On variants of Specht polynomials and Random Geometry

Eveliina Peltola

Aalto University, Department of Mathematics and Systems Analysis and

University of Bonn (IAM) \& Hausdorff Center for Math (HCM)

28 March 2024 @IPAM: Statistical Mechanics and Discrete Geometry
Joint works with A. Lafay \& J. Roussillon (and A. Karrila)

Critical lattice models in 2d statistical physics

- discrete models on (planar) graphs, e.g. \mathbb{Z}^{2}
- (continuous) phase transitions \Rightarrow critical phenomena

random walks, percolation, Ising model, Potts model, dimer models, 6 -vertex model, random cluster model, Gaussian free field, $O(n)$ spin and loop models, ...

CRitical lattice models in 2d statistical physics

- discrete models on (planar) graphs, e.g. \mathbb{Z}^{2}
- (continuous) phase transitions \Rightarrow critical phenomena
- critical exponents: observables have power law behavior
- self-similarity: fractal behavior, scale invariance
- universality: microscopic details irrelevant for large-scale properties

random walks, percolation, Ising model, Potts model, dimer models, 6 -vertex model, random cluster model, Gaussian free field, $O(n)$ spin and loop models, ...

Critical lattice models in 2d statistical physics

- discrete models on (planar) graphs, e.g. \mathbb{Z}^{2}
- (continuous) phase transitions \Rightarrow critical phenomena
- critical exponents: observables have power law behavior
- self-similarity: fractal behavior, scale invariance
- universality: microscopic details irrelevant for large-scale properties
- scaling limits: conformal field theories (CFT) ? $\quad \delta \mathbb{Z}^{2}, \delta \rightarrow 0$
[Belavin, Polyakov \& Zamolodchikov '84; Cardy '84; Nienhuis '84]

random walks, percolation, Ising model, Potts model, dimer models, 6 -vertex model, random cluster model, Gaussian free field, $O(n)$ spin and loop models, ...

Scaling limits of critical interfaces - SLE(κ) curves

- $\kappa>0$ labels universality class (e.g. $\kappa=4$ double-dimer \& GFF level lines)
- key feature: conformal invariance $\leadsto \rightarrow$ central charge $c(\kappa)$

(critical) interface $\xrightarrow{\delta \rightarrow 0}$ Schramm-Loewner Evolution, SLE (κ)

Scaling limits of critical interfaces - SLE(κ) curves

- $\kappa>0$ labels universality class (e.g. $\kappa=4$ double-dimer \& GFF level lines)
- key feature: conformal invariance $\leadsto \rightarrow$ central charge $c(\kappa)$

(critical) interface $\xrightarrow{\delta \rightarrow 0}$ Schramm-Loewner Evolution, SLE (κ)
Usual proof strategy:

1. tightness (e.g. control via crossing estimates, RSW etc.)
[Aizenman \& Burchard '99, Kemppainen \& Smirnov '17, ...]
2. identification of the limit (e.g. via discrete holomorphic observable)
[Kenyon '00, Chelkak \& Smirnov '01-'11, ...]

General heuristics for SLE-CFT correspondence

- universality class labeled by $\kappa>0$, central charge $c(\kappa)=\frac{(3 k-8)(6-k)}{2 k} \leq 1$
- discrete crossing probabilities
$\xrightarrow{\delta \rightarrow 0}$ probabilities of connectivities of SLE (κ) curves:

$$
\lim _{\delta \rightarrow 0} \mathbb{P}_{\beta}^{\delta}[\text { connectivity }=\alpha]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)}
$$

- amplitudes for α encoded in pure partition functions \mathcal{Z}_{α}
- boundary conditions β encoded in b.c.c. partition functions \mathcal{U}_{β}
[Fergin-Fuchs '80s; Dotsenko-Fateev '80s; Cardy '80s; Bauer-Bernard-Kytölä '05;
Dubédat '07; Flores-Kleban-Simmons-Ziff '17; P. \& Wu (et al.) '18-22'; Izyurov '22...]

General heuristics for SLE-CFT correspondence

- universality class labeled by $\kappa>0$, central charge $c(\kappa)=\frac{(3 k-8)(6-k)}{2 k} \leq 1$
- discrete crossing probabilities
$\xrightarrow{\delta \rightarrow 0}$
$\xrightarrow{\delta \rightarrow 0}$ probabilities of connectivities of $\operatorname{SLE}(\kappa)$ curves:

$$
\lim _{\delta \rightarrow 0} \mathbb{P}_{\beta}^{\delta}[\text { connectivity }=\alpha]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)}
$$

- amplitudes for α encoded in pure partition functions \mathcal{Z}_{α}
- boundary conditions β encoded in b.c.c. partition functions \mathcal{U}_{β}
- CFT prediction: $\mathcal{Z}_{\alpha}, \mathcal{U}_{\beta}$ should be " $\left\langle\Phi_{1,2}\left(x_{1}\right) \cdots \Phi_{1,2}\left(x_{2 N}\right)\right\rangle$ " singled out via fusion rules \leadsto works for $\kappa \in(0,8]$
[Feıgin-Fuchs '80s; Dotsenko-Fateev '80s; Cardy '80s; Bauer-Bernard-Kytölä '05;
Dubédat '07; Flores-Kleban-Simmons-Ziff '17; P. \& Wu (et al.) '18-22'; Izyurov '22...]

General heuristics for SLE-CFT correspondence

- universality class labeled by $\kappa>0$, central charge $c(\kappa)=\frac{(3 k-8)(6-k)}{2 k} \leq 1$
- discrete crossing probabilities
$\xrightarrow{\delta \rightarrow 0}$
$\xrightarrow{\delta \rightarrow 0}$ probabilities of connectivities of SLE (κ) curves:

$$
\lim _{\delta \rightarrow 0} \mathbb{P}_{\beta}^{\delta}[\text { connectivity }=\alpha]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)}
$$

- amplitudes for α encoded in pure partition functions \mathcal{Z}_{α}
- boundary conditions β encoded in b.c.c. partition functions \mathcal{U}_{β}
- CFT prediction: $\mathcal{Z}_{\alpha}, \mathcal{U}_{\beta}$ should be " $\left\langle\Phi_{1,2}\left(x_{1}\right) \cdots \Phi_{1,2}\left(x_{2 N}\right)\right\rangle$ " singled out via fusion rules $\leadsto \rightarrow$ works for $\kappa \in(0,8]$
- Coulomb gas integral formulas

$$
\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{2 / k} \int_{\Gamma_{\alpha}} \prod_{r, j}\left(w_{r}-x_{j}\right)^{-4 / \kappa} \prod_{r<s}\left(w_{r}-w_{s}\right)^{8 / k} \mathrm{~d} w_{1} \cdots \mathrm{~d} w_{N}
$$

[Feigin-Fuchs '80s; Dotsenko-Fateev '80s; Cardy '80s; Bauer-Bernard-Kytölä '05;
Dubédat '07; Flores-Kleban-Simmons-Ziff '17; P. \& Wu (et al.) '18-22'; Izyurov '22...]

Exact solvability

Some models carry additional combinatorial structure!
E.g. models building on the Gaussian free field (GFF):

- double-dimer model: $\kappa=4, c=1$
- triple-dimer model: $c=2$ (no κ)
- multi-dimer models: $c=3,4, \ldots$
$\Longrightarrow \mathcal{Z}_{\alpha}$ and \mathcal{U}_{β} given by variants of Specht polynomials
© Schramm \& Sheffield

- uniform spanning tree: $\kappa=8, c=-2$
- branches (LERW): $\kappa=2, c=-2$
$\Longrightarrow \mathcal{Z}_{\alpha}$ and \mathcal{U}_{β} given by determinants of Fomin type

Loop-erased random walk ($c=-2, \kappa=2$)

Gaussian free field ($c=1, \kappa=4$)

Double dimers $(c=1)$ and Virasoro Conformal blocks

(c) Kenyon \& Wilson

Double-dimer interfaces

Conjecture. Interfaces converge to GFF level lines!

$$
\text { Double-dimer interfaces } \xrightarrow[\operatorname{SLE}(4)]{\stackrel{\delta \rightarrow 0}{\longrightarrow} \text { Schramm-Loewner Evolution, }}
$$

Double-dimer interfaces

Conjecture. Interfaces converge to GFF level lines!
Double-dimer interfaces $\xrightarrow{\delta \rightarrow 0}$ Schramm-Loewner Evolution, SLE(4)

- convergence of crossing probabilities is known [Kenyon \& Wilson '11]
- convergence of interfaces is open
- very strong evidence [Dubédat '19, Basok \& Chelkak '21, Bai \& Wan '22]

GAUSSIAN FREE FIELD (GFF)

- "Gaussian distribution" h
- centered with covariance given by the Green function $G_{\Omega}(x, y)$
- for test functions φ, the action of h gives (h, φ):
a Gaussian random vector

$$
\operatorname{cov}\left(\left(\mathrm{h}, \varphi_{1}\right),\left(\mathrm{h}, \varphi_{2}\right)\right)=\iint \varphi_{1}(x) G_{\Omega}(x, y) \varphi_{2}(y) \mathrm{d} x \mathrm{~d} y
$$

- GFF with boundary data:
- take function f on $\partial \Omega$
- take h plus the harmonic extension of f into Ω $\leadsto h+f$ is GFF with boundary data f

Gaussian Free Field Level Lines

- Dobrushin boundary data:
$-\lambda<0$ on the left, $+\lambda>0$ on the right
- "zero level set": level line γ

Thm. [Schramm \& Sheffield '06]
γ equals in distribution to $\operatorname{SLE}(4)$

Gaussian Free Field Level Lines

- Dobrushin boundary data:
$-\lambda<0$ on the left, $+\lambda>0$ on the right
- "zero level set": level line γ

Thm. [Schramm \& Sheffield '06]
γ equals in distribution to $\operatorname{SLE}(4)$

Alternating boundary data \Longrightarrow multiple SLE(4) curves

Consider pw constant boundary conditions with jumps of sizes $\pm 2 \lambda$.

- level lines form random connectivity ϑ_{GFF} (planar pairing)
- boundary condition encoded into Dyck path β

Thm. [Kenyon \& Wilson '11; P. \& Wu '17; Liu \& Wu '21]
The connection probabilities are explicitly given by

$$
\mathbb{P}_{\beta}\left[\vartheta_{\mathrm{GFF}}=\alpha\right]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)}
$$

where \mathcal{U}_{β} are explicit conformal block functions and

$$
\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right):=\sum_{\beta} \mathcal{K}_{\alpha, \beta}^{-1} \mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)
$$

and $\mathcal{K}_{\alpha, \beta} \in\{0,1\}$ and $\mathcal{K}_{\alpha, \beta}^{-1} \in \mathbb{Z}$ combinatorial matrix elements.

- level lines form random connectivity ϑ_{GFF} (planar pairing)
- boundary condition encoded into Dyck path β

Thm. [Kenyon \& Wilson '11; P. \& Wu '17; Liu \& Wu '21]
The connection probabilities are explicitly given by

$$
\mathbb{P}_{\beta}\left[\vartheta_{\mathrm{GFF}}=\alpha\right]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)}
$$

where \mathcal{U}_{β} are explicit conformal block functions and

$$
\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right):=\sum_{\beta} \mathcal{K}_{\alpha, \beta}^{-1} \mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)
$$

and $\mathcal{K}_{\alpha, \beta} \in\{0,1\}$ and $\mathcal{K}_{\alpha, \beta}^{-1} \in \mathbb{Z}$ combinatorial matrix elements.

Multiple level lines of GFF

- boundary condition encoded into Dyck path β : height jumps across the boundary of sizes $\pm 2 \lambda$
- level lines form random connectivity $\vartheta_{\text {GFF }}$ (planar pairing): pairwise connection of level line curves

Conformal blocks

$$
\mathbb{P}_{\beta}\left[\vartheta_{\mathrm{GFF}}=\alpha\right]=\mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{2 N}\right)},
$$

- \mathcal{U}_{α} is the conformal block function

$$
\mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right):=\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-1 / 2}\right) \mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{2 N}\right)
$$

- $\mathcal{P}_{\alpha^{T}}$ is the transpose Specht polynomial

$$
\mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{2 N}\right):=\prod_{\substack{\text { rows } R \\ \text { in } \alpha \\ \text { in row } R}} \prod_{\substack{i<j\\}}\left(x_{j}-x_{i}\right)
$$

\longleftrightarrow Standard Young tableaux of Shape (N, N)

1	2	3	6	8
4	5	7	9	10

Planar Pairings \longleftrightarrow Dyck paths

\longleftrightarrow standard Young tableaux of Shape (N, N)

1	2	3	6	8
4	5	7	9	10

- any of these sets indexes basis for simple module $\operatorname{span}\left\{\mathcal{P}_{\alpha}: \alpha \in \mathrm{SYT}^{(N, N)}\right\}$ of symmetric group $\mathfrak{\Im}_{2 N}$
- basis elements \mathcal{P}_{α} are Specht polynomials

$$
\mathcal{P}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=\prod_{\substack{\text { columns } C \\ \text { in } \alpha}} \prod_{\substack{i<j \\ \text { in column } C}}\left(x_{j}-x_{i}\right)
$$

- $\mathfrak{\Im}_{2 N}$ acts naturally by permutation of variables

Planar Pairings \longleftrightarrow Dyck paths

\longleftrightarrow standard Young tableaux of Shape (N, N)

1	2	3	6	8
4	5	7	9	10

Example:

$$
\begin{aligned}
& \mathcal{P}_{\alpha}\left(x_{1}, \ldots, x_{10}\right)=\prod_{\substack{\text { columns } C \\
\text { in } \alpha}} \prod_{\substack{i<j \\
\text { in column } C}}\left(x_{j}-x_{i}\right) \\
& =\left(x_{4}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{7}-x_{3}\right)\left(x_{9}-x_{6}\right)\left(x_{10}-x_{8}\right)
\end{aligned}
$$

Symmetric group action on conformal blocks

$$
\mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-1 / 2}\right) \mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{2 N}\right)
$$

Thm. [Lafay, P. \& Roussillon '24+]
The space $\operatorname{span}\left\{\mathcal{U}_{\alpha}: \alpha \in \mathrm{SYT}^{(N, N)}\right\}$ forms a simple module of the symmetric group, with action of $\sigma \in \mathbb{\Im}_{2 N}$ given by

$$
\sigma \cdot \mathcal{U}_{\alpha}=\operatorname{sgn}(\sigma)\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-1 / 2}\right) \sigma \cdot \mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{2 N}\right)
$$

Example:

1	2	3	6	8
4	5	7	9	10

$$
\mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{10}\right)=\prod_{\substack{\text { rows } R \\ \text { in } \alpha}} \prod_{\substack{i<j \\ \text { in row } R}}\left(x_{j}-x_{i}\right)
$$

$$
=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{6}-x_{1}\right)\left(x_{8}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{6}-x_{2}\right)\left(x_{8}-x_{2}\right)\left(x_{6}-x_{3}\right)\left(x_{8}-x_{3}\right)\left(x_{8}-x_{6}\right)
$$

$$
\cdot\left(x_{5}-x_{4}\right)\left(x_{7}-x_{4}\right)\left(x_{9}-x_{4}\right)\left(x_{10}-x_{4}\right)\left(x_{7}-x_{5}\right)\left(x_{9}-x_{5}\right)\left(x_{10}-x_{5}\right)\left(x_{9}-x_{7}\right)\left(x_{10}-x_{7}\right)\left(x_{10}-x_{13}\right)
$$

Temperley-Lieb action on conformal blocks

Cor. LLafay, P. \& Roussillon '24+]
The representation $\operatorname{span}\left\{\mathcal{U}_{\alpha}: \alpha \in \mathrm{SYT}^{(N, N)}\right\}$ of $\mathcal{S}_{2 N}$ descends to a representation of $\mathrm{TL}_{2 N}(2)$ with fugacity parameter 2 , isomorphic to the standard (cell) module with no defects.

Recall that Temperley-Lieb algebra $\mathrm{TL}_{2 N}(2)$ is generated by diagrams $e_{1}, e_{2}, \ldots, e_{2 N-1}$ and unit 1 :

The product in $\mathrm{TL}_{2 N}(2)$ is concatenation of diagrams with the rule that loops are resolved as multiplicative fugacity factor " 2 ".

Conformal blocks - CFT properties

Thm. [P. \& Wu '17; paraphrased] The functions \mathcal{U}_{α} satisfy

- BPZ PDEs of 2nd order $\forall j$ with $\kappa=4, c=1$,

$$
\left\{2 \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{i \neq j}\left(\frac{2}{x_{i}-x_{j}} \frac{\partial}{\partial x_{i}}-\frac{1 / 2}{\left(x_{i}-x_{j}\right)^{2}}\right)\right\} \mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=0
$$

- Möbius covariance

$$
\begin{gathered}
\mathcal{U}_{\alpha}\left(f\left(x_{1}\right), \ldots, f\left(x_{2 N}\right)\right)=\left(\prod_{1 \leq j \leq 2 N}\left|f^{\prime}\left(x_{j}\right)\right|^{-1 / 4}\right) \mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right) \\
\text { (for } \left.f: \mathbb{H} \rightarrow \mathbb{H} \text { s.t. } f\left(x_{1}\right)<\cdots<f\left(x_{2 N}\right)\right)
\end{gathered}
$$

- specific asymptotics related to fusion rules in $c=1 \mathrm{CFT}$

NB: Compared to physics lit. this is a new basis of blocks!

$$
\mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{2 N}\right)=\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-1 / 2}\right) \mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{2 N}\right)
$$

Fusion

Multiple level lines of GFF: fusion

- valences $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $2 N$, i.e., $s_{1}+\cdots+s_{d}=2 N$
- boundary condition encoded into walks β : height jumps across the boundary of sizes $\in \pm 2 \lambda \mathbb{Z}$

Multiple level lines of GFF: fusion

- valences $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $2 N$, i.e., $s_{1}+\cdots+s_{d}=2 N$
- boundary condition encoded into walks β :
height jumps across the boundary of sizes $\in \pm 2 \lambda \mathbb{Z}$
- conformal block functions

$$
\mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{d}\right)=\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-s_{i} s_{j} / 2}\right) \mathcal{P}_{\alpha^{T}}\left(x_{1}, \ldots, x_{d}\right)
$$

- $\mathcal{P}_{\alpha^{T}}$ is (transpose) fused Specht polynomial

Fusion setup

- valences $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $2 N$, i.e., $s_{1}+\cdots+s_{d}=2 N$
- Fill ${ }_{\zeta}^{\lambda}$: fillings of Young diagrams of shape $\lambda \vdash 2 N$, that is, each k appears s_{k} times
- $\operatorname{RSYT}_{\varsigma}^{\lambda} \subset$ Fill ${ }_{\varsigma}^{\lambda}$: row-strict Young tableaux, entries weakly increasing down columns and strictly increasing along rows
- Example: $\varsigma=(2,1,2,1)$

1	2	3
1	3	4

Fusion setup

- valences $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $2 N$, i.e., $s_{1}+\cdots+s_{d}=2 N$
- Fill ${ }_{\zeta}^{\lambda}$: fillings of Young diagrams of shape $\lambda \vdash 2 N$, that is, each k appears s_{k} times
- $\operatorname{RSYT}_{\varsigma}^{\lambda} \subset$ Fill ${ }_{\varsigma}^{\lambda}$: row-strict Young tableaux, entries weakly increasing down columns and strictly increasing along rows
- Lemma. $\alpha \in \operatorname{RSYT}_{\varsigma}^{\lambda} \Longrightarrow \tilde{\alpha} \in \mathrm{SYT}^{\lambda}$

$$
\alpha=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 1 & 3 & 4 \\
\hline
\end{array} \quad \Longrightarrow \quad \tilde{\alpha}=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & 6 \\
\hline
\end{array}
$$

- Definition. fused Specht polynomial

$$
\mathcal{P}_{\alpha}\left(y_{1}, \ldots, y_{d}\right)=\left[\frac{p_{\varsigma} \cdot \mathcal{P}_{\tilde{\alpha}}\left(x_{1}, \cdots, x_{2 N}\right)}{\prod_{k=1}^{d} \prod_{q_{k} \leq i<j<q_{k+1}}\left(x_{j}-x_{i}\right)}\right]_{x_{q_{k}}, x_{q_{k}+1}, \ldots, x_{q_{k+1}-1}=y_{k} \forall k}
$$

Fused Specht polynomials

$$
\mathcal{P}_{\alpha}\left(y_{1}, \ldots, y_{d}\right)=\left[\frac{p_{\varsigma} \cdot \mathcal{P}_{\tilde{\alpha}}\left(x_{1}, \cdots, x_{2 N}\right)}{\prod_{k=1}^{d} \prod_{q_{k} \leq i<j<q_{k+1}}\left(x_{j}-x_{i}\right)}\right]_{x_{q_{k}}, x_{q_{k}+1}, \ldots, x_{q_{k+1}-1}=y_{k} \forall k}
$$

- $p_{S}=\frac{1}{s_{1}!\cdots s_{d}!} \prod_{k=1}^{d} \sum_{\sigma \in \mathbb{S}_{s_{k}}} \operatorname{sgn}(\sigma) \sigma$ is the antisymmetrizer
- $q_{k}=1+\sum_{j=0}^{k-1} s_{j}$ are sizes of the "fused groups"

Prop. [Lafay, P. \& Roussillon '24+]
\mathcal{P}_{α} has an explicit alternative formula as a linear combination involving monomials and Schur polynomials

Conformal blocks - CFT properties

Thm. [Lafay, P. \& Roussillon '24+] The functions \mathcal{U}_{α} satisfy

- d BPZ PDEs of orders $\left(s_{1}+1, \ldots, s_{d}+1\right)$ with $\kappa=4, c=1$,
- Möbius covariance

$$
\begin{gathered}
\mathcal{U}_{\alpha}\left(f\left(x_{1}\right), \ldots, f\left(x_{d}\right)\right)=\left(\prod_{1 \leq j \leq d}\left|f^{\prime}\left(x_{j}\right)\right|^{-s_{j}^{2} / 4}\right) \mathcal{U}_{\alpha}\left(x_{1}, \ldots, x_{d}\right) \\
\left(\text { for } f: \mathbb{H} \rightarrow \mathbb{H} \text { s.t. } f\left(x_{1}\right)<\cdots<f\left(x_{2 N}\right)\right)
\end{gathered}
$$

- specific (incomplete) asymptotics related to fusion rules in CFT

Proof ingredients:

- bootstrap arguments from lower order to higher order
- generalizing [Dubédat ${ }^{15]}(c \notin \mathbb{Q})$ to $c=1$ (and $c=-2$ for UST/LERW)
- structure of Verma modules over the Virasoro algebra
- framework of Virasoro Uniformization à la [Kontsevich '87]
- (in spirit, closely related to Segal's sewing formalism in CFT)

Triple dimers $(c=2)$ and W_{3}-Conformal blocks

(C) Douglas, Kenyon \& Shi

W_{3}-Conformal blocks and a loose conjecture

(C) Kenyon \& Shi

Conj. [Lafay \& Roussillon '24: arXiv: 2402.12013]
Verified in special cases using formulas of [Kenyon \& Shi 24].

$$
\mathbb{P}_{\beta}^{\delta}[\text { triple dimer web }=\alpha] \xrightarrow{\delta \rightarrow 0} \mathcal{K}_{\alpha, \beta} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, \ldots, x_{d}\right)}{\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{d}\right)}
$$

- where \mathcal{U}_{β} is the conformal block function

$$
\mathcal{U}_{\beta}\left(x_{1}, \ldots, x_{d}\right)=\left(\prod_{i<j}\left(x_{j}-x_{i}\right)^{-s_{i} s_{j} / 3}\right) \mathcal{P}_{\beta^{T}}\left(x_{1}, \ldots, x_{d}\right)
$$

- $\mathcal{Z}_{\alpha}:=\sum_{\beta} \mathcal{K}_{\alpha, \beta}^{-1} \mathcal{U}_{\beta}$
- $\mathcal{P}_{\beta^{T}}$ is a (transpose) fused Specht polynomial
- $\mathcal{K}_{\alpha, \beta} \in \mathbb{Z}_{\geq 0}$ and $\mathcal{K}_{\alpha, \beta}^{-1} \in \mathbb{Z}$ are combinatorial matrix elements

Setup (no fusion here)

- $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $3 N$, i.e., $s_{1}+\cdots+s_{d}=3 N$
- current work [Lafay \& Roussillon '24] assumes $s_{i} \in\{1,2\}$ for all i
- Fill l_{ς}^{λ} : fillings of Young diagrams of shape $\lambda \vdash 3 N$, that is, each k appears s_{k} times
- $\operatorname{RSYT}_{\varsigma}^{\lambda} \subset$ Fill ${ }_{\varsigma}^{\lambda}$: row-strict Young tableaux, entries weakly increasing down columns and strictly increasing along rows
- Example: $\varsigma=(2,1,3,1,1,1)$

1	2	3
1	3	4
3	5	6

SETUP (NO FUSION HERE)

- $\varsigma=\left(s_{1}, \ldots, s_{d}\right)$: composition of $3 N$, i.e., $s_{1}+\cdots+s_{d}=3 N$
- Fill ${ }_{\varsigma}^{\lambda}$: fillings of Young diagrams of shape $\lambda \vdash 3 N$, that is, each k appears s_{k} times
- $\operatorname{RSYT}_{\varsigma}^{\lambda} \subset$ Fill ${ }_{\varsigma}^{\lambda}$: row-strict Young tableaux, entries weakly increasing down columns and strictly increasing along rows
- Lemma. $\alpha \in \operatorname{RSYT}_{\varsigma}^{\lambda} \Longrightarrow \tilde{\alpha} \in \mathrm{SYT}^{\lambda}$

$$
\alpha=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 1 & 3 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array} \quad \Longrightarrow \quad \tilde{\alpha} \quad=\begin{array}{|l|l|l|}
\hline 1 & 3 & 6 \\
\hline 2 & 5 & 7 \\
\hline 4 & 8 & 9 \\
\hline
\end{array}
$$

- Definition. transpose Specht polynomial

$$
\mathcal{P}_{\alpha}\left(y_{1}, \ldots, y_{d}\right)=\left[\mathcal{P}_{\tilde{\alpha}^{T}}\left(x_{1}, \ldots, x_{3 N}\right)\right]_{x_{q_{k}}, x_{q_{k}+1}, \ldots, x_{q_{k+1}-1}}=y_{k} \forall k
$$

E.g.
$\left(y_{3}-y_{1}\right)\left(y_{2}-y_{1}\right)\left(y_{3}-y_{2}\right)\left(y_{4}-y_{3}\right)\left(y_{4}-y_{1}\right)\left(y_{3}-y_{1}\right)\left(y_{6}-y_{5}\right)\left(y_{6}-y_{3}\right)\left(y_{5}-y_{3}\right)$

Kuperberg action on W_{3}-Conformal blocks

Thm. [Lafay \& Roussillon '24]
The space $\operatorname{span}\left\{\mathcal{U}_{\alpha}: \alpha \in \operatorname{RSYT}_{\varsigma}^{(N, N, N)}\right\}$ forms a simple web module of the $\mathfrak{s l}_{3}$ Kuperberg algebra $K_{S}(3)$ with fugacity parameter 3.

Kuperberg algebra $\mathrm{K}_{\varsigma}(3)$ is a planar diagram algebra w. relations

$$
\text { Q }=3,
$$

Example of web reduction

W_{3}-Conformal blocks - CFT properties

Thm. Lafay \& Roussillon '24+] $s_{i} \in\{1,2\}$. The functions \mathcal{U}_{α} satisfy

- d 3rd order BPZ W_{3}-null-state PDEs
with central charge $c=2 \quad$ (NB: no corresponding κ exists - im-Toda?)
- 8 PDEs which are W_{3} global Ward identities
(five 2nd order and three 1st order), yielding Möbius covariance
- specific (incomplete) asymptotics related to fusion rules in CFT

Upshot: Triple-dimer connection probabilities should be given by specific CFT correlation functions with W_{3} algebra symmetry!

We believe that analogous results hold also for higher rank webs, Young tableaux of more columns or rows... with W algebras

