|. Stochastic 6v model
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- Ferroelectric; in boxed setting exhausts all symmetric 6V
- Boxed is very complicated (but arctic curve is known/

conjectured)
- However, there is a stochastic variant [BCG],
which has KPZ class fluctuations (TW GUE)
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It is also believed to have translation invariant “liquid” Gibbs measures, but this has
not been proven. Their local statistics are complicated, not determinantal.

On a cylinder: KPZ phases are “free evolution”, the other phases are constrained to be

2
either too fast, or too slow. The “too fast” is less probable (e_N ), so these phases do
not exist. (Contrast with dimers)

ll. Stochastic 6v model — ASEP
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ASEP: also has KPZ fluctuations;
very popular model; natural and
appeared in mMRNA modeling in 1968
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not been proven. Their local statistics are complicated, not determinantal.
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either too fast, or too slow. The “too fast” is less probable (e_N ), so these phases do
not exist. (Contrast with dimers)

ll. Stochastic 6v model — ASEP

01,0, = 0 and 1 stays fixed (so, u = 1)

[ 1l —u (1 —u)
51= ,52= ’
1 —tu 1 —tu
— 1 — 1
— tu 1 —tu

ASEP: also has KPZ fluctuations;
very popular model; natural and
appeared in mMRNA modeling in 1968




stochastic six vertex model in a quadrant
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lll. Stochastic 6v model and Hall-Littlewood measures via bijectivisation

bt & add
Recall the Yang-Baxter proof !
of the Hall-Littlewood \
Cauchy identity from
yesterday A— \

Let A, B be finite sets and Z w(a) = Z w(b) (with positive terms)
acA beB

A bijectivisation (coupling) of this identity is a family of transition probabilities
pla — b)and p'(b — a), satisfying

w(a)p(a — b) = w(b)p'(b — a)
foralla € A, b € B.

If all probabilities are equalto O or 1 and |A| = | B]|, then
this is a usual bijection.
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For the Yang-Baxter equation:

9 g —_—
—_ —_— — —_— e, ..
2[ ..... q.. V} + [_g._—_l,%] leads to P (._' -> ‘,V.»\ )
u,v g v,U g v,U 2l B -

-----------------




1}

54\ it

/Ris ]‘ %_n
JERDN
ﬁ 1
et 4
ki it
Bk 1
¢
d
on\,—:_ j—ok
94 JHI p
11 \
A e e .
3 ﬁ
lyraL =L -2






Theorem 5.3.1. S6V to HL coupling. Take the stochastic six vertex model,
with inhomogeneous parameters uy, us, ... along the vertical, and v, vo, . .. along
the horizontal directions. The stochastic six vertex model updates the vertex at
(z,y) with probabilities

1 — u,v, 1 — u,v,
7 b2(uyavw) — Y

bl (uy7 'Ua:) —

1 — tuyv,’ 1 — tu,v,

Then the height function of this stochastic six vertex model (with domain wall like
boundary conditions in Z>o> i.e., paths enters at each site on the left boundary
and nothing enters from below) has the following equality in distribution:

h(z,y) = meAEY) = y — gAEW),

where A(®%) is the random signature distributed according to the Hall-Littlewood
measure

— U, V;
Prob()\) = HH ? - Px(u1, .-y uy)Qa(v1y - - -, Uz).

Then, there is a whole different story to analyze my(1)
asymptotically for the Hall-Littlewood measures, but it
can be done



IV. Another application of the same idea: Borodin-Ferrari/Toninelli’s
dynamics on the six-vertex model

Occupied horizontal edges can jump up or down, and this
jump propagates.

A3 A2 A3 A2

o Propagation of up jump

Propagation of down jump

< —

___ p(1=p) RCT)=¢ R(C[ )=a R(T[ )=t
o) = == o T
RCT )=c¢ R(C] )=a RC[)=0
o 1—gq b 1 —qu
(1—u)(1—qu) - (1-u)(Q-q)u’
(1-u)q

. 2
For tilings: %Smwl (E;rxll?p; \/1 tS;leﬁ?fle)



Specialize to 5-vertex model with r=corner weight, all other weights = 1
(It’s not stochastic, but this is fine)

C1Co v/ b1 b \/d14a2

¢ = a= b = :
Vbiboaray’ Jvaiaz’ v/ b1 b5
Now propagation may “loop all the way around the torus”. For
example:
* -
.. C1C2
Then for a, = 0 this is rescaled: ¢ = : a = 1/bibo, b =0.
v b1b2
Forb,=b,=1,c,=c,=rwehavec=r?a=1.

Encoding 5-vertex paths as tilings, we will get a generalization of Toninelli’s
dynamics



V. Yet another application of the same idea: TASEP with two cars

Two cars (discrete time TASEP with Bernoulli jumps). Randomized initial conditions

Theorem 0. Cars start at 0,1 (step initial configuration) = the distribution of the trajectory of the
car behind is independent of the order of the speeds

Theorem fails when cars are not initially neighbors, x;(0) —x,(0) — 1 > 0

Fast-slow system
: . . r1(t)
with general initial condition

Slow-fast system
with general initial condition

I (t)

¢

Slow-fast system
with randomized initial condition

TheoremO0-nojumpatt =0
because neighbors

Theorem 1 (P-Saenz 2022). “Be wise - randomize”. Recall a; > a, > 0.
Let y;(0) = x,(0) + 1 + min(G, x;(0) — x,(0) — 1), where G € Z is an independent
geometric random variable with P(G = k) = (a,/ al)k(l — a,/ay). Start SF from (y;(0), x,(0)).

Then the trajectories of the second particle become the same in distribution.
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