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Goals

I A simple and natural way to compare densities with
unnormalized/unbalanced total mass.

2

W. Gangbo W. Li M. PuthawalaS. Osher

GLOP

http://www.math.ucla.edu/~mputhawala/


Distance among histograms

Measuring the closeness among density functions (histograms) plays
crucial roles in applications, such as

I Image processing and Inverse problems (Li et. al 2018, Yang et.al
2018, Puthawala et.al. 2018);

I Machine learning (Lin et. al 2018);

I Mean field games (Chow et. al 2018).
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Transport Distance

Optimal transport provides a particular distance (W ) among histograms,
which relies on the distance on sample spaces (ground cost c).

Denote X0 ⇠ ⇢0 = �x0 , X1 ⇠ ⇢1 = �x1 . Compare

W (⇢0, ⇢1) = inf
⇡2⇧(⇢0,⇢1)

Z Z
c(x, y)⇡(x, y)dxdy = c(x0, x1);

Vs

TV(⇢0, ⇢1) =

Z

⌦
|⇢0(x)� ⇢1(x)|dx = 2;

Vs

KL(⇢0k⇢1) =
Z

⌦
⇢0(x) log

⇢0(x)

⇢1(x)
dx = 1.
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Goals: Unnormalized Transport

Main Questions
In real applications such as inverse problems and image processing, one
needs to measure unnormalized/unbalanced densities.

Solutions:
We propose a simple and natural modification of optimal transport to
compare unnormalized/unbalanced densities, and introduce an e�cient
numerical scheme.
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Related studies

I Wasserstein-Fisher-Rao metric, L. Chizat, G. Peyre, B. Schmitzer,
and F.-X. Vialard, Journal of Functional analysis.

I Hellinger-Kantorovich metric, M. Liero, A. Mielke, and G. Savare,
Inventiones mathematicae.

I Free boundaries in optimal transport and Monge-Ampere obstacle
problems, L. Ca↵arelli and R. McCann, Annals of Mathematics.

I Transport and equilibrium in non-conservative systems, L. Chayes
and H. K. Lei, Advances in Di↵erential Equations .

I Transport based image morphing with intensity modulation, J.
Maas, M. Rumpf and S. Simon, SSVM.

Compared to the above approaches, unnormalized OT has a closed-form

Unnormalized Monge-Ampere equation,

is able to be solved by a very simple and e�cient Primal-Dual algorithm
(Chambolle-Pock).
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Optimal transport

What is the optimal way to move or transport the mountain with shape
X, density ⇢0(x) to another shape Y with density ⇢1(y)?

The optimal transport problem was first introduced by Monge in 1781,
relaxed by Kantorovich by 1940. It introduces a particular metric on
probability set. In literatures, the problem is often named Earth Mover’s
distance, Monge-Kantorovich problem and Wasserstein metric, etc.
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Normalized Optimal Transport

Balanced case Z

x2A
⇢1(x)dx =

Z

T (x)2A
⇢0(x)dx,

where T is a smooth one to one map on Rd:

det(rT (x))⇢1(T (x)) = ⇢0(x),

This is called the Jacobian equation underdetermined.

8



Lp
Monge–Kantorovich–Wasserstein distance

Given two measures ⇢0, ⇢1 with equal mass. Consider

(Wp(⇢0, ⇢1))
p
= inf

T

Z

⌦
kx� T (x)kp⇢0(x)dx

where the infimum is among all transport maps T , which transfers ⇢0(x)
to ⇢1(x), i.e.

⇢0(x) = ⇢1(T (x))det(rT (x)) .

The minimizer T is the optimal transfer, which solves Lp

Monge-Kantorovich problem.
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Monge–Ampere equation

Brenier showed for p = 2, uniqueness of optimal transfer T , such that

T (x) = r (x).

This means
det(Hess (x))⇢1(r (x)) = ⇢0(x).

It is the Monge-Ampere equation, which is hard to solve directly.
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Dynamical formulation
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Benamou–Brenier

The distance has an important fluid dynamics formulation
(Benamou-Brenier 2000). Then the square of L2 Kantorovich distance
satisfies

(W2(⇢0, ⇢1))
2
= inf

⇢,v

Z 1

0

Z
kv(t, x)k2⇢(t, x)dxdt ,

where infimum runs over the continuity equation, such that

@t⇢t +r · (⇢v) = 0 , ⇢0 = ⇢0 , ⇢1 = ⇢1 .

Here the minimizer satisfies

v(t, x) = r�(t, x),

and
@

@t
�(t, x) +

1

2
kr�(t, x)k2 = 0.

We shall focus on this formulation, and further propose an extension.
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Unnormalized Optimal Transport

Define

UWp(µ0, µ1)
p
= inf

v,µ,f

Z 1

0

Z

⌦
kv(t, x)kpµ(t, x)dxdt+ 1

↵

Z 1

0
|f(t)|pdt · |⌦|

such that the dynamical constraint: the unnormalized continuity equation
holds

@tµ(t, x) +r · (µ(t, x)v(t, x)) = f(t),

with
µ(0, x) = µ0(x), µ(1, x) = µ1(x).

In this talk, we mainly consider p = 1, 2.
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Snowing and melting

The source function f(t) introduce the precisely co-dimensional one
variation into the density space.
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New metric



Unnormalized L1
Wasserstein metric

Let p = 1:

UW1(µ0, µ1) = inf
v,f(t)

nZ 1

0

Z

⌦
kvkµdxdt+ 1

↵

Z 1

0
|f(t)|dt · |⌦| :

@tµ+r · (µv) = f(t)
o
.
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Time independent solution

Denote

m(x) =

Z 1

0
v(t, x)µ(t, x)dt,

with the fact
Z 1

0
f(t)dt = c =

1

|⌦|

⇣Z

⌦
µ1(x)dx�

Z

⌦
µ0(x)dx

⌘
.

then by Jensen’s inequality and integrating the time variable t, we obtain

UW1(µ0, µ1)

= inf
m

nZ

⌦
km(x)kdx+

1

↵

���
Z

⌦
µ0(x)dx�

Z

⌦
µ1(x)dx

��� :

µ1(x)� µ0(x) +r ·m(x) =
1

|⌦|

⇣Z

⌦
µ1(x)dx�

Z

⌦
µ0(x)dx

⌘o
.
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Closed form solution

In one space dimension on the interval ⌦ = [0, 1], the L1 unnormalized
Wasserstein metric has the following explicit solution:

UW1(µ0, µ1) =

Z

⌦

���
Z x

0
µ1(y)dy �

Z x

0
µ0(y)dy � x

Z

⌦
(µ1(z)� µ0(z))dz

���dx

+
1

↵

⇣���
Z

⌦
µ1(z)dz �

Z

⌦
µ0(z)dz

���
⌘
.
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Algorithm

In high dimensional sample space, the L1 unnormalized OT problem
forms

minimize
m

kmk1,2 subject to div(m) + µ1 � µ0
= c.

It is a particular example of compressed sensing. It can be solved easily
by Primal-Dual algorithm (Chambolle and Pock).
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Primal-Dual updates

Consider the Lagrangian of UOT:

L(m,�) =

Z 1

0

Z

⌦
kmk+ �(div(m) + µ1 � µ0

)dx,

where �(t, x) is the Lagrange multiplier of the unnormalized continuity
equation. The primal-dual update forms

8
>>><

>>>:

mk+1
(t, x) = arg inf

m
L+

1

2⌧1

Z 1

0

Z

⌦
km(t, x)�mk

(t, x)k2dxdt

�̃
k+1

(t, x) = arg sup
�

L� 1

2⌧2

Z 1

0

Z

⌦
k�(t, x)� �

k
(t, x)k2dxdt

where m, � are taking the gradient descent, ascent directions
respectively, with ⌧1, ⌧2 being the stepsizes.
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Algorithm: 2 line codes

Primal-dual method

1. For k = 1, 2, · · · Iterates until convergence

2. mk+1
= shrink(mk

+ µr�
k, µ) ;

3. �
k+1

= �
k
+ ⌧{div(2mk+1 �mk

) + p1 � p0 + c} ;
4. End

Here the shrink operator for the ground metric

shrink(y,↵) :=
y

kyk max{kyk � ↵, 0} , where y 2 Rd
.
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Examples
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Unnormalized L2
Wasserstein metric

Let p = 2:

UW2(µ0, µ1) = inf
v,f(t)

nZ 1

0

Z

⌦
kvk2µdxdt+ 1

↵

Z 1

0
f(t)2dt · |⌦| :

@tµ+r · (µv) = f(t)
o
.
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Minimizer system

The minimizer (v(t, x), µ(t, x), f(t)) for UOT problem satisfies

v(t, x) = r�(t, x), f(t) = ↵
1

|⌦|

Z

⌦
�(t, x)dx,

and
8
>>>><

>>>>:

@tµ(t, x) +r · (µ(t, x)r�(t, x)) = ↵
1

|⌦|

Z

⌦
�(t, x)dx

@t�(t, x) +
1

2
kr�(t, x)k2 = 0

µ(0, x) = µ0(x), µ(1, x) = µ1(x).
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Unnormalized Monge-Ampere equation

Denote

 (x) =
1

2
kxk2 + �(0, x),

Following the Hopf-Lax formula, the minimizer of unnormalized OT
satisfies

µ(1,r (x))Det(r2
 (x))� µ(0, x)

=↵

Z 1

0
Det

⇣
tr2

 (x) + (1� t)I
⌘
·

Z

⌦

⇣
 (y)� kyk2

2
+

tkr (y)� yk2

2

⌘
Det

⇣
tr2

 (y) + (1� t)I
⌘
dydt.
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Unnormalized Kantorovich problem

1

2
UW2(µ0, µ1)

2
=sup

�

nZ

⌦
�(1, x)µ(1, x)dx�

Z

⌦
�(0, x)µ(0, x)dx

� ↵

2

Z 1

0

⇣Z

⌦
�(t, x)dx

⌘2
dt
o

where the supremum is taken among all � : [0, 1] ! ⌦ satisfying

@t�(t, x) +
1

2
kr�(t, x)k2  0.
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Algorithm

Denote m(t, x) = µ(t, x)v(t, x). Consider the Lagrangian of UOT:

L(m,µ, f,�) =

Z 1

0

Z

⌦

km(t, x)k2

2µ(t, x)
dtdx+

1

2↵

Z 1

0
f(t)2dt

+

Z 1

0

Z

⌦
�(t, x)

⇣
@tµ(t, x) +r ·m(t, x)� f(t)

⌘
dxdt,

where �(t, x) is the Lagrange multiplier of the unnormalized continuity
equation. This formulation allows us to apply the primal dual algorithm
for

inf
m,µ

sup
f,�

L(m,µ, f,�).
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Primal-Dual updates

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

mk+1
(t, x) = arg inf

m
L+

1

2⌧1

Z 1

0

Z

⌦
km(t, x)�mk

(t, x)k2dxdt

µk+1
(t, x) = arg inf

µ
L+

1

2⌧1

Z 1

0

Z

⌦
kµ(t, x)� µk

(t, x)k2dxdt

fk+1
(t) = arg inf

f
L+

1

2⌧1

Z 1

0
kf(t)� fk

(t)k2dt

�̃
k+1

(t, x) = arg sup
�

L� 1

2⌧2

Z 1

0

Z

⌦
k�(t, x)� �

k
(t, x)k2dxdt

(m̃, µ̃, f̃) =2(mk+1, µk+1, fk+1
)� (mk, µk, fk

)
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Algorithm

Algorithm: Primal-Dual method for Unnormalized OT

1. For k = 1, 2, · · · Iterate until convergence

2. mk+1
(t, x) = µk(t,x)

µk(t,x)+⌧1

⇣
⌧1r�(t, x) +mk

(t, x)
⌘
;

3. µk+1
(t, x) = arg infµ

⇣
kmkk2

2µ � @t� · µ+
1

2⌧1
|µ� µk|2

⌘
(t, x);

4. fk+1
(t) = ↵

↵+⌧1

⇣
⌧1

R
⌦ �(t, x)dx+ fk

(t)
⌘
;

5. �
k+1

(t, x) = �
k
(t, x) + ⌧2

⇣
@tµ̃k+1

(t, x) +r · m̃(t, x)� f̃(t)
⌘
;

6. (m̃, µ̃, f̃) = 2(mk+1, µk+1, fk+1
)� (mk, µk, fk

);
7. end
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Example I
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Example II
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Example
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Discussions

The unnormalized OT opens many interesting fields:

I Finding closed-form solutions of unnormalized OT;

I Modeling inverse problem via unnormalized OT;

I Geometric properties of unnormalized OT;

I Gradient flows via unnormalized OT;

I Mean field games and control problems in unnormalized density
space.
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