
GOALS Free Probability Lecture 1

1 Noncomutative probability spaces and laws

Definition 1.1. A (noncommutative) ∗–probability space consists of a unital ∗-algebra,
A and a state φ on A (here, state means that φ(1) = 1 and φ(x∗x) ≥ 0 for all x ∈ A.).
We notate this by the pair (A, φ). Often of interest to operator algebraists are C* or W*
probability spaces:

• A C*–probability space (A, φ) is a *-probability space where A is a C*-algebra. As
you learned, or will learn soon, φ is automatically norm continuous.

• A W*–probability space (A, φ) is a *-probability space where A is a von Neumann
algebra, and φ is normal (ultraweakly continuous)

In any of these circumstances, one often wants φ to be faithful, but that is not a require-
ment for this definition.

Examples 1.2. (i) If Ω is a measure space, F a σ–algebra of measurable sets, and P is
a probability measure defined on F , then (L∞(Ω, F, P ),

∫
Ω
·dP ) is a W*–probability

space.

(ii) If one defines L∞−(Ω, F, P ) :=
⋂

p≥1 L
p(Ω, F, P ), then (L∞−(Ω, F, P ),

∫
Ω
·dP ) is a *–

probability space. L∞−(Ω, F, P ) consists of all random variables which have all of their
moments. If (Ω, F, P ) has no atoms, then this ∗–probability space includes random
variables with Gaussian distribution which are necessarily unbounded, thus this is not
a C* or W*–probability space.

(iii) (C([0, 1]),
∫
·dx) is a C*–probability space

(iv) (Mn(C), tr) is a W*–probability space

(v) (Mn(L
∞−(Ω, F, P )), (

∫
Ω
·dP ) ◦ tr) is a ∗–probability space. This is the algebra of n×n

random matrices where all entries have all of their moments.

(vi) If Γ is a discrete group, and τ is the canonical trace on L(Γ), then (L(Γ), τ) is a
W*–probability space.

The notion of a joint distribution in classical probability is essential to the study of the
subject. Non-commutative probability has this notion as well, but like many ideas in operator
algebras, one must strip away a measure space to make a proper definition. For what follows,
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C⟨X1, X
∗
1 , · · · , Xn, X

∗
n⟩ will denote the universal noncommutative ∗-algebra generated by

X1, X
∗
1 , · · · , Xn, X

∗
n. This is often called the algebra of noncommutative polynomials in

X1, X
∗
1 , · · · , Xn, X

∗
n.

Definition 1.3. Let (A, φ) be a ∗–probability space and a1, · · · , an ∈ A. The ∗-distribution
or law of a = (a1, · · · , an) is defined to be the linear functional µa : C⟨X1, X

∗
1 , · · · , Xn, X

∗
n⟩ →

C given by:
µa(P (X1, X

∗
1 , · · · , Xn, X

∗
n)) = φ(P (a1, a

∗
1, · · · , an, a∗n))

If this above notation is intimidating, note that, for example, µa(X1X2X
∗
1 ) = φ(a1a2a

∗
1).

In the exercises, you will show that the law of (a1, · · · , an) uniquely determines the C* or
von Neumann algebra that (a1, · · · , an) generates. Although this definition is a bit abstract,
it is the case that for a collection (Y1, · · · , Yn) of classical L

∞ random variables, the values
of E(P (Y1, Y1, · · · , Yn, Yn)) determine the joint distribution in the usual probabilistic sense.

Of great importance is the ∗-distribution of a single a ∈ (A, φ).

Important Example 1.4. Suppose that A is a C*–probability space and that a is normal.
We know that C∗(a) ∼= C(σ(a)) and since φ is a state on C∗(a) it follows that under this
identification, it given by integration against a probability measure µ supported on σ(a).
Therefore, if P ∈ C⟨X,X∗⟩, it follows that

µa(P (X,X∗)) = φ(P (a, a∗)) =

∫
σ(a)

P (z, z)dµ.

In this instance, we abuse notation and say that the measure µ is the law of a. Since poly-
nomials in z and z are uniformly dense in C(σ(a)), it follows that µ is uniquely determined
by the values of φ(P (a, a∗)) over all polynomials, P .

In the first example of *-probability spaces given above, it is a good thing to check that
the law of a random variable X is nothing other than its distribution in the probabilistic
sense.

There are many normal elements that have well known laws. We will discuss a few here:

Example 1.5. Let A ∈ (Mn(C), tr) be a normal matrix with eigenvalues λ1, · · · , λn (repe-
tition allowed). Since A and A∗ are simultaneously diagonalizable,

tr(Ak(A∗)ℓ) =
1

n

n∑
j=1

λk
jλ

ℓ
j

It follows that if one defines µ by µ = 1
n

∑n
j=1 δλj

, then for any polynomial P ,

tr(P (A,A∗)) =

∫
σ(A)

P (z, z)dµ

meaning that the law of A is simply the normalized counting measure on its eigenvalues
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Example 1.6. A unitary u ∈ (A, φ) is aHaar unitary whenever φ(uk) =

{
0 if k ∈ Z \ {0}
1 if k = 0

(note that we have allowed for negative powers of u i.e. positive powers of u∗). As σ(u) is a
subset of the unit circle, T, it follows that the law of u is a measure µ supported inside of
T. We claim that µ is the normalized arc length measure, λ, on the unit-circle. Indeed, note
that ∫

T
zkdλ =

1

2π

∫ 2π

0

eikθdθ =

{
0 if k ∈ Z \ {0}
1 if k = 0

It follows that
∫

T z
kdλ = φ(uk) for all k ∈ Z, giving the desired law. As an added bonus,

this example proves that σ(u) is all of T rather than a proper subset of it.

The next example will be arguably the most important self-adjoint distribution in free
probability. To define it, we need some setup:

2 The full Fock space and semicircular elements

Let H be a Hilbert space. We define the full Fock space of H, F(H)) to be the Hilbert
space:

F(H) = CΩ⊕
⊕
n≥1

H⊗n

where ∥Ω∥ = 1. Ω is called the vacuum vector. Vectors inH naturally give rise to creation
and annihilation operators.

For any ξ ∈ H, define the creation operator ℓ(ξ) on F(H) by the linear extension of:

ℓ(ξ)Ω = ξ and ℓ(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn

One notes that ℓ(ξ) extends to a bounded operator on F(H) with ∥ℓ(ξ)∥ = ∥ξ∥. One further
observes that ℓ(ξ)∗ satisfies:

ℓ(ξ)∗Ω = 0 and ℓ(ξ)∗(ξ1 ⊗ · · · ⊗ ξn) = ⟨ξ1, ξ⟩ξ2 ⊗ · · · ⊗ ξn,

consequently we call ℓ(ξ)∗ an annihilation operator. With the definitions of ℓ and ℓ∗, the
verification of the following facts is straightforward and left to the reader:

Facts 2.1. (i) ℓ(ξ)∗ℓ(ξ) = ∥ξ∥21 for all ξ ∈ H. More generally, ℓ(η)∗ℓ(ξ) = ⟨ξ, η⟩1 for all
ξ, η ∈ H

(ii) If ξ ∈ H is a unit vector, then ℓ(ξ)ℓ(ξ)∗ is the orthogonal projection onto
⊕

n≥0 Cξ⊗H⊗n

(iii) ℓ(aξ + bη) = aℓ(ξ) + bℓ(η) for all a, b ∈ C and ξ, η ∈ H

(iv) ℓ(aξ + bη)∗ = aℓ(ξ)∗ + bℓ(η)∗ for all a, b ∈ C and ξ, η ∈ H
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Place a normal state φ on B(F(H)) be setting φ(x) = ⟨xΩ,Ω⟩. We call φ the vacuum
state. Fix a unit vector ξ ∈ H. We are interested in computing the law of s = ℓ(ξ) + ℓ(ξ)∗

with respect to φ. Since s is self adjoint, we are after a compactly supported measure µ on
R so that

φ(sn) =

∫
R
xndµ(x)

Note that sn =
∑

i1,··· ,in∈{1,∗}

ℓ(ξ)i1 · · · ℓ(ξ)in , meaning that φ(sn) =
∑

i1,··· ,in∈{1,∗}⟨ℓ(ξ)
i1 · · · ℓ(ξ)inΩ,Ω⟩.

We need to examine in which instances ⟨ℓ(ξ)i1 · · · ℓ(ξ)inΩ,Ω⟩ is nonzero. Immediately,
one sees that the number of indices ik that are a 1 must match the number of indices
that are a ∗ (or else ℓ(ξ)i1 · · · ℓ(ξ)inΩ is zero or some ξ⊗k for k ≥ 1) thus we can as-
sume n = 2m for some integer m. In addition, it must be the case for each j ∈ {1, n}
#{k ≥ j | ik = 1} ≥ #{k ≥ j | ik = ∗} or else ℓ(ξ)i1 · · · ℓ(ξ)inΩ = 0. In this latter event,
ℓ(ξ)i1 · · · ℓ(ξ)inΩ = Ω meaning that this inner product is 1. The number of such terms is
counted by Dyck paths (to be shown in lecture). The number of Dyck paths of size 2m is
famously mth Catalan number Cm = 1

m+1

(
2m
m

)
. This shows that

φ(sn) =

{
0 if n is odd

Cm if n = 2m

It is known that
1

2π

∫ 2

−2

xn
√
4− x2dx =

{
0 if n is odd

Cm if n = 2m

Consequently, it follows that the law of s is the semicircular law of variance 1: dµ =
1[−2,2]

1
2π

√
4− x2dx. The term “variance 1” is used because one defines the variance of any

a as φ(a∗a)− |φ(a)|2 and it is clear that for s, this quantity is 1.
The semicircular law is the free analogue of the gaussian law in classical probability. This

is explored in one of the exercises.

3 Free Independence

In classical probability, one has the notion of independence of events. This notion of inde-
pendence carries over to random variables: Of one assumes that X and Y are essentially
bounded classical random variables, then independence of X and Y is characterized by

E(P (X,X)Q(Y, Y )) = E(P (X,X)) · E(Q(Y, Y ))

for any polynomials P and Q. We are after a similar notion of independence in noncommu-
tative probability. As there are more words to consider when the elements do not commute,
one needs to take more care:

Definition 3.1. Let (A, φ) be a ∗–probability space and a ∈ (A, φ). We say that a is
centered whenever φ(a) = 0

Centered elements form the backbone of free independence
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Definition 3.2. Let (A, φ) be a ∗–probability space, I be an index set. and {Ai}i∈I be a
family of unital ∗-subalgebras of A. We say that the collection {Ai}i∈I is freely indepen-
dent if whenever ai1 ∈ Ai1 , ai2 ∈ Ai2 , · · · , ain ∈ Ain satisfy the following properties

(i) aik is centered for 1 ≤ k ≤ n

(ii) ik ̸= ik+1 for 1 ≤ k ≤ n− 1 (note, one is allowed, for instance, i1 = i3 although this is
certainly not the only possibility)

then ai1ai2 · · · ain is centered.

If J is an index set and {Sj}j∈J are subsets of A, and if Bj is the unital *-subalgebra of
A generated by Sj, then we say that {Sj}j∈J is *–free if the collection {Bj}j∈J is ∗–free

The above definition extends in the natural way to C* and W* probability spaces. We will
see that this definition is not an extension of classical independence but rather an analogy.
One exercise you will do is show that freeness and commutatitivity only coincide when at
least one algebra is the scalars.

Let a ∈ (A, φ), and let
◦
a = a− φ(a)1. Then

◦
a is centered, and a =

◦
a+ φ(a)1. This trick

is very useful in performing computations that involve freeness.

Example 3.3. Suppose a and b are *–free elements of some (A, φ) i.e. {a} and {b} are free.
Let A and B be the unital ∗-algebras generated by A and B respectively. Let’s compute

φ(ab). Since
◦
a ∈ A and

◦
b ∈ B, it follows that

φ(ab) = φ((
◦
a+ φ(a)1)(

◦
b+ φ(b)1)) = φ(

◦
a
◦
b) + φ(

◦
a)φ(b) + φ(a)φ(

◦
b) + φ(a)φ(b)

where we used linearity. The middle two terms vanish because
◦
a and

◦
b are centered, and

the first term vanishes from the definition of freeness. Therefore, one gets the very pleasing
result that

φ(ab) = φ(a)φ(b)

One should note that such factorizations do not always happen. For instance, one problem
asks you to show that if a and b are ∗–free, then

φ(a∗b∗ab) = |φ(a)|2φ(b∗b) + φ(a∗a)|φ(b)|2 − |φ(a)|2 · |φ(b)|2

As should be apparent from the above example, the procedure of rewriting elements into
their centered from allows one to compute φ on any product of free (not necessarily centered)
elements. This lets us deduce the following extremely important fact:

Fact 3.4. Let (A, φ) be a ∗–probability space, {Ai}i∈I be a collection of freely independent
*–subalgebras of A, and let B = ∗

i∈I
Ai be the unital algebra generated by the Ai (i.e. the

free product of the Ai). Then φ(b) for any b ∈ B is uniquely determined by φ restricted
to each Ai.

We conclude this set of notes by examining basic, yet important, examples of freeness.
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Example 3.5. Let Γ be a discrete group, and (L(Γ), τ) be the group von Neumann algebra
with its canonical trace. Suppose that Γ is the free product of a collection of subgroups
{Γi}i∈I . We claim that collection of group von Neumann algebras {L(Γi)}i∈I is ∗-free,
meaning that

(L( ∗
i∈I

Γi), τ) = ∗
i∈I

(L(Γi), τ)

Let i1, · · · , in ∈ I with ik ̸= ik+1 for 1 ≤ k ≤ n − 1 and for each ik, let xik be a centered
element in L(Γik). We need to show that xi1xi2 · · ·xin is centered. Each xik is a strong
operator limit of a bounded net of elements in the span of {ugik

: gik ∈ Γik \ {e}}. As
multiplication is strongly continuous on bounded sets, we may approximate each xik in this
manner. By doing so and expanding out the terms, it suffices to show that ugi1

· · ·ugin
is

centered when each gik ∈ Γik \ {e}. Note that ugi1
· · ·ugin

= ugi1 ···gin . Since ik ̸= ik+1 for
1 ≤ k ≤ n− 1, it follows that the word gi1 · · · gin is reduced in Γ so it can not be the identity
so the corresponding unitary is centered. Thus ugi1

· · ·ugin
is centered which completes the

proof.

As a particular sub-example to the above, we see that L(Fn) =
n∗

i=1
L(Z) where Fn is the

free group on n generators and both sides are equipped with their canonical traces.
Our final example concerns the creation and annihilation operators that were defined

above.

Example 3.6. Let {ξi}i∈I be an orthonormal set in a Hilbert space H. We claim that the
elements ℓ(ξi)i∈I are free in B(F(H)) under the vacuum state φ. Fixing i for a moment,
and noting that ℓ(ξi)

∗ℓ(ξi) = 1, it follows that W*(ℓ(ξi)) is the strong closure of the span
of {ℓ(ξi)n(ℓ(ξi)∗)m |n,m ≥ 0}. The only element in this set that is not centered is when
n = m = 0, therefore the centered elements in W*(ℓ(ξi)) are a limit of a bounded net of
elements in the span of {ℓ(ξi)n(ℓ(ξi)∗)m |n,m ≥ 0} \ {1}.

Let i1, · · · , in ∈ I with ik ̸= ik+1 for 1 ≤ k ≤ n− 1 and for each ik, let xik be a centered
element inW*(ℓ(ξik)). We need to show that xi1 · · ·xin is centered. Arguing as in the previous
example, it is sufficient to verify that xi1 · · · xin is centered when each xik = ℓ(ξik)

n(ℓ(ξik)
∗)m

with n and m not both zero. By orthogonality, ℓ(ξik)
∗ℓ(ξik+1

) = 0. This means that there
are only three ways for xi1 · · ·xin to be nonzero

(i) Each xik is a product of only creation operators

(ii) Each xik is a product of only annihilation operators

(iii) There exists a k satisfying 2 ≤ k ≤ n− 1 so that xik = ℓ(ξik)
n(ℓ(ξik)

∗)m with n and m
nonzero. For all j > k, xij is a product of only annihilation operators and for all j < k,
xij is a product of only creation operators.

In the last two cases, xi1 · · ·xinΩ = 0. In the first case, xi1 · · ·xinΩ is orthogonal to Ω.
This establishes the freeness.

The above example implies that the elements (ℓ(ξi)+ℓ(ξi)
∗)i∈I are free in B(F(H)), mean-

ing that we have a concrete spatial representation of a free family of semicircular elements.
It turns out φ is faithful on each W ∗(ℓ(ξi) + ℓ(ξi)

∗). From our calculation of the law of
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ℓ(ξi)+ ℓ(ξi)
∗, it follows that (W ∗(ℓ(ξi)+ ℓ(ξi)

∗), φ) ∼= L∞([−2, 2], dµ) with µ the semicircular
law. As µ is diffuse, it follows that L∞([−2, 2], dµ) ∼= (L(Z), τ). This analysis implies that
(W ∗({ℓ(ξi) + ℓ(ξi)

∗}i∈I), φ) ∼= (L(FI), τ), giving us an alternative spatial representation of a
free group factor. This latter representation of a free group factor is often more preferred.
The last exercise assigned to you gets at a reason why.
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