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Graph ConvNets
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Graph Neural Networksl!!

@ Spatial NN techniques to deal with arbitrary graphs.

@ Minimal inner structures :

@ Invariant by vertex re-indexing (no graph
matching is required)

@ Locality/local reception field (only neighbors are
considered)

@ Weight sharing (convolutional operations)

® Independence w.r.t. graph size

h; = fGNN ({hj 1y — Z}>

® What instantiation of f 7

[1] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009




Graph Recurrent Neural Networks
° with Multi-Layer Perceptron (MLP)M :

hi =Y Cowmur(®ishj) = Ac(Bo(Uz; + Vhy))

Jj—1 J—1
® Graph GRU3l (Gated Recurrent Unit) :

hi = Cq.cru (@i, Z h;)

Fixed-point iterative scheme needed : ]_”
nto= > nh, w0 =uy
Jj—1
2t = o(U.hl + V.
ritl = o(U.ht +V,hb)
iLE—H = tanh(Uh(hg © TZT_H) + V}jLE)
P = (-2 o+ o R

[1] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009
[2] Li, Tarlow, Brockschmidt, Zemel, Gated Graph Sequence Neural Networks, 2015

Xavier Bresson [3] Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio, Learning Phrase Representations using RNN for Statistical Machine Translation, 2014
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Graph ConvNets

[, GCNE! (with ReLU) and GraphSAGEP! (with max) :

hf‘i‘l = CG-VCN (hf, Z hﬁ) , hf:O =x;
Jj—1

= ReLU(U'R{ + VY _hf), hli™" =u,

)
Jj—1

layer ¢ layer £+ 1

[1] Sukhbaatar, Szlam, Fergus, Learning Multiagent Communication with Backpropagation, 2016
[2] Kipf, Welling, Semi-Supervised Classification with Graph Convolutional Networks, 2017
[3] Hamilton, Ying, Leskovec, Inductive representation learning on large graphs, 2017




Xavier Bresson

Residual Gated Graph ConvNetsl!|

with edge gating mechanism leveraging!?>4, residuality!®l and
batch normalization!® :

AL = hf + ReLU (BN(U'R{ + 3 nf; © ViR
j—ri \ The idea is to design the
edge gates simplest learnable
(anisotropic property) anisotropic and
Nij = O (Ae ht + B* hﬁ) multiscale diffusion
operator on graphs
[Perona-Malik’87

inspiration]

layer ¢ layer £+ 1

[1] Bresson, Laurent, Residual gated graph convnets, 2017

[2] Sukhbaatar, Szlam, Fergus, Learning Multiagent Communication with Backpropagation, 2016

[3] Hamilton, Ying, Leskovec, Inductive representation learning on large graphs, 2017

[4] Marcheggiani, Titov, Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, 2017

[5] He, Zhang, Ren, Sun, Deep Residual Learning for Image Recognition, 2016

[6] Ioffe, Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015




Graph RNNs vs Graph ConvNets

@ Graph RNNs vs graph ConvNets

® Numerical study to compare both graph architectures!'l on two basic and representative
graph problems:

® Sub-graph matching®

® Semi-supervised classification

[1] Bresson, Laurent, Residual gated graph convnets, 2017
[2] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009
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Numerical Experiments

@ Graph learning problem : 2
. 0
® Pattern matching .
2
P
@ Experimental results:
90 4 144 — Proposed Graph ConvNets //
——— Marcheggiani — Titov g
—— Sukhbaatar et al ,/”
85 124 === Graph LSTM Vil -7
9 === Multilayer Li et al il /,/’
) -7 g
2 80 1 210 o
5 = - -
8 £ T et
<754, b= PP
—— Proposed Graph ConvNets o 8 PRadiPtiae
——— Marcheggiani — Titov
70 1 —— Sukhbaatar et al
——- Graph LSTM 6
—-== Multilayer Li et al
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L

@ All graph NNs are upgraded with residuality and batch normalization (offers 10% improvement).
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Numerical Experiments

@ Graph learning problem :

® Semi-supervised clustering

@ Experimental results :

161 — Proposed Graph ConvNets 80
——— Marcheggiani — Titov -
141 — sukhbaatar et al 0
=== Graph LSTM
312 M If‘l Lietal - %
A ~ ==~ Multilayer Li et al -
& £ - >
8 2 10 potes - g%
5 £ - - 5
S = g - S 40
< 40 S 8 -7 -7 < e
—— Proposed Graph ConvNets \\ g 30 F e —— Proposed Graph ConvNets
304 —— Marcheggiani — Titov N H '/ Marcheggiani — Titov
—— Sukhbaatar et al 204 / —— Sukhbaatar et al
20 --- Graph LSTM ,j/ —== Graph LSTM
1o = Mutiayer Lietal 10 -~ Multilayer Li et al

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 25 50 75 100 125 150 175 200
L L Time (sec)

@ ConvNets architectures that can be deep (by stacking many layers) offer competitive
performances for graphs with variable sizes.

Xavier Bresson
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Anisotropy vs Isotropy

Standard ConvNets produce anisotropic filters because Euclidean grids have
directional structure.

Graph ConvNets compute isotropic filters because there is no notion of
directions on arbitrary graphs.

How to get anisotropy back for graphs ?
® TKdge gates!'!/attention? information to treat neighbors differently.

@ Differentiate graph edges and graph verticesl® (e.g. different atoms and
atom connections)

[1] Bresson, Laurent, Residual gated graph convnets, 2017
[2] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018
[3] Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017
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Molecule Generation

Outline




Molecule Generation

@ Goal is to design a neural network that can
® Auto-encode molecules,
@ Generate novel molecules,

® Produce molecules with optimized chemical property.

Xavier Bresson 13




Graph Auto-Encoder

® Graph-to-Graph Model :

— Encoder — l o } — Decoder —

\

Fncoding molecules with Y
graph-to-vec model

Decoding latent vector with

vec-to-graph model
(Continuous) lah @4&

representation of molecules

Xavier Bresson
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Graph Encoder

Graph NNs often used to encode molecules into a continuous vectorial space.

@ GNNs used for regression s.a. Duvenaud-et-allll, Gilmer-et.al?! to predict molecular
properties (1-2 orders of magnitude faster than solving Schrodinger equation w/ DFT).

Graph RNNs, Graph ConvNets, Graph Attention Nets

hi — fnode({hj}aj S N(@))

z = ggraph({hi},i € V) =

Reduce function : Sum or Mean

[1] Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams, Convolutional networks on graphs for learning molecular fingerprints, 2015
[2] Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017




Decoder & Graph Generation

@ Encoding is easy.

n n n
/2 = Sample [QINodelD d
= & A S0P [SiNodeld A render 01 Step reward
Qw .® EdgeType pdale Final reward
n n
t
©O— (oJstop

©
@ Two approaches : & & & o
‘ % ‘(‘ri)' Otgrve - S@ Sample g ;’;’:‘T‘jp:d render ‘ :.:;,I,;:,Z,rz
& A (8) [1]stop
@ Auto-regressive models : Sequential generation of WSty ST BIOCN U0 (ARN—srs IS (6e—ts  (Femat—n

molecules (atom-by-atom). You-Leskovec-et.al, 2018

® Jin-et.al, 20181, You-Leskovec-et.al, 20182,

etc . P(G|G) by graph matching
@ One-shot models : Generation of all atoms in a © .
3 4(2|G)
o O E ¢ N E‘
single pass. - .
. . : B
® Simonovsky, Komodakis, 20188, De Cao, > o .

Kipf, 20184, etc Simonovsky, Komodakis, 2018

[1] Jin, Barzilay, Jaakkola, Junction Tree Variational Autoencoder for Molecular Graph Generation, 2018

[2] You, Liu, Ying, Pande, Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, 2018
[2] Simonovsky, Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders, 2018

[4] De Cao, Kipf, MolGAN: An implicit generative model for small molecular graphs, 2018

Xavier Bresson 16




One-Shot Decoder

@ A challenge with one-shot decoder is to
® It is hard to generate simultaneously :
@ The number of atoms,
@ The bond structure between the atoms.

® Authors!'? generated molecules with a fixed size (the size of the largest molecule).

]’((I\C') by graph matching

] Y
n k
ool NS |Fl et
o) KL C) ‘
A
,(2IG) \
© I “S o B \
po(Gl2) O ©
j argmax
o) F o)
>— g . >—

[1] Simonovsky, Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders, 2018
[2] De Cao, Kipf, MolGAN: An implicit generative model for small molecular graphs, 2018

Xavier Bresson




Our Decoder

@ We propose to disentangle these 2 problems :

Atom
generation
Molecule formula
1 EX: OCQF4Li7Cl3SSA].2Ne]3\ I I
l n | 111.
' O N C F Li C1 S Al Ne B
Latent : Bag-of-atoms
representation Bond structure
of the molecule Bond w/ molecule formula Sum of histogram is the number
generation g of atoms in a molecule

Xavier Bresson 18




Atom Decoder

@ We decode the latent representation of the molecule with a Multi-Layer Perceptron (MLP)
to produce the histogram over the atoms in a molecule :

[ —1.2 ]
i1 MLP
0.3
> I
5.9
or | N |
O N C F
Latent
representation of Bag-of-atoms
the molecule
0C;

Xavier Bresson
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Bond Decoder

@ The bag-of-atoms indicates what atoms are in the molecule (IKEA pieces),

@ The atoms are assembled with a graph NN (IKEA assembly instructions).

Graph
Bag-of-atoms Net
0C; |
O C

representation

Latent 1
of the molecule l l

Xavier Bresson

Decoded
molecule




Beam Search

@ The one-shot model may produce a chemically molecule. 0

® Violation of atom valency (maximum number of electrons in the m G
outer shell of the atom that can participate of a chemical bond).

®Electron from hydrogen

® We use beam search to produce a valid molecule. ®Electron from carbon

Xavier Bresson 21
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Beam Search

Start with a random edge.

Select the next edge that

@ has the largest probability (or Bernouilli sampling), Q Edge probability map

. i by the output of
@ is connected to selected edges, given by the output o

the graph NN.
@ does not violate valency.
Repeat for a number of different initializations.
Select the molecule that maximizes =
@ The product of edge probabilities or, I o
@ The chemical property to be optimized s.a. druglikeness (QED), | I C

NONE SINGLE DOUBLE TRIPLE AROMATIC

constrained solubility (logP), etc.

[\
[\




Summary

@ Molecule auto-encoder system :

-1.2
4.1
-0.3
2.1

GDraph(i\Tet Edge
ceoder Probability
Matrix

>

5.9
-0.1

Latent representation
of the molecule

Input molecule
MLP

Decoder

O N C F

Bag-of-atoms
0GC;

Xavier Bresson

Beam search

Output molecule




Encoder Description

@ We use graph ConvNet!! :

Graph
representation

-

.

W = h! + ReLU <BN (thf +> i oW, hﬁ)) with  77;; =

jevi

©J

N
z = Z U(AeiLj—l-Bhf—FC’hJL)@Wefj
ij=1

[1] Bresson, Laurent, Residual gated graph convnets, 2017

Xavier Bresson

Input molecule

Graph
@ ConvNet o
© ’@ Encoder 03
—_—

U(efj)

|

Latent representation
z of the molecule

Dense

el = ¢! 4 ReLU <BN (erfj F VIR + VE h§)>

D it J(efj/

)+e

attention




Bond Decoding during Training

@ Given the latent encoding z of the molecule and the bag-of-atoms z,,,, we use a graph ConvNet
to decode the bonds between the atoms :

o1 [INN O C C (]
Latent molecule Graph — N
: ConvNet Z
representation
Z
o
O
@) w
1 o J\ .
2 — Edge Edge probability
B I I “boa | 7 Probability
O N C F 0 Matrix . i.ﬂ
Bag-of-atoms TN
given by input molecule
N,0C3

(]
ot
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Bond Decoding at Test Time

@ The bag-of-atoms of the input molecule is predicted by a MLP :

o [INN O C C (]
Latent molecule Graph — N
representation ConvNet ;
l MLP O
@)
@) N
1 o~ J\\ " o
2 Edge Edge probability
0 I I Zboa | 3 Probability
0O N C F 0 Matrix . i i a

NONE SINGLE DOUBLE TRIPLE = AROMATIC

Bag-of-atoms
predicted by MLP
N,OC;

Xavier Bresson




Breaking symmetry

@ The bond decoder starts with Bi=0 — [ Zator }

C
@ This is not enough for the graph NN to be able

to differentiate the 3 atoms of Carbon and the 2
atoms of Nitrogen !

@ We break the symmetry by introducing
positional features z,., , which will

differentiate several atoms of the same type.

o We this positional feature with N
the atom type z,, to form the input node
feature of the decoder.

pe=0 _ [ Zatoq ]

Zpos;

Xavier Bresson
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Positional Features

® We need to
® We use the SMILE representation of molecules to order the atoms.

@ A SMILE is a sequence of string characters that encodes atoms and bonds
of a molecule.

SMILE ( p\:/\/@ ) =  FC(F)(F)C1=CC=CC(NC2=|[N+](CCC3=CC=CC=C3)...

...C(C3=CC=C(Cl)C=C3)=CS2)=C1

(F,1) (C,1) (F,2) (F,3) (C,2)...

Xavier Bresson 28




Variational Auto-Encoder

@ Finally, we use a

—1.2
4.1
—0.3
g
5.9
@ —0.1
4.1
@ —-0.3
2.1
0' 5.9
Input molecule ~0.1
Graph
ConvNet
Encoder

[1] Kingma, Welling, Auto-encoding variational bayes, 2013

Xavier Bresson

[ to improve molecule generation “by filling the latent space” :

Graph

L ConvNet G

73;:1; Decoder @ @
2o

—0.1

©

Output molecule
(after beam search)

Latent representation
of the molecule

MLP
Decoder

(6] N C F
Bag-of-atoms
0Cs 29




@ No matching process necessary between input and output molecules because the same

Xavier Bresson

Loss

is composed of
@ Cross-entropy loss for edge probability,
@ Cross-entropy loss for bag-of-atoms probability,

@ Kullback-Leibler divergence for the VAE Gaussian distribution.

~ ~ )\vae
L:)\ezpelogpe"‘)\azpalogpa_ 9 Z(l_'_logo-i_:ui_O—I%
e a k

atom ordering is used (with the SMILE representation).

)




e ZINC:

® 250k drug like molecules,

Dataset

@ Up to 38 heavy atoms (excluded Hydrogen).

Xavier Bresson
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Training

@ Mini-batch of 50 molecules
@ Learning rate is decreased by 1.25 after each epoch if training loss does not decrease by 1%.

@ Learning stops when LR is less than 10°.

@ Training takes 28 hours on a single Nvidia 1080Ti GPU.

Xavier Bresson




Numerical Experiments

@ How many molecules are correctly decoded?

® Molecule novelty

@ Beyond memorization — how many molecules sampled from the learned distribution
are not in the training set?

® Molecule optimization

Xavier Bresson

® How much property improvement can we obtain when optimizing the latent space?

@ The chemical property is here the constrained solubility of molecules.




Main Baseline Techniques

°
@ JT-VAE : Jin, Barzilay, Jaakkola, Junction Tree Variational Autoencoder for Molecular
Graph Generation, 2018
¢ GAN + RL:

Xavier Bresson

@ GCPN : You, Liu, Ying, Pande, Leskovec, Graph convolutional policy network for goal-
directed molecular graph generation, 2018




Molecule Reconstruction

Method Reconstruction Validity
CVAE [Gomez-Bombarelli et al., 2016] 44.6% 0.7%
GVAE [Kusner et al., 2017] 53.7% 7.2%
SD-VAE [Dai et al, 2018] 76.2% 43.5%
GraphVAE [Simonovsky, Komodakis, 2018| - 13.5%
JT-VAE (SL) [Jin et al, 2018| 76.7% 100.0%
GCPN (GAN+RL) [You et al, 2018] - -
OURS (VAE+SL) 90.5% 100.0%

Table 1: Percentage of successful reconstruction of 250k ZINC molecules.

Xavier Bresson 35
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Molecule Novelty

Method Novelty Uniqueness
JT-VAE (SL) [Jin et al, 2018] 100.0% 100.0%
GCPN (GAN+RL) [You et al, 2018] - -
OURS (VAE+SL) 100.0% 100.0%

Table 2: Sample 5000 molecules from learned prior distribution.

oo @y u & g D9

36




Molecule Optimization #1

@ Constrained optimization :
® Goal is to maximize the constrained solubility of the training molecules.
@ Optimization is done by gradient ascent in the latent space of molecules.

@ Following JT-VAE, we report the top 3 optimized molecules :

Method 1st 2nd 3rd

ZINC 4.52 430 4.23

CVAE [Gomez-Bombarelli et al., 2016] 1.98 1.42  1.19
GVAE [Kusner et al., 2017] 294 289 2.80
SD-VAE [Dai et al, 2018] 404 350 2.96
JT-VAE (SL) [Jin et al, 2018] 530 4.93  4.49
OURS (VAE+SL) 524 514  5.06

GCPN (GAN+RL) [You et al, 2018] 7.98 7.85 7.80

Table 3: Generative performance of the top three molecules for the constrained solubility.

Xavier Bresson




Molecule Optimization #1

® Top 3 optimized molecules :

Xavier Bresson

i @\j\’:‘ O O
OO ¥ 7w A
JT-VAE (VAE+SL) A0 ] o 9

NH . \@ Mean is 4.90
iNH HF ©\C|
! © E’r @ 4.49 c 4.93
OURS (VAE+SL) Q , O ) Q | J
U O Q/ ]
) ®
5.24 5.14 5.06 Mean is 5.14
GCPN (GAN+RL) Hj}f(: Mﬂ%q H%»
7.98 7.48 7.12 Mean is 7.52
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Molecule Optimization #2

@ Constrained optimization :

® Goal is to maximize the constrained solubility of the 800 test molecules with the lowest
value.

@ The optimization of the chemical property is constrained by the similarity between the
original molecule and the new generated molecule.

@ Following JT-VAE, we report property improvements w.r.t. molecule similarity & :

JT-VAE [Jin et al, 2018] (SL) GCPN [You et al, 2018] (GAN+RL) OURS (VAE+SL)

0  Improvement Similarity ~ Success Improvement Similarity Success Improvement Similarity Success
0.0 191+204 028+0.15 97.5% 420 +1.28 0.32 +£ 0.12 100.0% 5.24 + 1.55 0.18 £ 0.12 100.0%
0.2 168+185 033+0.13 97.1% 412+ 1.19 0.34 £ 0.11 100.0% 4.29 +£ 1.57 0.31 £0.12 98.6%
0.4 0.84+145 0.51 £0.10 83.6% 249 + 1.30  0.47 £ 0.08 100.0% 3.05 + 1.46 0.51 + 0.10 84.0%
0.6 021+0.71 0.69 + 0.06 46.4% 0.79 £ 0.63  0.68 £ 0.08 100.0% 2.46 + 1.27 0.67 = 0.05 40.1%

Table 7: Molecule optimization results.

Xavier Bresson 39




Xavier Bresson

Molecule
similarity 0.0

Molecule
similarity 0.2

Molecule
similarity 0.4

Molecule
similarity 0.6

Molecule Optimization #2

AL IJ\\:

4: -8.38 4: 2.19

3, & if@
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Conclusion

® We propose for atoms and bonds decoding.
@ We report highest VAE accuracy on ZINC dataset for
@ Molecule reconstruction,
@ Molecule optimization of constrained solubility property.
@ Comparing VAE+SL vs GAN+RL :
® GAN+RL generates better molecules (outside the training statistics),
@ VAE+SL generates better optimized molecules similar to original ones,

® GAN+RL generates optimized molecules with 100% success.
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Travelling Salesman Problem (TSP)

Outline




Graph combinatorial problems

® Shortest path problem :
® Find a path between two vertices in a graph with shortest distance.
@ Dijkstra's algorithm : Exact solver in polynomial time O(E+ Vlog V) with Fibonacci heap.

@ Applications : Road Navigator, P2P network, etc

Xavier Bresson




Graph combinatorial problems

® Travelling salesman problem (TSP) :

® Find the shortest tour that visits each node and returns to the starting
node.

@ NP-hard problem in combinatorial optimization.
@ Exact solution in factorial time O( W)

@ Long history : Von Neumann'51l, Dantzig'54, Bellman-Held-Karp'62,
Edmonds’67, etc.

@ William Cook (Waterloo U.), MAA Invited Talk on TSP, Jan.
2018 : https://www.youtube.com /watch?v=q8nQTNvCriE

@ Applications : Transportation, scheduling, hardware design, etc.

Xavier Bresson



https://www.youtube.com/watch?v=q8nQTNvCrjE

Operational Research

® State-of-the-art solution

@ Concorde solver developed by Applegate, Bixby, Chvatal, Cook,
2006 (test-of-time).

@ Code available :

@ http://www.math.uwaterloo.ca/tsp/concorde

® Leveraged 30 years of theoretical developments + data structures
and heuristics from computer science.

® Branch-and-Cut approach :

@ Cutting plane algorithms (Dantzig et al., 1954) to iteratively
solve linear relaxations of TSP.

@ Branch-and-bound approach to reduce solution search space.

Xavier Bresson



http://www.math.uwaterloo.ca/tsp/concorde

Xavier Bresson

Operational Research vs. Neural Networks

@ Significant specialized knowledge,
@ Years of research work.

“Can we use deep neural networks to learn better combinatorial optimization algorithms
instead?” Bengio et al., 20181

The last three years, multiple efforts to develop a learning algorithm for TSP (proof-of-
concept).

Goal : Design learning algorithms for tackling previously un-encountered NP-hard problems,
especially those that are non-trivial to design heuristics for, Bello et al., 20162,

[1] Bengio, Lodi, Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, 2018
[2] Bello, Pham, V Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, 2016

16




Neural Networks

@ Introduced by Vinyals et al., 2015 and extended by Bello et al. 20162 :

@ Neural Network : Pointer Network (Seq2Seq model with attention mechanism),
no use of graph structure.

@ Training Scheme : Reinforcement Learning to minimize the length of the tour.
@ Solution Search : Probabilistic sampling from learned policy.

@ Output Type : Autoregressive, step-by-step generation of the next node.

[1] Vinyals, Fortunato, Jaitly, Pointer networks, 2015
[2] Bello, Pham, V Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, 2016

Xavier Bresson




Neural Networks

® Graph neural network approach for TSP :

Xavier Bresson

@ Introduced by Dai et al., 2017, and extended by Kool et al., 20191,

Greedy: add

Q o O- | bestnode QO
Q\ \O - Q: &(O) 1%t jteration
6o _ - o
Greedy: add
QO - | bestnode ,;/O
O/ \\O = ‘ O’\\ ‘ \8 2" jteration
L J 1 |
State Embedding the graph + partial solution Greedy node selection

[1] Dai, Khalil, Zhang, Dilkina, Song, Learning combinatorial optimization algorithms over graphs, 2017
[2] Kool, van Hoof, Welling, Attention, learn to solve routing problems!, 2019




Neural Networks

® Kool et al., 201901 :

Xavier Bresson

Neural Network : Graph Attention Network (GAT)X

Training Scheme : Reinforcement Learning to minimize the length of the tour.

Solution Search : Probabilistic sampling from learned policy.

Output Type : Autoregressive, step-by-step generation of the next node.

SOTA technique

[1] Kool, van Hoof, Welling, Attention, learn to solve routing problems!, 2019
[2] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph attention networks, 2017
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Our Approach

@ Introduced by Nowak et al., 2017l and extended by us.

Xavier Bresson

® Neural Network : Graph ConvNet/?

® Training Scheme : Supervised Learning using pairs of problems and solutions generated
with Concorde.

@ Solution Search : Beam search over edge probability matrix.

@ Output Type : One-shot solution of nodes.

[1] Nowak, Villar, Bandeira, Bruna, A note on learning algorithms for quadratic assignment with graph neural networks, 2017
[2] Bresson, Laurent, Residual gated graph convnets, 2017

ot




Baseline Techniques

® OR techniques :
@ Concorde (TSP heuristics)
@ Gurobi (exact LP/QP solver)

@ Google OR Tools (general heuristics)

® Neural networks :

Method Neural Network Model Type Training Setting  Solution Search Type
Bello et al. (2016) Pointer Network Autoregressive RL Sample from policy
Kool et al. (2019) Graph Attention Network Autoregressive RL Sample from policy
Ours Graph ConvNet Non-autoregressive SL Beam search

Xavier Bresson




@ Taking a

Model Overview

I

@ Graph ConvNet model outputs an edge probability matrix,

@ Probability map is converted to a valid tour using beam search.

Input graph

Xavier Bresson

Graph Beam
ConvNet Search
—_— —_—

Edge predictive
heat-map

Valid TSP tour

ot
\V]




-

Graph ConvNet

U(efj)

D it a(efj,) +e

Dense attention

R = hY + ReLU (BN (thf +> oWy h?)) with  7j; =

jevi

ij

et = ¢l + ReLU (BN (vleefj + VLIRS + V3£h§>)

hf:O =I; € R?

=

€ij = |zi — |2

o Edge
classifier

pij = sigmoid(MLP(eiLj))

Xavier Bresson

Loss is the logistic regression loss on edges.

[1] Bresson, Laurent, Residual gated graph convnets, 2017




Beam Search Decoder

@ Probabilistic heat-map over the adjacency matrix of tour
connections.

@ Beam search decoder :

@ Starting from a random node, expand b most probable edge
connections among the node’s neighbors.

@ Keep expanding the top-b partial tours at each stage until all
nodes are visited.

@ Final prediction is the tour with the smallest length among the
b tours at the end of search.

Xavier Bresson




Dataset Generation

® Current paradigm :

@ Training and evaluating models on TSP instances of fixed sizes, that
are 20, 50 and 100 nodes.

® Training sets :
@ 1 Million training pairs of problem instances and solutions,
@ 10K pairs for validation/test sets,

® For each TSP, n node locations sampled randomly in the unit square.
Optimal tour is found with Concorde.

Xavier Bresson
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Measuring Performance

@ Metrics :

o : Average predicted tour length over 10,000 test instances.
1 m
[ = — I
"

@ Optimality gap : Average percentage ratio of predicted tour length relative to optimal
solution over 10,000 test instances.

gap = %zm: (lm/im — 1)

=1

@ Fvaluation time : Total wall clock time taken to solve 10,000 instances, either on single
GPU (Nvidia 1080Ti) or 32 instances in parallel on a 32 virtual CPU system (2 x Xeon

E5-2630).

Xavier Bresson
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Performance on Fixed-size TSPs

@ The proposed system

@ Outperforms previous NNs in terms of both optimality gap and evaluation time (graph
ConvNet and beam search are parallelizable).

@ Does not outperform Concorde.

Method Type TSP20 TSP50 TSP100

yP Tour Len. Opt. Gap. Time | Tour Len. Opt. Gap. Time | Tour Len. Opt. Gap. Time
Concorde Solver | 3.84 0.00% (Im) | 5.70 0.00% 2m) | 7.76 0.00% (3m)
Gurobi Solver | 3.84 0.00% (7s) | 5.70 0.00%  (@2m) | 7.76 0.00%  (17m)
OR Tools H, S | 3.85 0.37% | 5.80 1.83% | 7.99 2.90%
GNN [Nowak et al., 2017] SL, BS 3.93 2.46% - -
PtrNet [Bello et al., 2016] RL, S - 5.75 0.95% 8.00 3.03%
GAT [Kool et al., 2019] RL, S 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)
GCN (Ours) SL, BS* 3.84 0.01% (12m) 5.70 0.01%  (18m) 7.87 1.39%  (40m)

Xavier Bresson
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Performance on Fixed-size TSPs

@ Sample efficiency :

20.0 20.0
Approach Approach
—— Ours 17.5 —— Ours
—— Kool et al. —— Kool et al.

e e
NN
u o u

=

u

o

10.0

7.5

Optimality Gap (%)

5.0

2.5

0.0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
# of samples le6 # of samples le6

TSP50 TSP100
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TSP50

TSP100
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Trade-offs

@ Better learning : The model is given more information to learn faster.
@ Limited data : Generating labelled datasets for instances beyond hundreds of nodes is
computationally expensive.
® Reinforcement Learning :
@ Sparse learning : The model is only given a reward = Less informative for learning.

@ Infinite data : Does not require the creation of labelled datasets.

Xavier Bresson




Transfer to Different TSP Sizes

° to different problem sizes :

Problem | TSP20 Model ~TSP50 Model ~TSP100 Model

TSP20 0.08% 2% 22%
TSP50 1% 0.52% 3%
TSP100 4% 2.5% 2.26%

Optimality gap for Kool et al., 2019

Problem | TSP20 Model TSP50 Model = TSP100 Model

TSP20 0.01% 34% 710%
TSP50 38% 0.01% 65%
TSP100 28% 31% 1.39%

Optimality gap for our model

Xavier Bresson
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Conclusion

® We propose a for solving TSPs for fixed sizes.

@ Future work :
® Generalization to different TSP sizes with zero-shot learning or fine-tuning.
@ Being faster than Concorde/OR solvers due to parallelization (for large TSP sizes).

@ Beyond TSP : Expand our system to RL to solve combinatorial problems that are non-
trivial to design heuristics!»2l.

[1] Bengio, Lodi, Prouvost, Machine learning for combinatorial optimization: a methodological tour d’horizon, 2018
|2] Bello, Pham, V Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, 2016
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Conclusion

Outline
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Conclusion

® We have solved two different problems, molecule generation and TSP,
@ One-shot graph ConvNet + Supervised Learning + Beam Search
@ Simple and fast solution (GPU parallelizable)

@ An alternative to auto-regressive graph NN methods.

Xavier Bresson
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(Questions
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