LIS Lozenge tilings, ag 0000 000000 Skew SYTs 00000

<ロ> <四> <四> <四> <三</p>

1

Other interesting polynomials 0000

Symmetric functions II: applications, extensions and open problems

Greta Panova

University of Southern California

IPAM Program tutorials, March 2024

Greta Panova

Schur generating func 000000 Skew SYT: 00000 Other interesting polynomials

Longest Increasing Subsequence

Given a permutation $w: [1, \ldots, n] \rightarrow [1, \ldots, n]$,

 $lis(w) := \max\{k : \exists i_1 < i_2 < \ldots < i_k : w(i_1) < w(i_2) < \cdots < w(i_k)\}.$

Schur generating func 000000 Skew SYTs 00000 Other interesting polynomials

Longest Increasing Subsequence

Given a permutation $w: [1, \ldots, n] \rightarrow [1, \ldots, n]$,

 $lis(w) := \max\{k : \exists i_1 < i_2 < \ldots < i_k : w(i_1) < w(i_2) < \cdots < w(i_k)\}.$

Hammersley: There exist $0 < c_1 \le c_2 \le 2$, such that

 $c_1\sqrt{n} \leq \mathbb{E}[lis(w)] \leq c_2\sqrt{n}$

Schur generating func 000000 Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Longest Increasing Subsequence

Given a permutation $w: [1, \ldots, n] \rightarrow [1, \ldots, n]$,

$$lis(w) := \max\{k : \exists i_1 < i_2 < \ldots < i_k : w(i_1) < w(i_2) < \cdots < w(i_k)\}.$$

Hammersley: There exist $0 < c_1 \leq c_2 \leq 2$, such that

$$c_1\sqrt{n} \leq \mathbb{E}[lis(w)] \leq c_2\sqrt{n}$$

RSK: $w \rightarrow (P, Q)$:

5714623 →	1	2	3		1	2	5
	4	6		'	3	4	
	5	7			6	7	

LIS

Longest Increasing Subsequence

Given a permutation $w : [1, \ldots, n] \rightarrow [1, \ldots, n]$,

$$lis(w) := \max\{k : \exists i_1 < i_2 < \ldots < i_k : w(i_1) < w(i_2) < \cdots < w(i_k)\}.$$

Hammersley: There exist $0 < c_1 \le c_2 \le 2$, such that

 $c_1\sqrt{n} < \mathbb{E}[lis(w)] < c_2\sqrt{n}$

RSK: $w \rightarrow (P, Q)$:

$5714623 \rightarrow$	1	2	3	1	2	5
0111020 /	4	6	,	3	4	
	5	7		6	7	
lis(w) $\sim \lambda_1,$			$\mathbb{P}(\lambda)$	=	$\frac{(f^{\lambda})}{n!}$) ²

(Plancherel measure)

LIS Lozenge tilings, ag

Schur generating fund

Filings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Asymptotics of SYT

Standard Young Tableaux of shape λ :

Tilings with multivariate we

Skew SYTs 00000

イロト イヨト イヨト イヨト

Other interesting polynomials 0000

Asymptotics of SYT

Standard Young Tableaux of shape λ :

Hook-length formula [Frame-Robinson-Thrall]:

$$\#\{\mathsf{SYTs of shape } \lambda\} = f^{\lambda} = \frac{|\lambda|!}{\prod_{u \in \lambda} \lambda_i - i + \lambda'_j - j + 1} = \frac{5!}{4 * 3 * 2 * 1 * 1}$$

LIS 0000

э

Schur generating fun 000000 Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Asymptotics of SYT

Standard Young Tableaux of shape λ :

Hook-length formula [Frame-Robinson-Thrall]:

$$\#\{\mathsf{SYTs of shape } \lambda\} = f^{\lambda} = \frac{|\lambda|!}{\prod_{u \in \lambda} \lambda_i - i + \lambda'_j - j + 1} = \frac{5!}{4 * 3 * 2 * 1 * 1}$$

$$\sum_{\lambda \vdash n} (f^{\lambda})^2 = n!$$

Theorem[Vershik-Kerov, Logan-Shepp 1977]

Under the Plancherel measure $Pr[\lambda] = \frac{(f^{\lambda})^2}{n!}$, the typical partition $\lambda \vdash n$ looks like the picture to the right and for them $f^{\lambda} = \sqrt{n!}e^{-O(\sqrt{n})}$.

Moreover, there exist c_1, c_0 , such that

$$e^{-c_1\sqrt{n}}\sqrt{n!} \leq \max_{\lambda \vdash n} f^{\lambda} \leq e^{-c_0\sqrt{n}}\sqrt{n!}.$$

LIS 0000

Filings with multivariate weights

Skew SYT: 00000 Other interesting polynomials

Limit shapes under Plancherel measure

Theorem[Vershik–Kerov–Logan–Shepp] If $\lambda^{(n)}$ is chosen wrt to the Plancherel measure $\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$, then its limit shape , in the sense of

$$\left|\frac{1}{\sqrt{n}}\lambda_i^{(n)} - \varphi(i\sqrt{n})\right| < C n^{-1/6} \quad \text{for some} \quad C > 0,$$

is given by φ : $[0,2] \rightarrow [0,2]$ – the 135° rotation of (x,y(x)):

$$y(x) := rac{2}{\pi} \left(x \arcsin rac{x}{\sqrt{2}} + \sqrt{2-x^2}
ight), \quad -\sqrt{2} \le x \le \sqrt{2}$$

э

LIS

Limit shapes under Plancherel measure

Theorem[Vershik–Kerov–Logan–Shepp] If $\lambda^{(n)}$ is chosen wrt to the Plancherel measure $\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$, then its limit shape , in the sense of

$$\left| \frac{1}{\sqrt{n}} \lambda_i^{(n)} - \varphi(i\sqrt{n}) \right| < C n^{-1/6} \quad \text{for some} \quad C > 0,$$

is given by $\varphi : [0, 2] \rightarrow [0, 2]$ – the 135° rotation of (x, y(x)):

$$y(x) := rac{2}{\pi} \left(x \arcsin rac{x}{\sqrt{2}} + \sqrt{2-x^2}
ight), \quad -\sqrt{2} \le x \le \sqrt{2}$$

イロト 不得 トイヨト イヨト 二日

Corollary[lower bound from VKLS, upper bound from Hammersley]:

 $\mathbb{E}[\lambda_1] = \mathbb{E}[lis(w)] \sim 2\sqrt{n}.$

Greta Panova

ilings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Limit shapes under Plancherel measure

Theorem[Vershik–Kerov–Logan–Shepp] If $\lambda^{(n)}$ is chosen wrt to the Plancherel measure $\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$, then its limit shape , in the sense of

$$\left| \frac{1}{\sqrt{n}} \lambda_i^{(n)} - \varphi(i\sqrt{n}) \right| < C n^{-1/6} \quad \text{for some} \quad C > 0,$$

is given by φ : $[0,2] \rightarrow [0,2]$ – the 135° rotation of (x, y(x)):

$$y(x) := rac{2}{\pi} \left(x \arcsin rac{x}{\sqrt{2}} + \sqrt{2-x^2}
ight), \quad -\sqrt{2} \le x \le \sqrt{2}$$

Corollary[lower bound from VKLS, upper bound from Hammersley]:

$$\mathbb{E}[\lambda_1] = \mathbb{E}[lis(w)] \sim 2\sqrt{n}.$$

Theorem [Vershik-Kerov, McKay]: The maximal dimension f^{λ} for $\lambda \vdash n$, denoted D(n) satisfies

$$\sqrt{n!} e^{-c_1 \sqrt{n}(1+o(1))} \leq D(n) \leq \sqrt{n!} e^{-c_2 \sqrt{n}(1+o(1))}$$

for some $c_1 > c_2 > 0$. Moreover $\lambda^{(n)}$ satisfies $f^{\lambda^{(n)}} \ge \sqrt{n!}e^{-a\sqrt{n}}$ for some *a* iff it has the above shape.

LIS

Limit shapes under Plancherel measure

Theorem[Vershik–Kerov–Logan–Shepp] If $\lambda^{(n)}$ is chosen wrt to the Plancherel measure $\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{pl}$, then its limit shape , in the sense of

$$\left|\frac{1}{\sqrt{n}}\lambda_i^{(n)} - \varphi(i\sqrt{n})\right| < C n^{-1/6} \quad \text{for some} \quad C > 0,$$

is given by $\varphi : [0,2] \rightarrow [0,2]$ – the 135° rotation of (x, y(x)):

$$y(x) := rac{2}{\pi} \left(x \arcsin rac{x}{\sqrt{2}} + \sqrt{2-x^2}
ight), \quad -\sqrt{2} \le x \le \sqrt{2}$$

Corollary[lower bound from VKLS, upper bound from Hammersley]:

$$\mathbb{E}[\lambda_1] = \mathbb{E}[lis(w)] \sim 2\sqrt{n}.$$

Theorem [Vershik-Kerov, McKay]: The maximal dimension f^{λ} for $\lambda \vdash n$, denoted D(n) satisfies

$$\sqrt{n!} e^{-c_1 \sqrt{n}(1+o(1))} \leq D(n) \leq \sqrt{n!} e^{-c_2 \sqrt{n}(1+o(1))}$$

for some $c_1 > c_2 > 0$. Moreover $\lambda^{(n)}$ satisfies $f^{\lambda^{(n)}} \ge \sqrt{n!}e^{-a\sqrt{n}}$ for some *a* iff it has the above shape.

Open problem: Show that asymptotically $c_1 = c_2$, i.e. $D(n) = \sqrt{n!} e^{-c\sqrt{n}+o(\sqrt{n})}$ Greta Panova

LIS

LIS and the Tracy-Widom distribution

Theorem (Baik-Deift-Johansson)

Let w^n denote a uniformly random permutation of [1, ..., n]. Then for every $x \in \mathbb{R}$ we have that

$$\mathbb{P}\left(rac{lis(w^n)-2\sqrt{n}}{n^{1/6}}\leq x
ight)
ightarrow F_2(x) \qquad ext{as }n
ightarrow\infty.$$

Here F_2 is the Fredholm determinant, aka the Tracy-Widom distribution of the maximal eigenvalue of a GUE matrix.

$$F_2 = 1\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_t^{\infty} \cdots \int_t^{\infty} \det_{i,j=1}^n [A(x_i, x_j)] dx_1 \cdots dx_n,$$

where

$$Ai(x) = \frac{1}{\pi} \int_0^\infty \cos(1/3t^3 + xt) dt$$

is the Airy function and

$$A(x, y) = \begin{cases} \frac{Ai(x)Ai'(y) - Ai'(x)Ai(y)}{x - y}, & x \neq y, \\ Ai'(x)^2 - xAi(x)^2 & x = y. \end{cases}$$

イロン イボン イヨン イヨン 三日

Greta Panova

5

LIS Lozenge tilings, again

Schur generating functions

Tilings with multivariate weights 0000

Skew SYT

Other interesting polynomials

Behavior near the flat boundary:

Greta Panova

・ロト・日本・モート ヨー うへぐ

6

Tilings with multivariate weights 0000

Skew SYT

Other interesting polynomials

Behavior near the flat boundary:

Horizontal lozenges near a flat boundary:

Horizontal lozenges near a flat boundary:

Question: Joint distribution of $\{x_j^i\}_{i=1}^k$ as $N \to \infty$ (rescaled)?

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Behavior near the flat boundary:

Horizontal lozenges near a flat boundary:

Question: Joint distribution of $\{x_j^i\}_{i=1}^k$ as $N \to \infty$ (rescaled)? **Conjecture** [Okounkov–Reshetikhin, 2006]:

Fixed boundary: The joint distribution converges to a *GUE*-corners (aka *GUE*-minors) process: eigenvalues of GUE matrices.

Behavior near the flat boundary:

Horizontal lozenges near a flat boundary:

Question: Joint distribution of $\{x_i^i\}_{i=1}^k$ as $N \to \infty$ (rescaled)?

Conjecture [Okounkov-Reshetikhin, 2006]:

Fixed boundary: The joint distribution converges to a GUE-corners (aka GUE-minors) process: eigenvalues of GUE matrices.

Proofs: hexagonal domain [Johansson-Nordenstam, 2006], more general domains [Gorin-P,2012], [Novak, 2014], unbounded [Mkrtchyan, 2013], symmetric tilings [P, 2014, 2015], q^{vol} [Mkrtchyan-Petrov, 2016], 6V model [Dimitrov] etc

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials 0000

Behavior near the flat boundary: GUE

$$\begin{aligned} & \mathsf{GUE: matrices} \ A = [A_{ij}]_{i,j} \text{:} \ A = \overline{A^T} \\ & \mathsf{Re}A_{ij}, \mathsf{Im}A_{ij} - \mathsf{i.i.d.} \sim \mathcal{N}(0, 1/2), \ i \neq j \\ & A_{ii} - \mathsf{i.i.d.} \sim \mathcal{N}(0, 1) \end{aligned}$$

$$\begin{pmatrix} \underline{A_{11}} & \underline{A_{12}} & \underline{A_{13}} & \underline{A_{14}} \\ \underline{A_{21}} & \underline{A_{22}} & \underline{A_{23}} & \underline{A_{24}} \\ \underline{A_{31}} & \underline{A_{32}} & \underline{A_{33}} & \underline{A_{34}} \\ \hline \underline{A_{41}} & \underline{A_{42}} & \underline{A_{43}} & \underline{A_{44}} \end{pmatrix} \quad (x_1^k \le x_2^k \le \dots \le x_k^k) - \text{eigenvalues of } [A_{i,j}]_{i,j=1}^k \\ \text{Interlacing condition:} \quad x_{i-1}^j \le x_{i-1}^{j-1} \le x_i^j \\ \\ x_1^4 & x_1^3 & x_2^4 & x_3^4 & x_4^4 \\ & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\$$

The joint distribution of $\{x_i^j\}_{1 \le i \le j \le k}$ is the *GUE–corners (also, GUE–minors) process*, =: GUE_k.

 Lozenge tilings, again OOOOOO Schur generating funct

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Unrestricted (uniform) vs symmetric

Tilings of the hexagon $a \times b \times c \times a \times b \times c$, s.t.

Limit behavior: fluctuations near the boundary, limit surface, CLT?

S Lozenge tilings, again

Schur generating funct 000000 Tilings with multivariate weights 0000

Skew SYT 00000 Other interesting polynomials

Tilings setup

Domain $\Omega_{\lambda(N)}$: positions of the *N* horizontal lozenges on right boundary are:

 $\lambda(N)_1 + N - 1 > \lambda(N)_2 + N - 2 > \cdots > \lambda(N)_N$

э

IS Lozenge tilings, again

Schur generating funct 000000 Filings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Behavior near the flat left boundary

Theorem

Let $Y_n^k = (y_1^k, \ldots, y_k^k)$ – horizontal lozenges on kth line of a uniformly random tiling $T \in \mathcal{T}_n$. As $n \to \infty$ the collection

$$\left\{\frac{Y_n^j - \mu_n}{\sqrt{n\sigma_n}}\right\}_{j=1}^k \to \mathbb{GUE}_k$$

weakly as RVs, where

- *T_n* all tilings of a hexagon [Johansson-Nordenstam].
- $\mathcal{T}_n = \Omega_{\lambda(n)} \mu_n = E(f), \ \sigma_n = S(f),$ " $f(t) = \lim_{n \to \infty} \frac{\lambda(n)_{nt}}{n}$ " [Gorin-P, 2013].
- T_n vertically symmetric lozenge tilings of a $n \times m \times n$.. hexagon, $a = \lim_{n \to \infty} m/n$, $\mu_n = m/2$, $\sigma_n = \frac{a^2+2a}{8}$ [P, 2014].
- T_n centrally-symmetric tilings of a a × b × c... hexagon with a = 2qn, b = 2pn, c = 2(1 – q)n: $\mu_n = 2pqn$ and $\sigma_n = 2pq(1 - q)(1 + p)$ [P, 2015+].

Limit shape (surface)

Theorem (P)

Let $H_n(u, v)$ – height function of a uniformly random tiling from a set T_n , i.e.

$$H_n(u,v)=\frac{1}{n}y_{\lfloor nv\rfloor}^{\lfloor nu\rfloor}-v,$$

where y_i^k is the vertical height of the *i*th horizontal lozenge on the *k*th vertical line (left to right). For all $1 \ge u \ge v \ge 0$, as $n \to \infty$ we have that $H_n(u, v)$ converges uniformly in probability to a deterministic function L(u, v) ("the limit shape"), which can be computed explicitly... when \mathcal{T}_n is

- T_n polygonal domain [Cohn, Kenyon, Larsen, Propp, Okounkov]
- $\mathcal{T}_n = \Omega_{\lambda(n)}$ for "nice" family $\lambda(n)$ [Bufetov-Gorin].
- T_n symmetric tilings [P, 2014].
- T_n centrally symmetric tilings [P, 2015].

LIS Lozenge tilings, aga 0000 000000 Schur generating functions

Filings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Tilings probability: combinatorics and SSYTs

 \iff

Lozenge tilings with right boundary $\lambda(N)$ \iff

Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \ldots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = \eta_1, \dots, \eta_k$

SSYTs T whose entries 1..k have shape η

Filings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Tilings probability: combinatorics and SSYTs

 \iff

Lozenge tilings with right boundary $\lambda(N)$ \iff

Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \ldots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = \eta_1, \dots, \eta_k$

SSYTs *T* whose entries 1..*k* have shape η Number of SSYTs of shape ν , entries 1... $\ell = s_{\nu}(\underbrace{1, \dots, 1}_{\ell})$.

$$\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{\frac{s_{\eta}(1)s_{\lambda/\eta}(1)}{s_{\lambda}(1^{N})}}{s_{\lambda}(1^{N})},$$

Filings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Tilings probability: combinatorics and SSYTs

 \Leftrightarrow

Lozenge tilings with right boundary $\lambda(N)$ \iff

Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \ldots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = \eta_1, \dots, \eta_k$

SSYTs T whose entries 1..k have shape η Number of SSYTs of shape ν , entries 1... $\ell = s_{\nu}(\underbrace{1, \dots, 1})$.

 $\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{s_{\eta}(1^{k})s_{\lambda/\eta}(1^{N-k})}{s_{\lambda}(1^{N})},$

Proposition[Gorin-P] For any variables y_1, \ldots, y_k , the **Schur Generating Function** of x^k is $\mathbb{E}\left(\frac{s_{x^k}(y_1, \ldots, y_k)}{s_{x^k}(1, \ldots, 1)}\right) = \frac{s_{\lambda}(y_1, \ldots, y_k, 1, \ldots, 1)}{s_{\lambda}(1, \ldots, 1)} =:$ $S_{\lambda}(y_1, \ldots, y_k).$

¹from [Gorin-P], [P, 2014, 2015]

¹from [Gorin-P], [P, 2014, 2015]

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

13

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials 0000

Tilings probability III: MGF asymptotics

Proposition (Gorin-P) $\mathbb{E}\begin{bmatrix} s_{\nu-\delta_k}(y_1,\ldots,y_k) \\ \frac{s_{\nu-\delta_k}(y_1,\ldots,y_k)}{s_{\nu-\delta_k}(\underbrace{1,\ldots,1}_k)} & \nu \sim \mathbb{GUE}_k \end{bmatrix} = \exp\left(\frac{1}{2}(y_1^2+\cdots+y_k^2)\right),$

Tilings with multivariate weights

Skew SYTs 00000 Other interesting polynomials 0000

Tilings probability III: MGF asymptotics

Proposition (Gorin-P) $\mathbb{E}\left[\frac{s_{\nu-\delta_k}(y_1,\ldots,y_k)}{s_{\nu-\delta_k}(\underbrace{1,\ldots,1}_k)} \quad \nu \sim \mathbb{GUE}_k\right] = \exp\left(\frac{1}{2}(y_1^2 + \cdots + y_k^2)\right),$

Compare:

$$S_{\lambda}(y_1,\ldots,y_k) = \mathbb{E}_{tilling}\left(rac{s_{x^k}(y_1,\ldots,y_k)}{s_{x^k}(\underbrace{1,\ldots,1}_k)}
ight)$$

Proposition (Gorin-P)

For any k real numbers h_1, \ldots, h_k and $\lambda(N)/N \to f$ we have:

$$\lim_{N \to \infty} S_{\lambda(N)} \left(e^{\frac{h_1}{\sqrt{NS(f)}}}, \dots, e^{\frac{h_k}{\sqrt{NS(f)}}} \right) e^{\left(-\frac{E(f)}{\sqrt{NS(f)}} \sum_{i=1}^k h_i \right)} = \exp\left(\frac{1}{2} \sum_{i=1}^k h_i^2 \right).$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

Greta Panova

14

Other interesting polynomials

Tilings probability III: MGF asymptotics

Proposition (Gorin-P) $\mathbb{E}\left[\frac{s_{\nu-\delta_k}(y_1,\ldots,y_k)}{s_{\nu-\delta_k}(\underbrace{1,\ldots,1}_k)} \quad \nu \sim \mathbb{GUE}_k\right] = \exp\left(\frac{1}{2}(y_1^2 + \cdots + y_k^2)\right),$

Compare:

$$S_{\lambda}(y_1,\ldots,y_k) = \mathbb{E}_{tiling}\left(rac{s_{x^k}(y_1,\ldots,y_k)}{s_{x^k}(\underbrace{1,\ldots,1}_k)}
ight)$$

Proposition (Gorin-P)

For any k real numbers h_1, \ldots, h_k and $\lambda(N)/N \to f$ we have:

$$\lim_{N\to\infty} S_{\lambda(N)}\left(e^{\frac{h_1}{\sqrt{NS(f)}}},\ldots,e^{\frac{h_k}{\sqrt{NS(f)}}}\right)e^{\left(-\frac{E(f)}{\sqrt{NS(f)}}\sum_{i=1}^k h_i\right)} = \exp\left(\frac{1}{2}\sum_{i=1}^k h_i^2\right).$$

Theorem. Let $\Upsilon_{\lambda(N)}^{k} = \{x^{k}, x^{k-1}, \ldots\}$ -collection of positions of the horizontal lozenges on lines $k, k - 1, \ldots, 1$ of tiling from $\Omega_{\lambda(N)}$, then $\frac{\Upsilon_{\lambda(N)}^{k} - NE(f)}{\sqrt{NS(f)}} \rightarrow \mathbb{GUE}_{k} \text{ (GUE-corners process of rank } k\text{)}, \text{ and } k \in \mathbb{R}$

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials 0000

٦

The limit surface

Counting measure:

$$m[\mu] := \frac{1}{L} \sum_{i=1}^{L} \delta\left(\frac{\mu_i + L - i}{L}\right),$$

Random measure on μ s: $\rho^n(\mu)$ (e.g. = $\operatorname{Prob}\{x^k(T) = \mu\}$ for $T \in \mathcal{T}_n$), $m[\rho]$ – pushforward.

$$S_{\rho}(u_1,\ldots,u_k) := \sum_{\mu} \rho(\mu) \frac{s_{\mu}(u_1,\ldots,u_k)}{s_{\mu}(1^k)} = \mathbb{E}\left[\frac{s_{x^k(T)}(y_1,\ldots,y_k)}{s_{x^k(T)}(\underbrace{1,\ldots,1}_k)} \middle| T \sim Unif(T_n) \right]$$

・ロ・・日・・日・・日・ シック・

Tilings with multivariate weights
0000

Skew SYT: 00000 Other interesting polynomials

٦

The limit surface

Counting measure:

$$m[\mu] := \frac{1}{L} \sum_{i=1}^{L} \delta\left(\frac{\mu_i + L - i}{L}\right),$$

Random measure on μ s: $\rho^n(\mu)$ (e.g. = Prob{ $x^k(T) = \mu$ } for $T \in \mathcal{T}_n$), $m[\rho]$ – pushforward.

$$S_{\rho}(u_1,\ldots,u_k) := \sum_{\mu} \rho(\mu) \frac{s_{\mu}(u_1,\ldots,u_k)}{s_{\mu}(1^k)} = \mathbb{E}\left[\frac{s_{x^k(T)}(y_1,\ldots,y_k)}{s_{x^k(T)}(\underbrace{1,\ldots,1}_k)} \middle| T \sim Unif(T_n)\right]$$

Theorem[Bufetov-Gorin,2014] Suppose that ρ^N is s.t. for every r

$$\lim_{N\to\infty}\frac{1}{N}\ln\left(S_{\rho^N}(u_1,\ldots,u_r,1^{N-r})\right)=Q(u_1)+\cdots+Q(u_r),$$

uniformly in a \mathbb{C} nbhd of (1'), Q – analytic. Then the random measures $m[\rho^N]$ converge, as $N \to \infty$, in probability to a deterministic measure M on \mathbb{R} with moments

$$\int_{\mathbb{R}} t^{p} M(dt) = \sum_{\ell=0}^{p} {p \choose \ell} \frac{1}{(\ell+1)!} \frac{\partial^{\ell}}{\partial u^{\ell}} u^{p} Q'(u)^{p-\ell} \bigg|_{u=1}$$

Greta Panova

Tilings with multivariate weights
0000

Skew SYT: 00000 Other interesting polynomials

٦

The limit surface

Counting measure:

$$m[\mu] := \frac{1}{L} \sum_{i=1}^{L} \delta\left(\frac{\mu_i + L - i}{L}\right),$$

Random measure on μ s: $\rho^n(\mu)$ (e.g. = $\operatorname{Prob}\{x^k(T) = \mu\}$ for $T \in \mathcal{T}_n$), $m[\rho]$ – pushforward.

$$S_{\rho}(u_1,\ldots,u_k) := \sum_{\mu} \rho(\mu) \frac{s_{\mu}(u_1,\ldots,u_k)}{s_{\mu}(1^k)} = \mathbb{E}\left[\frac{s_{x^k(T)}(y_1,\ldots,y_k)}{s_{x^k(T)}(\underbrace{1,\ldots,1}_k)} \middle| T \sim Unif(T_n)\right]$$

Theorem[Bufetov-Gorin,2014] Suppose that ρ^N is s.t. for every r

$$\lim_{N\to\infty}\frac{1}{N}\ln\left(S_{\rho^N}(u_1,\ldots,u_r,1^{N-r})\right)=Q(u_1)+\cdots+Q(u_r),$$

uniformly in a \mathbb{C} nbhd of (1'), Q – analytic. Then the random measures $m[\rho^N]$ converge, as $N \to \infty$, in probability to a deterministic measure M on \mathbb{R} with moments

$$\int_{\mathbb{R}} t^{p} M(dt) = \sum_{\ell=0}^{p} {p \choose \ell} \frac{1}{(\ell+1)!} \frac{\partial^{\ell}}{\partial u^{\ell}} u^{p} Q'(u)^{p-\ell} \bigg|_{u=1}$$

Our cases: MGF = normalized Schur $S_{\lambda(n)}$, *SO* characters, etc. Asymptotics using [Gorin-P, 2013] for fixed *r*:

$$\lim_{n\to\infty}\frac{1}{n}\ln S_{\lambda(n)}(u_1,\ldots,u_r)=\sum_{i=1}^r\lim_{n\to\infty}\frac{1}{n}\ln S_{\lambda(n)}(u_i)=\sum_{i=1}^r\Phi(u_i)$$

Greta Panova

Limit surface for symmetric tilings

Theorem (P, 2014)

Let $n, m \in \mathbb{Z}$, such that $m/n \to a$ as $n \to \infty$, where $a \in (0, +\infty)$. Let $H_n(u, v)$ – height function of a symmetric tiling of $n \times m \times n...$ hexagon, i.e.

$$H_n(u, v) = \frac{1}{n} y_{\lfloor nv \rfloor}^{\lfloor nu \rfloor} - v.$$

For all $1 \ge u \ge v \ge 0$, as $n \to \infty$: $H_{p}(u, v)$ converges unif. in prob. to a deterministic function L(u, v) ("the limit surface").

For any fixed $u \in (0, 1)$, L(u, v) is the distribution function of the measure **m**, given by its moments:

$$\int_{\mathbb{R}} t' \mathbf{m}(dt) = \sum_{\ell=0}^{r} {r \choose \ell} \frac{1}{(\ell+1)!} u^{-r+\ell} \frac{\partial^{\ell}}{\partial z^{\ell}} z^{p} \Phi_{a}'(z)^{p-\ell} \bigg|_{z=1},$$

where $\Phi_{a}(e^{y}) = y \frac{a}{2} + 2\phi(y; a) - 2$ and...

$$\begin{split} h(y) &= \frac{1}{4} \left(\left(e^{Y} + 1 \right) + \sqrt{\left(e^{Y} + 1 \right)^{2} + 4\left(s^{2} + s \right)\left(e^{Y} - 1 \right)^{2}} \right) \\ \phi(y;s) &= \left(\frac{s}{2} + 1 \right) \ln \left(h(y) - \left(\frac{s}{2} + 1 \right)\left(e^{Y} - 1 \right) \right) - \left(\frac{s}{2} + \frac{1}{2} \right) \ln \left(h(y) - \left(\frac{s}{2} + \frac{1}{2} \right)\left(e^{Y} - 1 \right) \right) \\ &+ \frac{s}{2} \ln \left(h(y) + \frac{s}{2} \left(e^{Y} - 1 \right) \right) - \left(\frac{s}{2} - \frac{1}{2} \right) \ln \left(h(y) + \left(\frac{s}{2} - \frac{1}{2} \right)\left(e^{Y} - 1 \right) \right) \end{split}$$

Theorem (P. 2015)

The scaled height function $H_n(u, v)$ of a centrally symmetric tiling of an $a \times b \times c...$ hexagon converges uniformly in probability to a deterministic function L(u, v) – the limit surface, as $n \to \infty$, where $n = \frac{a+c}{2}$ and a/n, b/n - approx constant. The limit surface coincides with the limit surface for the uniformly random tilings of the hexagon

(without symmetry constraints). イロト イボト イヨト イヨト

э
LIS	Lozenge tilings,	again
0000	000000	

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials 0000

Asymptotics of Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := \frac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_{N})}$$

(similarly, othercharacters

Theorem [Gorin-P] For any partition λ and any $x \in \mathbb{C} \setminus \{0,1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi \mathbf{i}} \oint_C \frac{x^2}{\prod_{i=1}^N (z - (\lambda_i + N - i))} dz,$$

Tilings with multivariate weights 0000 Skew SYTs 00000 Other interesting polynomials

Asymptotics of Schur functions

.. .

$$S_{\lambda(N)}(x_1,\ldots,x_k) := \frac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_{N})}$$

(similarly, othercharacters

Theorem [Gorin-P] For any partition λ and any $x \in \mathbb{C} \setminus \{0, 1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi i} \oint_C \frac{x^2}{\prod_{i=1}^N (z - (\lambda_i + N - i))} dz$$

Theorem[Gorin-P] If $\frac{\lambda(N)}{N} \to f\left(\frac{i}{N}\right)$ [under certain convergence conditions], for all fixed $y \neq 0$:

$$\lim_{N\to\infty}\frac{1}{N}\ln S_{\lambda(N)}(e^{y};N,1)=yw_{0}-\mathcal{F}(w_{0})-1-\ln(e^{y}-1),$$

where $\mathcal{F}(w; f) = \int_0^1 \ln(w - f(t) - 1 + t) dt$, $w_0 - \text{root of } \frac{\partial}{\partial w} \mathcal{F}(w; f) = y$. If $\frac{\lambda(N)}{N} \to f\left(\frac{i}{N}\right)$ ["other" conv. cond.], for any fixed $h \in \mathbb{R}$:

$$S_{\lambda(N)}(e^{h/\sqrt{N}}; N, 1) = \exp\left(\sqrt{N}E(f)h + \frac{1}{2}S(f)h^2 + o(1)\right)$$

where
$$E(f) = \int_0^1 f(t)dt$$
, $S(f) = \int_0^1 (f(t) - t + 1/2)^2 dt - 1/6 - E(f)^2$.

Tilings with multivariate weights
0000

Skew SYTs 00000 Other interesting polynomials

Asymptotics of Schur functions

• •

$$\mathcal{S}_{\lambda(N)}(x_1,\ldots,x_k):=rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overline{1,\ldots,1})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_N)}$$

(similarly, othercharacters

Multivariate: [Gorin-P] Let $D_{i,1}=x_irac{\partial}{\partial x_i}$, $\Delta-$ Vandermonde det, then

$$S_{\lambda}(x_{1},\ldots,x_{k};N) = \prod_{i=1}^{k} \frac{(N-i)!}{(N-1)!(x_{i}-1)^{N-k}} \times \frac{\det\left[D_{i,1}^{j-1}\right]_{i,j=1}^{k}}{\Delta(x_{1},\ldots,x_{k})} \prod_{j=1}^{k} S_{\lambda}(x_{j};N,1)(x_{j}-1)^{N-1}.$$

Corollary[Gorin-P]

If $\frac{\ln (S_{\lambda(N)}(x; N, 1))}{N} \to \Psi(x)$ unif. on a compact $M \subset \mathbb{C}$. Then for any k

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x_1,\ldots,x_k;N,1)\right)}{N}=\Psi(x_1)+\cdots+\Psi(x_k)$$

uniformly on M^k . More informally, under various regimes of convergence for $\lambda(N)$ we have $S_{\lambda(N)}(x_1, \ldots, x_k) \sim S_{\lambda(N)}(x_1) \cdots S_{\lambda(N)}(x_k)$.

.IS Lozenge tilings, ap 0000 000000 Schur generating functions

Tilings with multivariate weights •000 Skew SYT

Other interesting polynomials

Factorial Schur functions

Factorial Schur functions:

$$s_{\mu}(x_1, \dots, x_k | a_1, \dots, a_n) = \frac{\det[(x_i - a_1)(x_i - a_2) \cdots (x_i - a_{\mu_j + k - j})]_{i,j=1}^k}{\prod_{i < i} (x_i - x_j)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - のへぐ

Tilings with multivariate weights ${\color{black}\bullet}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ} {\color{black}\circ}{\color{black}\circ}\\{\color{black}\circ}{\color{black}\circ} {\color{black}\circ}\\{\colorblack}\circ}{\color{black}\circ} {\color{bl$

Skew SYTs 00000 Other interesting polynomials

Factorial Schur functions

Factorial Schur functions:

$$s_{\mu}(x_1, \dots, x_k | a_1, \dots, a_n) = \frac{\det[(x_i - a_1)(x_i - a_2) \cdots (x_i - a_{\mu_j + k - j})]_{i,j=1}^k}{\prod_{i < j} (x_i - x_j)}$$

Excited diagrams:

 $\mathcal{E}(\lambda/\mu) = \{ D \subset \lambda : \text{ obtained from } \mu \text{ via} \blacksquare \blacksquare \}$

Tilings with multivariate weights •000 Skew SYTs 00000

イロト 不得 トイヨト イヨト

3

18

Other interesting polynomials

Factorial Schur functions

Factorial Schur functions:

$$s_{\mu}(x_1, \dots, x_k | a_1, \dots, a_n) = \frac{\det[(x_i - a_1)(x_i - a_2) \cdots (x_i - a_{\mu_j + k - j})]_{i,j=1}^k}{\prod_{i < j} (x_i - x_j)}$$

Excited diagrams:

Theorem (Ikeda-Naruse, Kreiman+Knutson-Tao, Knutson-Miller-Yong) Let $\mu \subset \lambda \subset d \times (n - d)$. Let $v(n - d + 1 - i) = \lambda_i + (n - d + 1 - i)$ and $v(j) = d + j - \lambda'_j$. Then

$$S_{\mu}^{(d)}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_{1},\ldots,y_{n-1}) = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{\nu(d-i+1)} - y_{\nu(d+j)})$$

Tilings with multivariate weights •000 Skew SYTs

Other interesting polynomials

Factorial Schur functions

Factorial Schur functions:

$$s_{\mu}(x_1, \dots, x_k | a_1, \dots, a_n) = \frac{\det[(x_i - a_1)(x_i - a_2) \cdots (x_i - a_{\mu_j + k - j})]_{i,j=1}^k}{\prod_{i < j} (x_i - x_j)}$$

Excited diagrams:

Theorem (Ikeda-Naruse, Kreiman+Knutson-Tao, Knutson-Miller-Yong) Let $\mu \subset \lambda \subset d \times (n - d)$. Let $v(n - d + 1 - i) = \lambda_i + (n - d + 1 - i)$ and $v(j) = d + j - \lambda'_j$. Then

$$s_{\mu}^{(d)}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_{1},\ldots,y_{n-1}) = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (y_{\nu(d-i+1)} - y_{\nu(d+j)})$$

IS Lozenge tilings, again

Schur generating fund 000000 Tilings with multivariate weights $0 \bullet 00$

Skew SYTs

Other interesting polynomials

Multivariate local weights

s, again Schur generating fi 000000 Tilings with multivariate weights 0000

Skew SYTs 00000 Other interesting polynomials

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Tilings with multivariate weights 0000

Skew SYTs 00000 Other interesting polynomials

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Theorem (Morales-Pak-P)

Consider tilings with base μ and height d, we have that

$$\sum_{T \in \Omega_{\mu,d}} \prod_{(i,j) \in T} (x_i - y_j) = \det[\mathsf{A}_{i,j}(\mu,d)]_{i,j=1}^{d+\ell(\mu)},$$

where

$$A_{i,j}(\mu, d) := \begin{cases} \frac{(x_i - y_1) \cdots (x_i - y_{d+\ell(\mu)-j})}{(x_i - x_{i+1}) \cdots (x_i - x_{d+\ell(\mu)})}, & \text{when} \\ \frac{(x_i - y_1) \cdots (x_i - y_{\mu_j+d})}{(x_i - x_{i+1}) \cdots (x_i - x_{d+j})}, & \text{when} \\ 0, & \text{when} \end{cases}$$

when $j = \ell(\mu) + 1, \dots, \ell(\mu) + d$, when $j = i - d, \dots, \ell(\mu)$, when j < i - d.

3

Corollary (Krattenthaler, Stanley etc)

Consider the set $PP(\mu, d)$ of plane partitions of base μ and entries less than or equal to d. Then their volume generating function is given by the following determinantal formula

$$\sum_{P \in PP(\mu,d)} q^{|P|} = q^{\sum_r r \mu_r} \det[C_{i,j}]_{i,j=1}^{\ell+d},$$

where

$$C_{i,j} = \begin{cases} \frac{(-1)^{d+\ell-i}q^{(d-i)(d+\ell-j)-\frac{(d-i+\ell)(d-i-\ell-1)}{2}}}{(q;q)_{d+\ell-i}}, & \text{when } j = \ell+1, \dots, \ell+d, \\ \frac{(-1)^{d+j-i}q^{(d-i)(\mu_j+d)-\frac{(d+j-i)(d-i-j-1)}{2}}}{(q;q)_{d+j-i}}, & \text{when } j = i-d, \dots, \ell, \\ 0, & \text{when } j < i-d, \end{cases}$$

where $(q;q)_m = (1-q)\cdots(1-q^m)$ is the q-Pochhammer symbol.

 $P \in PP((2,1),1)$

・ロ・・日・・日・・日・ シック・

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

Skew SYTs

イロト イボト イヨト イヨト

3

6 Lozenge tilings, again 200 000000 Schur generating funct 000000 l ilings with multivariate weights

Skew SYTs •0000

イロト イボト イヨト イヨト

22

Other interesting polynomials

Counting skew SYTs: formulas

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2, 1), \mu = (2, 2, 1)$:

Skew SYT: 1710 49 11

Skew SSYT of content $(1^3, 2^2, 3^3, 4^3)$:

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{
u} c^{\lambda}_{\mu,
u} f^{
u}$$

S Lozenge tilings, aga 000 000000 Schur generating funct 000000 Filings with multivariate weights

Skew SYTs •0000

Other interesting polynomials

Counting skew SYTs: formulas

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2, 1), \mu = (2, 2, 1)$:

236 58 Skew SYT: 1710 49 11

Skew SSYT of content $(1^3, 2^2, 3^3, 4^3)$:

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[rac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}$$

Littlewood-Richardson:

$$f^{\lambda/\mu} = \sum_{\nu} c^{\lambda}_{\mu,\nu} f^{\nu}$$

$$\lambda/\mu = \delta_{n+2}/\delta_n: \underbrace{2 7}_{3 4} \\ \vdots \\ \delta_{n+2}/\delta_n = E_{2n+1} - \text{Euler numbers: } 2, 5, 16, 61....:$$

$$1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \dots = \sec(x) + \tan(x).$$

Skew SYTs 0●000 Other interesting polynomials

Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

$$\mathcal{E}(\lambda/\mu) = \{ D \subset \lambda : \text{ obtained from } \mu \text{ via } \blacksquare \twoheadrightarrow \blacksquare \}$$

Other interesting polynomials

Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

Other interesting polynomials

Hook-Length formula for skew shapes

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

$$f^{(4321/21)} = 7! \left(\frac{1}{1^4 \cdot 3^3} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^2 \cdot 3^3 \cdot 5^2} + \frac{1}{1^2 \cdot 3^2 \cdot 5^2 \cdot 7} \right) = 61$$

Hook-Length formula for skew shapes

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(4321/21)} q^{|T|} = \frac{q^3}{(1-q)^4(1-q^3)^3} + 2 \times \frac{q^5}{(1-q)^3(1-q^3)^3(1-q^5)} + \cdots$$

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left\lfloor rac{q^{\lambda_j^{-\prime}}}{1-q^{h(i,j)}}
ight
brace.$$

Filings with multivariate weights

Skew SYTs 00000 Other interesting polynomials

Hook-Length formula for skew shapes

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(4321/21)} q^{|T|} = \frac{q^3}{(1-q)^4(1-q^3)^3} + 2 \times \frac{q^5}{(1-q)^3(1-q^3)^3(1-q^5)} + \cdots$$

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left[rac{q^{\lambda_j' - i}}{1 - q^{h(i,j)}}
ight].$$

$$s_{(3,2)/(1)}(1,q,q^2,\cdots) = q^{0+0+0+1} + q^{0+1+0+1} + \cdots + q^{1+3+0+3} + q^{1+1+2+3} + \cdots$$

$$0 0 1 0 1 0 1 0 1 0 3 0 3 0 1 1 0 3$$

・ロト・日本・日本・日本・日本・今日・

Greta Panova

23

Filings with multivariate weights

Skew SYTs 0●000 Other interesting polynomials 0000

Hook-Length formula for skew shapes

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(4321/21)} q^{|T|} = \frac{q^3}{(1-q)^4(1-q^3)^3} + 2 \times \frac{q^5}{(1-q)^3(1-q^3)^3(1-q^5)} + \cdots$$

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T\in \mathcal{SSYT}(\lambda/\mu)} q^{|T|} = \sum_{D\in \mathcal{E}(\lambda/\mu)} \prod_{(i,j)\in [\lambda]\setminus D} \left[rac{q^{\lambda_j'-i}}{1-q^{h(i,j)}}
ight].$$

Theorem (Morales-Pak-P)

For (reverse) plane partitions of skew shape λ/μ :

$$\sum_{\pi \in \mathcal{RPP}(\lambda/\mu)} q^{|\pi|} = \sum_{S \in \mathcal{PD}(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right].$$

where $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}.$

Other proofs by [M. Konvalinka], other new results in [Naruse-Okada, Grinberg-Korniichuk- Molokanov-Khomych]

LIS 0000	Lozenge tilings, again 000000	Schur generating functions	Tilings with multivariate weights 0000	Skew SYTs 00000	Other interesting polynomial 0000
-------------	----------------------------------	----------------------------	---	--------------------	-----------------------------------

Proofs of NHLF

• Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.

Proofs of NHLF

- Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.
- Bijection: Hillman-Grassl (generalized RSK) on nonnegative integer arrays of certain shapes. [MPP2]

イロト 不得 トイヨト イヨト

3

24

Proofs of NHLF

- Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.
- Bijection: Hillman-Grassl (generalized RSK) on nonnegative integer arrays of certain shapes. [MPP2]
- Non-intersecting lattice paths.

イロト 不得 トイヨト イヨト 二日

is Tilings with multivariate v 0000

Skew SYTs

Other interesting polynomials

Non-intersecting lattice paths

Theorem[Lascoux-Pragacz, Hamel-Goulden] If $(\theta_1, \ldots, \theta_k)$ is a Lascoux-Pragacz decomposition (i.e. maximal outer border strip decomposition) of λ/μ , then

$$s_{\lambda/\mu} = \det \left[s_{\theta_i \# \theta_j} \right]_{i,j=1}^k.$$

where $s_{\emptyset} = 1$ and $s_{\theta_i \# \theta_j} = 0$ if the $\theta_i \# \theta_j$ is undefined. θ_1 - border strip following the inner border of λ ; θ_i - inner border of $\lambda \setminus (\theta_1 \cup \cdots \cup \theta_{i-1})$ etc until μ is hit, then - border strips from each connected part etc. Ordering: corners.

Strip $\theta_i \# \theta_i :=$ shape of θ_1 between the diagonals of the endpoints of θ_i and θ_i .

Tilings with multivariate weights 0000

Skew SYTs

Other interesting polynomials 0000

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j'-i}}{1-q^{h(i,j)}}.$$

Proofs: induction on $|\lambda/\mu|$, or [multivariate] Chevalley formula for factorial Schurs.

Skew SYTs 0000

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{q \geq \lambda'_j - i \ 1 - q^{h(i,j)}}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

Skew SYTs 0000

26

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j^t - i}}{1 - q^{h(i,j)}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

tenge tilings, again Schur generating functions Tiling

Skew SYTs 00000 Other interesting polynomials • 000

Other interesting polynomials

1. Hall-Littlewood polynomials:

$$P_{\lambda}(x_1, \dots, x_n; t) = \frac{1}{\prod_{i=1}^n [m_i(\lambda)]!_t} \sum_{w \in S_n} w \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i < j} \frac{x_i - tx_j}{x_i - x_j} \right)$$
$$P_{\lambda}(x; 0) = s_{\lambda}(x); P_{\lambda}(x; 1) = m_{\lambda}(x)$$
$$s_{\lambda}(x) = \sum K_{\lambda\mu}(t) P_{\mu}(x; t),$$

 μ

where $\mathcal{K}_{\lambda\mu}(t)\in\mathbb{Z}_{\geq0}[t]$ are the Kostka-Foulkes polynomials.

э

ozenge tilings, again Schur generating functions Tilings wi 000000 00000 0000

Filings with multivariate weights

Skew SYTs 00000

Other interesting polynomials •000

Other interesting polynomials

1. Hall-Littlewood polynomials:

$$P_{\lambda}(x_1, \dots, x_n; t) = \frac{1}{\prod_{i=1}^n [m_i(\lambda)]!_t} \sum_{w \in S_n} w \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i < j} \frac{x_i - tx_j}{x_i - x_j} \right)$$
$$P_{\lambda}(x; 0) = s_{\lambda}(x); P_{\lambda}(x; 1) = m_{\lambda}(x)$$
$$s_{\lambda}(x) = \sum_{\mu} K_{\lambda\mu}(t) P_{\mu}(x; t),$$

where $K_{\lambda\mu}(t) \in \mathbb{Z}_{\geq 0}[t]$ are the Kostka-Foulkes polynomials.

2. Macdonald polynomials $P_{\lambda}(x; q, t)$

Greta Panova

э

Skew SYTs 00000 Other interesting polynomials • 000

Other interesting polynomials

1. Hall-Littlewood polynomials:

$$P_{\lambda}(x_1, \dots, x_n; t) = \frac{1}{\prod_{i=1}^n [m_i(\lambda)]!_t} \sum_{w \in S_n} w \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i < j} \frac{x_i - tx_j}{x_i - x_j} \right)$$
$$P_{\lambda}(x; 0) = s_{\lambda}(x); P_{\lambda}(x; 1) = m_{\lambda}(x)$$
$$s_{\lambda}(x) = \sum_{\mu} K_{\lambda\mu}(t) P_{\mu}(x; t),$$

where $K_{\lambda\mu}(t) \in \mathbb{Z}_{\geq 0}[t]$ are the Kostka-Foulkes polynomials.

- 2. Macdonald polynomials $P_{\lambda}(x; q, t)$
- 3. Schubert polynomials $\mathfrak{S}_w(x_1, \ldots, x_n)$.

nge tilings, again Schur generating functions Tili

Skew SYTs 00000 Other interesting polynomials • 000

Other interesting polynomials

1. Hall-Littlewood polynomials:

$$P_{\lambda}(x_1, \dots, x_n; t) = \frac{1}{\prod_{i=1}^n [m_i(\lambda)]!_t} \sum_{w \in S_n} w \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{i < j} \frac{x_i - tx_j}{x_i - x_j} \right)$$
$$P_{\lambda}(x; 0) = s_{\lambda}(x); P_{\lambda}(x; 1) = m_{\lambda}(x)$$
$$s_{\lambda}(x) = \sum K_{\lambda\mu}(t) P_{\mu}(x; t),$$

 μ

where $K_{\lambda\mu}(t) \in \mathbb{Z}_{\geq 0}[t]$ are the Kostka-Foulkes polynomials.

- 2. Macdonald polynomials $P_{\lambda}(x; q, t)$
- 3. Schubert polynomials $\mathfrak{S}_w(x_1, \ldots, x_n)$.
- 4. Grothendieck polynomials $\mathfrak{G}_w(x_1, \ldots, x_n)$.

Schur generating func 000000 Tilings with multivariate weights 0000

Skew SYTs 00000 Other interesting polynomials $0 \bullet 00$

Schubert polynomials

Schubert polynomial for a permutation $w \in S_n$: $\mathfrak{S}_w(x_1, \ldots, x_n)$

Origins: cohomology cycles of Schubert classes in flag varieties.

Tilings with multivariate weights 0000

Skew SYTs 00000

Other interesting polynomials OOO

Schubert polynomials

Schubert polynomial for a permutation $w \in S_n$: $\mathfrak{S}_w(x_1, \ldots, x_n)$

Origins: cohomology cycles of Schubert classes in flag varieties.

Definition via $\partial_i f(x_1, ..., x_n) = \frac{f(x_1, ..., x_i, x_{i+1}, ..., x_n) - f(x_1, ..., x_{i+1}, x_i, ..., x_n)}{x_i - x_{i+1}}$: Set $w_0 := n(n-1) ... 21$, adjacent transpositions $s_i = (i, i+1)$:

$$\mathfrak{S}_{w_0}(x_1,\ldots,x_n) := x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$$

$$\mathfrak{S}_w(x_1, \ldots, x_n) = \partial_i \mathfrak{S}_{ws_i}(x_1, \ldots, x_n)$$
 whenever $w_i < w_{i+1}$
Schur generating funct 000000 Tilings with multivariate weights

Skew SYTs 00000

Other interesting polynomials OOO

Schubert polynomials

Schubert polynomial for a permutation $w \in S_n$: $\mathfrak{S}_w(x_1, \ldots, x_n)$

Origins: cohomology cycles of Schubert classes in flag varieties.

Definition via $\partial_i f(x_1, ..., x_n) = \frac{f(x_1, ..., x_i, x_{i+1}, ..., x_n) - f(x_1, ..., x_{i+1}, x_i, ..., x_n)}{x_i - x_{i+1}}$: Set $w_0 := n(n-1) ... 21$, adjacent transpositions $s_i = (i, i+1)$:

$$\mathfrak{S}_{w_0}(x_1,\ldots,x_n) := x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$$

$$\mathfrak{S}_w(x_1, \ldots, x_n) = \partial_i \, \mathfrak{S}_{ws_i}(x_1, \ldots, x_n)$$
 whenever $w_i < w_{i+1}$

Special case:

w – Grassmannian, i.e. $\exists !d$, s.t. $w_d > w_{d+1}$

$$\Longrightarrow \mathfrak{S}_w(x_1, \ldots, x_n) = \mathfrak{s}_\lambda(x_1, \ldots, x_d)$$
 where $\lambda_i = w_{d+1-i} + i - (d+1)$

Schur generating funct

Tilings with multivariate weights
0000

Skew SYTs 00000 Other interesting polynomials 0000

Schubert polynomials

Schubert polynomial for a permutation $w \in S_n$: $\mathfrak{S}_w(x_1, \ldots, x_n)$

Origins: cohomology cycles of Schubert classes in flag varieties.

Definition via $\partial_i f(x_1, \ldots, x_n) = \frac{f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)}{x_i - x_{i+1}}$: Set $w_0 := n(n-1) \dots 21$, adjacent transpositions $s_i = (i, i+1)$:

$$\mathfrak{S}_{w_0}(x_1,\ldots,x_n) := x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$$

$$\mathfrak{S}_w(x_1,\ldots,x_n) = \partial_i \, \mathfrak{S}_{ws_i}(x_1,\ldots,x_n)$$
 whenever $w_i < w_{i+1}$

Pipe dreams (RC graphs):

28

Schur generating funct

Tilings with multivariate weights 0000 Skew SYTs 00000

Other interesting polynomials 0000

Schubert polynomials

Schubert polynomial for a permutation $w \in S_n$: $\mathfrak{S}_w(x_1, \ldots, x_n)$

Origins: cohomology cycles of Schubert classes in flag varieties.

Definition via $\partial_i f(x_1, \ldots, x_n) = \frac{f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)}{x_i - x_{i+1}}$: Set $w_0 := n(n-1) \dots 21$, adjacent transpositions $s_i = (i, i+1)$:

$$\mathfrak{S}_{w_0}(x_1,\ldots,x_n) := x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$$

$$\mathfrak{S}_w(x_1,\ldots,x_n) = \partial_i \, \mathfrak{S}_{ws_i}(x_1,\ldots,x_n)$$
 whenever $w_i < w_{i+1}$

Some formulas: Macdonald's identity

$$\mathfrak{S}_w(1,1,\ldots,1) = \frac{1}{\ell!} \sum_{(r_1,\ldots,r_\ell)\in R(w)} r_1 r_2 \cdots r_\ell.$$

where $R(w) = \{(r_1, ..., r_\ell) : s_{r_1} \cdots s_{r_\ell} = w\}$ with $\ell(w) = inv(w)$.

Cauchy identity:

$$\sum_{w \in S_n} \mathfrak{S}_w(x) \mathfrak{S}_{ww_0}(y) = \prod_{i+j \le n} (x_i + y_j)$$

Lozenge tilings, again S 000000 0

Schur generating function

Tilings with multivariate weight: 0000 Skew SY7 00000 Other interesting polynomials $00 \bullet 0$

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1^n)$$

Conjecture (Stanley, "Schubert Shenanigans") There is a limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log u(n)$$

Skew SYTs 00000 Other interesting polynomials $OO \bullet O$

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1^n)$$
 $U(n) := \sum_{w \in S_n} \mathfrak{S}_w(1^n) (= \# \operatorname{\mathsf{RC}} \operatorname{graphs})$

Conjecture (Stanley, "Schubert Shenanigans") There is a limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log u(n) \qquad = \qquad \lim_{n\to\infty}\frac{1}{n^2}\log U(n).$$

Theorem (Stanley)

$$\frac{1}{4} \leq \liminf_{n \to \infty} \frac{\log_2 u(n)}{n^2} \leq \limsup_{n \to \infty} \frac{\log_2 u(n)}{n^2} \leq \frac{1}{2}$$

Proof:

$$\sum_{u \in S_n} \mathfrak{S}_u(1^n) \mathfrak{S}_{uw_0}(1^n) = 2^{\binom{n}{2}}.$$

・ロト・西ト・ヨト・ヨー つく

Greta Panova

29

5 Lozenge 000 00000 Schur generating functi 000000 Tilings with multivariate weights 0000 Skew SYT: 00000 Other interesting polynomials 0000

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1^n) \qquad U(n) := \sum_{w \in S_n} \mathfrak{S}_w(1^n) (= \# \text{ RC graphs})$$

Conjecture (Stanley, "Schubert Shenanigans") There is a limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log u(n) \qquad = \qquad \lim_{n\to\infty}\frac{1}{n^2}\log U(n).$$

Layered (Richardson) permutations L_n:

$$w(b_k, b_{k-1}, \ldots, b_1) :=$$

 $(w_0(b_k), b_k + w_0(b_{k-1}), \ldots, n - b_1 + w_0(b_1))$

Theorem (Morales-Pak-P) Let $v(n) := \max_{w \in L_n} \mathfrak{S}_w(1^n)$. Then there is a limit

$$\lim_{n \to \infty} \frac{1}{n^2} \log_2 v(n) = \frac{\gamma}{\log 2} \approx 0.2932362762,$$

where $\gamma \approx 0.2032558981$, and the maximum value v(n) is achieved at

 $w(\ldots, b_2, b_1), \quad \text{where} \quad b_i \ \sim \ lpha^{i-1}(1-lpha) \, \textit{n} \quad \text{as} \quad n o \infty,$

for every fixed i, and where $\alpha \approx 0.4331818312$ is a universal constant.

Greta Panova

5 A T 5

э

Skew SYTs 00000 Other interesting polynomials $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1^n)$$
 $U(n) := \sum_{w \in S_n} \mathfrak{S}_w(1^n) (= \# \operatorname{\mathsf{RC}} \operatorname{graphs})$

Conjecture (Stanley, "Schubert Shenanigans") There is a limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log u(n) \qquad = \qquad \lim_{n\to\infty}\frac{1}{n^2}\log U(n).$$

$$v(n) := \max_{w \in L_n} \mathfrak{S}_w(1^n).$$
$$\lim_{n \to \infty} \frac{1}{n^2} \log_2 v(n) = \frac{\gamma}{\log 2} \approx 0.2932362762.$$

Corollary
$$\lim_{n \to \infty} \frac{1}{n^2} \log_2 u(n) \ge \frac{\gamma}{\ln 2} \approx 0.293..$$

Skew SYTs 00000

イロト 不得 トイヨト イヨト

Other interesting polynomials $00 \bullet 0$

$$u(n) := \max_{w \in S_n} \mathfrak{S}_w(1^n)$$
 $U(n) := \sum_{w \in S_n} \mathfrak{S}_w(1^n) (= \# \text{ RC graphs})$

Conjecture (Stanley, "Schubert Shenanigans") There is a limit

$$\lim_{n\to\infty}\frac{1}{n^2}\log u(n) \qquad = \qquad \lim_{n\to\infty}\frac{1}{n^2}\log U(n).$$

$$v(n) := \max_{w \in L_n} \mathfrak{S}_w(1^n).$$

 $\lim_{n \to \infty} \frac{1}{n^2} \log_2 v(n) = \frac{\gamma}{\log 2} \approx 0.2932362762,$

$$\lim_{n\to\infty}\frac{1}{n^2}\log_2 u(n)\geq \frac{\gamma}{\ln 2}\approx 0.293\ldots$$

Proposition (Cor to Lam-Lee-Shimozono, Weigandt, 2018–2019) *We have the following upper bound:*

$$u(n) \le \# ASM_n = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!} \approx 2^{0.3774n^2 + O(\log(n))}$$

э

LIS 0000	Lozenge tilings, again 000000	Schur generating functions	Tilings with multivariate weights 0000	Skew SYTs 00000	Other interesting polynomials
-------------	----------------------------------	----------------------------	--	--------------------	-------------------------------

Т	h						
y			а	n			
		0				k	
				и	÷.		