Bipartite Ceraphs and Mirror Coamoebae Hasold Williams (USC), w/ Chris Kuo (USC) Workshop: Statistical Mechenics and Discrete Ceaometry


$$
\begin{gathered}
F(x, y)=a+b x+c y \\
+d x^{2}+c x y+f y^{2}
\end{gathered}
$$



$$
\begin{aligned}
& F(x, y, z)=a+b x+c y+d z+a x^{2} \\
& +f x y+j x z+h y^{2}+i y z+j z^{2}
\end{aligned}
$$

Mirrors, amoebae, and coamoebae

- A mirror of a variaty $x$ is a symplectic marfold $\check{x}$ (i.e. a man.fold $w$ / nondigenerate 2 -form $\omega \in \Omega^{2}(\dot{X})$ ) whose symplactic geometry reflects the algolorave gounctry of $X$.
- Rudimentary form: one-to-many correspondence bitween subvareties $Z \subset X$ and Lagrargians $L \subset X$ cquipped $w /$ a local system $E$ (i.e. $\operatorname{dim} L=\frac{1}{2} \operatorname{dim} \ddot{X}, \omega L_{L} \equiv 0, E: \pi,(L) \rightarrow G L_{n} \mathbb{C}$ ).

Mirrors, amoebae, and coamocbae

- A mirror of a variaty $x$ is a symplectic manfold $\check{x}$ (i.e. a man.fold $\omega$ / nondigencrate 2 -form $\omega \in \Omega^{2}(\dot{x})$ ) whose symplactic geometry raflects the algoloraie gounctry of $X$.
- Rudimentary form: one-to-many correspondence bitween subvareties $Z \subset X$ ad Lagrargians $L \subset X$ cquipped w/ a local system $E$ (i.e. $\operatorname{dim} L=\frac{1}{2} \operatorname{dim} \ddot{X}, \omega L_{L} \equiv 0, E: \pi,(L) \rightarrow G L_{n} \mathbb{C}$ ).
Ex $X=\left(\mathbb{C}^{x}\right)^{n}$ is sclf-mirror (symplectic via $\left.\left(\mathbb{C}^{x}\right)^{n} \simeq T^{*} T^{n}\right)$.


Mirrors, amoebae, and coamoebae

- To $z \subset\left(\mathbb{C}^{x}\right)^{n}$ one assocrates the followning:
- amocba $A(Z) \subset \mathbb{R}^{n}$, its inaje under $\left(z_{i}\right) \rightarrow\left(\log \left|z_{i}\right|\right)$
- coamoaba $C(z) \subset T^{n}$, its imge mdar $\left(z_{i}\right) \longmapsto\left(\right.$ Arg $\left.z_{i}\right)$
- Theme: intcresting combinatorial approxmations of $A(Z)$ and $C(Z)$.

Mirrors, amoebae, and coamocbae

- To $Z \subset\left(\mathbb{C}^{x}\right)^{n}$ one associates the following.
- amoeba $A(z) \subset \mathbb{R}^{n}$, its image under $\left(z_{i}\right) \rightarrow\left(\log \left|z_{i}\right|\right)$
- coamoaba $C(z) \subset T^{n}$, its inge under $\left(z_{i}\right) \longmapsto\left(\operatorname{Arg} z_{i}\right)$
- Theme: interesting combinatorial approximations of $A(Z)$ and $C(Z)$.
- For $z$ a hyparsurface, a suitable scaling limit takes $A(z)$ to a tropical varity $A_{\text {trop, }}$ an $(n-1)$-dim'l polyhedral
 encoding coarse featwes of $A(z)$ (Mikharkin 'O2)
- We may choose a mirror $(L, E)$ of $Z$ so that $A(L)$ is $\varepsilon$-close to Atrop for any $\varepsilon>0$ (Hicks '19).

Figure 7. $\mathcal{C}_{t}: 1-z-w+t^{-2} z^{2}-t^{-1} z w+t^{-2} w^{2}=0$

$$
\binom{\text { Brugalle-Itenberg- }}{\text { Mikhakkin-shaw }}
$$

Mirrors, amoebae, and coamocbae

- Fang-He-Kannaway-Vafa '05: for $Z \subset\left(\mathbb{C}^{\times}\right)^{2}$ a curve, $C(Z)$ retracts in good cases onto a bipartite graph $\Gamma$ for which $z$ arises as a spectral curve.


Figure 25: The alga for $P(z, w)=1+z+\frac{1+2}{z}+\frac{3-2 \imath}{z^{2}}+w+\frac{-1-4 l}{w}$.

Mirrors, amoebae, and coamocbae

- Feng-He-Kannaway-Vafa '05: for $Z \subset\left(\mathbb{C}^{\times}\right)^{2}$ a curve, $C(Z)$ retracts in good cases onto a bipartite graph $\Gamma$ for which $Z$ arises as a spectral curve.


Figure 25: The alga for $P(z, w)=1+z+\frac{1+2}{z}+\frac{3-2 v}{z^{2}}+w+\frac{-1-4 v}{w}$.


$$
f(x, y, z)=1+x+y+z+\frac{1}{x y z}
$$

- Futaki-Ueda '10. Frarco-Lee-Scong-Vafa '16: for $Z=V(f) c\left(\mathbb{C}^{x}\right)^{n}$ a hyperswface, $C(Z)$ retracts in good cases onto an $(n-1)$-dim'l polyhedral complex whose faces are the varshing thimbles of $f$.


Mirror coamoebae for $n=2$

- Homological MS: a Lagrangian LcẌ w/ local system defines a concent sheaf $F$ on $X\left(Z \subset X \leftrightarrow O_{\nabla} \in \operatorname{Coh}(x)\right)$.
- For $Z=V(f) c\left(\mathbb{C}^{x}\right)^{2}$ a curve, lat $\Gamma c T^{2}$ be any minimal bipartite graph $w$ / the same Newton polygon ar $f$ (i.a. primitive edges of $N_{f} \leftrightarrow$ classes of zigzags in $H_{1}\left(T^{2}\right) \simeq \mathbb{Z}^{2}$ ).

Mirror coamocbae for $n=2$

- Homological MS: a Lagrangian $L \subset \dot{x} w / 16 c a l$ system defines a conciant sheaf $\mathcal{F}$ on $X\left(Z \subset X \leftrightarrow O_{\nabla} \in \operatorname{Coh}(X)\right)$.
- For $Z=V(f) c\left(\mathbb{C}^{x}\right)^{2}$ a curve, lat $\Gamma c T^{2}$ be any minimal bipartite graph w/ the same Newton polygon ar $f$ (i.a. primitive edges of $N_{f} \leftrightarrow$ classes of $z_{y}$, -zags in $H_{1}\left(T^{2}\right) \simeq \mathbb{Z}^{2}$ ).
- Treumanu-W.-Zuslow '18: for generic $Z$, there is a mirror $(L, E)$ to $Z$ s.t. $C(L)$ is $\varepsilon$-close to $\Gamma$.
Topologically $L$ is the Gonchesou-Kanyou conjugate surface of $\Gamma$, hence edge-weightings of $\Gamma$ define local systems on $L$. The mirror sheaf of $L$ w) such a local system is the spectral transform of the Kostaleyu matrix $K(z, \omega)$ of the edge-weighting (i.c. $\operatorname{cok}\left(\mathbb{C}\left[z^{ \pm 1}, \omega^{ \pm 1}\right]^{\oplus \Gamma_{0}} \xrightarrow{k(z, \omega)} \mathbb{C}\left[z^{ \pm 1}, \omega^{ \pm 1}\right]^{\oplus \Gamma_{\omega}}\right)$.

Summary: combinatorics of anocbae and coamocbae coamocbae
amoebae

$$
n=2
$$

$n>2$


Summary: combinatorics of anocbae and coamocbae coamocbae
amoebae

$$
n=2
$$

$n>2$


Mirror coamocbae for $n>2$

- Let $\Gamma c M$ be a bipartite graph in an n-manifold, and define $\pi(\Lambda) \subset M$ by (1) smoothing an $\varepsilon$-nbhd of $\Gamma_{1}$ (2) pinching to a point in the middle of each edge.


Mirror coamoebae for $n>2$

- Let $\Gamma c M b c a b$ bipartite graph in an n-manifold, and define $\pi(\Lambda) \subset M$ by (1) smoothing an $\varepsilon$-nbhd of $T_{1}$, (2) pinching to a point in the middle of each edge.

- Lat w, Bc be the union of the white and black regions, and take $f \in C^{\infty}(M)$ positive on WUB, zero elsewhere.
- Let $L(\Gamma) c T^{*} M$ be the closure of $\left.d \log f\right|_{w} u-\left.d \log f\right|_{B}$

It is a Lagrangian which retracts onto $\Gamma$ and is asymptotic to a Lagandrion submon fold $N \subset T \infty M$ (fibcrwise boundary of $T^{*} M$ ).

- When $n=2$, $L(\Gamma)$ is the CoL conjugate surface of $T$ (c.f. Shende-Treumann-W.-zaslow), $\pi(\lambda)$ we its zis-zag paths, and $A$ is the associated link.

Mirror coamonbae for $n>2$

- Now assume $n>2$ and fox a convex lattice polytope $P \subset \mathbb{R}^{n}$.


Mirror coamoebae for $n>2$

- Now assume $n>2$ and fox a convex lattice polytope $P \subset \mathbb{R}^{n}$.
- Write $\pi: \mathbb{R}^{n} \rightarrow T^{n} \simeq \mathbb{R}^{n} / \mathbb{Z}^{n}$ and choose a generic $\vec{p} \in \operatorname{Int}(P)$.
- Let $\Gamma_{p} C T^{n}$ be the graph with

$$
\Gamma_{0}=\{\pi(x), \pi(\overrightarrow{0})\}, \quad \Gamma_{1}=\{\pi([\vec{p}, \vec{q}])\}_{\vec{q} \in p \cap \mathbb{Z}^{n}}
$$



- Note: construction fails due to sclf-intalsections if $n=2$.

Mirror coamocbae for $n>2$
Theorem (Kuo-w.) Let $f \in \mathbb{C}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]$ be generic w/ Newton polytope $P$, and $k+\Gamma \subset T^{n}$ and $L(\Gamma) \subset T^{*} T^{n}$ be the bipartite graph and Lagrangian given by the above constructions. Then ( $L(\Gamma), E_{f}$ ) is morror to $z=V(f)$, where $E_{f}$ is the local system induced by waighting each edge of $\Gamma$ by the coefficient of the corraspondury monomial in $f$.

- In particular, the mirror of $z$ can be chosen to have coqmocba $\varepsilon$-close to $\Gamma$ for any $\varepsilon>0$.

Summary: combinatorics of anocbae and coamocbae coamocbae amoebal

$$
n=2
$$

$n>2$


