
I. Stochastic 6v model

u :=
1 − δ1

1 − δ2
, t := δ2/δ1

- Ferroelectric; in boxed setting exhausts all symmetric 6V

- Boxed is very complicated (but arctic curve is known/ 
conjectured)

- However, there is a stochastic variant [BCG],

which has KPZ class fluctuations (TW GUE)

It is also believed to have translation invariant “liquid” Gibbs measures, but this has 
not been proven. Their local statistics are complicated, not determinantal.


On a cylinder: KPZ phases are “free evolution”, the other phases are constrained to be 
either too fast, or too slow. The “too fast” is less probable ( ), so these phases do 
not exist. (Contrast with dimers)
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II. Stochastic 6v model  ASEP→
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1 − u
1 − tu

, δ2 =
t(1 − u)
1 − tu

,

1 − δ1 =
(1 − t)u
1 − tu

,1 − δ2 =
1 − t

1 − tu

ASEP: also has KPZ fluctuations; 
very popular model; natural and 
appeared in mRNA modeling in 1968
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(antiferroelectric - has gas)





III. Stochastic 6v model and Hall-Littlewood measures via bijectivisation

Let  be finite sets and      (with positive terms)


 
A bijectivisation (coupling) of this identity is a family of transition probabilities


 and , satisfying





for all .


If all probabilities are equal to  or  and , then 

this is a usual bijection. 

A, B ∑
a∈A

w(a) = ∑
b∈B

w(b)

p(a → b) p′ (b → a)

w(a)p(a → b) = w(b)p′ (b → a)

a ∈ A, b ∈ B

0 1 |A | = |B |

Recall the Yang-Baxter proof 
of the Hall-Littlewood 
Cauchy identity from 
yesterday
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leads to 

For the Yang-Baxter equation:

Recall the Yang-Baxter proof 
of the Hall-Littlewood 
Cauchy identity from 
yesterday







Then, there is a whole different story to analyze  
asymptotically for the Hall-Littlewood measures, but it 
can be done

m0(λ)



IV. Another application of the same idea: Borodin-Ferrari/Toninelli’s 
dynamics on the six-vertex model

For tilings: 



Specialize to 5-vertex model with r=corner weight, all other weights = 1

(It’s not stochastic, but this is fine)

Then for  this is rescaled:a2 = 0

For  we have , .b1 = b2 = 1,c1 = c2 = r 𝔠 = r2 𝔞 = 1

Encoding 5-vertex paths as tilings, we will get a generalization of Toninelli’s 
dynamics
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V. Yet another application of the same idea: TASEP with two cars

Theorem 0. (Vershik-Kerov ~1981; O’Connell 2003)


Cars start at 0,1 (step initial configuration) 

 the distribution of the trajectory of the car behind is 

independent of the order of the speeds
⇒

blue = fast 
yellow = slow


