-element set:

include j in this set iff the face is to the left of the strand i → j .
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Related work: [Oh–Postnikov–Speyer], [Danilov–Karzanov–Koshevoy], [Leclerc–Zelevinsky].
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Part 1: Zonotopal tilings
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Zonotopes

Definition (Minkowski sum)

A,B ⊆ Rd , A + B := {a + b | a ∈ A, b ∈ B}.

Definition

Vector configuration:

V = (v1, v2, . . . , vn), where vi ∈ Rd .

Zonotope:
ZV := [0, v1] + [0, v2] + · · ·+ [0, vn] ⊆ Rd .
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Zonotopal tilings

Definition

A fine zonotopal tiling of ZV is a polyhedral subdivision ∆ of ZV into
zonotopes of the form

∑
i∈B [0, vi ], where {vi | i ∈ B} form a basis of Rd .
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3D zonotopes
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C(n, 3): endpoints of v1, v2, . . . , vn form a convex n-gon in the z = 1 plane.

Z(n, 3) := ZC(n,3).
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Plabic graphs vs zonotopal tilings

Theorem (G.)

trivalent (k , n)-plabic graphs
planar←−−→
dual

horizontal sections at level k of
fine zonotopal tilings of Z(n, 3)
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Flips of zonotopal tilings

Lemma

Z(d + 1, d) admits exactly two fine zonotopal tilings.

Definition

The local transformation interchanging them is called a flip.

↔
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Moves and flips

Theorem (Postnikov)

Any two trivalent (k , n)-plabic graphs are connected by a sequence of moves:

(M1) (M2) (M3)

Theorem (Ziegler)

Any two fine zonotopal tilings of Z(n, 3) are connected by a sequence of flips.
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Moves = sections of flips
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Further comments

Any trivalent (k, n)-plabic graph appears as a section of some fine
zonotopal tiling [G.].

Higher secondary polytopes: there exists a polytope (“Higher
Associahedron”) whose vertices correspond to (k, n)-plabic graphs
and edges to square moves between them. [G.–Postnikov–Williams].
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Example: higher associahedron for k = 3, n = 6

There are 34 (k , n)-plabic graphs for k = 3 and n = 6.
Connecting them by square moves, we get the following picture:

The 32 “regular” plabic graphs form a (3, 6)-Higher Associahedron.
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Part 2: Cluster varieties



Quivers and cluster varieties

Definition

A quiver Q is a directed graph without directed cycles of length 1 and 2.

Usually, some vertices of Q are designated as frozen and the rest are
mutable . Arrows between frozen vertices are omitted.

Each quiver Q gives rise to a cluster algebra A(Q), which is a certain
commutative ring [Fomin–Zelevinsky].

A(Q) is generated as an algebra by a (potentially infinite) collection
of cluster variables, obtained by mutating Q in all possible ways.

Still, in a lot of “nice” cases, it produces a tractable geometric object:
A(Q) is isomorphic to the ring of polynomial functions on some
interesting algebraic variety.

For any Q, the cluster variety X (Q) is defined as SpecA(Q).
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known about these varieties.



The planar dual of any plabic graph G is naturally a quiver QG .
This gives rise to a cluster variety X (QG ) = SpecA(QG ).

When G is a reduced plabic graph in a disk, these are open positroid
varieties, which are well-understood.
When G is not reduced on a disk, or minimal on a torus, not much is
known about these varieties.



The planar dual of any plabic graph G is naturally a quiver QG .
This gives rise to a cluster variety X (QG ) = SpecA(QG ).
When G is a reduced plabic graph in a disk, these are open positroid
varieties, which are well-understood.

When G is not reduced on a disk, or minimal on a torus, not much is
known about these varieties.



The planar dual of any plabic graph G is naturally a quiver QG .
This gives rise to a cluster variety X (QG ) = SpecA(QG ).
When G is a reduced plabic graph in a disk, these are open positroid
varieties, which are well-understood.
When G is not reduced on a disk, or minimal on a torus, not much is
known about these varieties.



Open positroid varieties [Knutson–Lam–Speyer]

{k × n matrices M} −→ Permutation fM : {1, 2, . . . , n} → {1, 2, . . . , n}.

Definition

Label the columns of M by M1,M2, . . . ,Mn ∈ Rk . Set

fM(i) ≡ min{j > i | Mi ∈ Span(Mi+1, . . . ,Mj)} (mod n).

Example

[
1 1 1 0 −1 −1
0 1 1 0 1 0

]
M1M2M3 M4 M5 M6

[
1 1 1 0 −1 −1
0 1 1 0 1 0

]
M1M2M3 M4 M5 M6

M4
M1

M2 = M3M5

M6

fM =

(

1 2 3 4 5 6
5 3 6 4 2 1

)
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Let Gr(k, n) := {full rank k × n matrices M}/(row operations).
The map M 7→ fM descends to Gr(k , n).
Positroid stratification: [Knutson–Lam–Speyer]

Gr(k , n) =
⊔
f

Π◦f , where Π◦f := {M ∈ Gr(k, n) | fM = f }.

Open dense stratum: Π◦fk,n = {∆1,...,k ,∆2,...,k+1 . . . ,∆n,1,...,k−1 6= 0}.

Theorem (G.–Lam)

If G is a reduced plabic graph with strand permutation f then
X (QG ) ∼= Π◦f .

Partial progress: [Serhiyenko–Sherman-Bennett–Williams], [Leclerc],
[Muller–Speyer], [Scott].
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Open dense stratum: Π◦fk,n = {∆1,...,k ,∆2,...,k+1 . . . ,∆n,1,...,k−1 6= 0}.

Theorem (G.–Lam)

If G is a reduced plabic graph with strand permutation f then
X (QG ) ∼= Π◦f .

Partial progress: [Serhiyenko–Sherman-Bennett–Williams], [Leclerc],
[Muller–Speyer], [Scott].
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b3

b4

b5

I = {2, 5}

Weighted planar bipartite graph G 7→ point M = M(G ) ∈ Gr(k , n):

∆I (M) = dimer partition function of G \ {bj}j /∈I .

We have M(G ) ∈ Π◦f , where f is the strand permutation of G .
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Knots and links from plabic graphs

A plabic graph G on a surface S gives rise to a link LG in S× S1

[Shende–Treumann–Williams–Zaslow], [Fomin–Pylyavskyy–Shustin–Thurston].

Lift each point x on a strand of G to a point (x , v) ∈ S× S1, where v is the
unit tangent vector to the strand at x .

This construction is invariant under square/spider moves.

We may take the quotient of S× S1 by the equivalence relation
(x , v) ∼ (x , v ′) for x ∈ ∂S. When S is a 2-disk, this quotient is a 3-sphere.
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A plabic graph G on a surface S gives rise to a link LG in S× S1

[Shende–Treumann–Williams–Zaslow ’15], [Fomin–Pylyavskyy–Shustin–Thurston ’17].

We may take the quotient of S× S1 by the equivalence relation
(x , v) ∼ (x , v ′) for x ∈ ∂S. When S is a 2-disk, this quotient is a 3-sphere.

In this case, the construction can be made more concrete as follows:

At each crossing, the strand with higher complex argument of the tangent vector
(in [0, 2π)) is drawn above the other one.
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When a strand changes the argument from 0 + ε to 2π− ε, it has to travel to the
boundary below all other strands and then come back above all other strands.
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Positroid links [G.–Lam]

For reduced plabic graphs G , the link LG depends only on the strand
permutation f of G . Denote it Lf .

We can draw the link diagram of Lf on a torus as follows:
Draw an arrow i → f (i) in the NE direction for each i = 1, 2, . . . , n.
Arrows with higher slope go above arrows with lower slope.

f =

(
1 2 3 4 5 6
5 4 6 3 1 2

)
−→

1

2

3

4

5

6
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This construction: [G.–Lam]. Related constructions: [Shende–Treumann–Williams–Zaslow],

[Fomin–Pylyavskyy–Shustin–Thurston], [Casals–Gorsky–Gorsky–Simental]



For reduced plabic graphs G , the link LG depends only on the strand
permutation f of G . Denote it Lf .

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f .

Theorem (G.–Lam)

The cohomology of Π◦f (C) and the point count #Π◦f (Fq) are
specializations of Khovanov–Rozansky homology of Lf .

Corollary (G.–Lam)

The Euler characteristic of Π◦fk,n is a Catalan number.

The Poincaré polynomial/point count of Π◦fk,n are specializations of

(q, t)-Catalan numbers.

The point count Π◦f (Fq) is a specialization of the HOMFLY
polynomial of Lf .

Question

What happens for other classes of plabic graphs?



For reduced plabic graphs G , the link LG depends only on the strand
permutation f of G . Denote it Lf .

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f .

Theorem (G.–Lam)

The cohomology of Π◦f (C) and the point count #Π◦f (Fq) are
specializations of Khovanov–Rozansky homology of Lf .

Corollary (G.–Lam)

The Euler characteristic of Π◦fk,n is a Catalan number.
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The Poincaré polynomial/point count of Π◦fk,n are specializations of

(q, t)-Catalan numbers.

The point count Π◦f (Fq) is a specialization of the HOMFLY
polynomial of Lf .

Question

What happens for other classes of plabic graphs?



For reduced plabic graphs G , the link LG depends only on the strand
permutation f of G . Denote it Lf .

Positroid stratification: Gr(k , n) =
⊔
f

Π◦f .

Theorem (G.–Lam)

The cohomology of Π◦f (C) and the point count #Π◦f (Fq) are
specializations of Khovanov–Rozansky homology of Lf .

Corollary (G.–Lam)

The Euler characteristic of Π◦fk,n is a Catalan number.
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Simple plabic graphs

Definition (G.–Lam)

A plabic graph G is called simple if its dual directed graph QG is a quiver,
i.e., has no directed cycles of length 1 and 2.

simple not simple simple not simple

Conjecture (G.–Lam)

When G is simple, the Fq-point count of X (QG ) is a specialization of the
HOMFLY polynomial of LG .

Thanks!
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