GMNN: Graph Markov Neural Networks

Jian Tang

HEC Montreal

Mila-Quebec Al Institute

CIFAR AI Research Chair

Meng Qu, Yoshua Bengio, Jian Tang. "GMNN: Graph Markov Neural Networks". To appear at ICML'19.

Graphs are Ubiquitous

• A general and flexible data structure to encode the relations between objects

Interaction Network

- Cover a variety of domains and applications
 - node classification
 - Link prediction
 - Information diffusion •

...

Semi-supervised Object Classification

- Given G= (V, E, \mathbf{x}_{V})
 - $V = V_L \cup V_U$: objects/nodes
 - E : edges
 - \mathbf{x}_V : object features

- Give some labeled objects V_L , we want to infer the labels of the rest of objects V_U
- Many other tasks on graphs can be formulated as object classification
 - E.g., link classification

Related Work: Statistical Relational Learning

• Models the joint distribution of the object labels given the object features, i.e., $p(\mathbf{y}_V | \mathbf{x}_V)$ with conditional random fields

$$p(y_{V}|\mathbf{x}_{V}) = \frac{1}{Z(\mathbf{x}_{V})} \begin{pmatrix} \mathbf{Y} \\ (i,j) \geq E \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{j}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{i}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{i}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{i}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y}_{i}, \mathbf{y}_{i}, \mathbf{x}_{V}) \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

$$i,j (\mathbf{y} \\ \mathbf{y} \end{pmatrix}$$

 \frown

Optimization of Statistical Relational Learning

- Learning by maximizing the likelihood of the observed labels $\log p(\mathbf{y}_L | \mathbf{x}_V)$
- Inferring the posterior distributions $p(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$ with approximate methods such as loop belief propagation is used

Pros and Cons of Statistical Relation Learning

- Pros
 - Capable of modeling the dependency between the object labels
- Cons
 - Some manually defined potential functions
 - Limited model capacity
 - Inference is difficult due to the complicated graph structures

Related Work: Graph Neural Networks

- Learning effective node representations and then predicting the node labels independently
 - Graph convolutional Networks (Kipf et al. 2016)
 - Graph attention networks (Veličković et al. 2017)
 - Neural message passing (Gilmer et al. 2017)
- Predicting the node labels independently with the node representations

Graph Convolutional Networks (Kipf et al. 2016)

- Iteratively update the node representations by aggregating the node representations of neighbors and its own node representations
 - Starting from the initial node features $H_0 = \mathbf{x}_V$

$$H_{(l+1)} = f(H_l, A)$$

$$\hat{A} = A + I$$

$$f(H_l, A) = \sigma(\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} H_l W_l)$$

Pros and Cos of Graph Neural Networks

- Pros
 - Learns effective node representations by feature propagations
 - High model compacity by using multiple non-linear graph convolutional layers
- Cons
 - Ignore the dependency between node labels

Can we combine the advantages of both worlds?

GMNN: Graph Markov Neural Networks (Qu, Bengio, and Tang, ICML'19)

- Towards combining statistical relational learning and graph neural networks
- Learning effective node representations for predicting the node labels
- Modeling the label dependencies of nodes
- State-of-the-art performance
 - semi-supervised node classification
 - unsupervised node representation
 - link classification

GMNN: Graph Markov Neural Networks

- Model the joint distribution of object labels \mathbf{y}_V conditioned on object attributes \mathbf{x}_V , i.e., $p_{\phi}(\mathbf{y}_V | \mathbf{x}_V)$
- Learning the model parameters ϕ by maximizing the lower-bound of log-likelihood of the observed data, $\log p_{\phi}(\mathbf{y}_L | \mathbf{x}_V)$

 $\log p_{\phi}(\mathbf{y}_{L}|\mathbf{x}_{V}) \geq \mathbb{E}_{q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})}[\log p_{\phi}(\mathbf{y}_{L},\mathbf{y}_{U}|\mathbf{x}_{V}) - \log q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})]$

Optimization with Pseudolikelihood Variational-EM

- E-step: fix p_{ϕ} and update the variational distribution $q_{\theta}(\mathbf{y}_U | \mathbf{x}_V)$ to approximate the true posterior distribution $p_{\phi}(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$.
- M-step: fix q_{θ} and update p_{ϕ} to maximize the lower bound

$$\ell(\phi) = \mathbb{E}_{q_{\theta}(\mathbf{y}_U | \mathbf{x}_V)}[\log p_{\phi}(\mathbf{y}_L, \mathbf{y}_U | \mathbf{x}_V)]$$

• Directly optimize the joint likelihood is difficult due to the partition function in p_{ϕ} , instead we optimize the pseudolikelihood function

$$\ell_{PL}(\phi) \triangleq \mathbb{E}_{q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})} \left[\sum_{n \in V} \log p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{V\setminus n}, \mathbf{x}_{V})\right]$$
$$= \mathbb{E}_{q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})} \left[\sum_{n \in V} \log p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{\text{NB}(n)}, \mathbf{x}_{V})\right]$$

Inference/E-step: approximate $p_{\phi}(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$

• Approximate it with variational distribution $q_{\theta}(\mathbf{y}_U | \mathbf{x}_V)$. Specifically we use mean-field method:

$$q_{\theta}(\mathbf{y}_U | \mathbf{x}_V) = \prod_{n \in U} q_{\theta}(\mathbf{y}_n | \mathbf{x}_V)$$

 We parametrize each variational distribution with a Graph Neural Network

$$q_{\theta}(\mathbf{y}_n | \mathbf{x}_V) = \operatorname{Cat}(\mathbf{y}_n | \operatorname{softmax}(W_{\theta} \mathbf{h}_{\theta, n}))$$

Object representations learned by GNN

Inference/E-step: approximate $p_{\phi}(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$

• The optimal variational distribution satisfies:

 $\log q_{\theta}(\mathbf{y}_{n}|\mathbf{x}_{V}) = \mathbb{E}_{q_{\theta}(\mathbf{y}_{\text{NB}(n)\cap U}|\mathbf{x}_{V})}[\log p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{\text{NB}(n)},\mathbf{x}_{V})] + \text{const.}$

• Estimate the right term by sampling from $q_{\theta}(\mathbf{y}_{NB(n) \cap U} | \mathbf{x}_V)$, and then we have

$$q_{\theta}(\mathbf{y}_n | \mathbf{x}_V) \approx p_{\phi}(\mathbf{y}_n | \mathbf{\hat{y}}_{\mathrm{NB}(n)}, \mathbf{x}_V)$$

Label distribution of object n by the learning module

Inference/E-step: approximate $p_{\phi}(\mathbf{y}_U | \mathbf{y}_L, \mathbf{x}_V)$

- Minimize the KL-divergence between the two distributions
 - The supervision from the learning module is used as pseudo label to train the variational distribution

$$O_{\theta,U} = \sum_{n \in U} \mathbb{E}_{p_{\phi}(\mathbf{y}_{n} | \hat{\mathbf{y}}_{\text{NB}(n)}, \mathbf{x}_{V})} [\log q_{\theta}(\mathbf{y}_{n} | \mathbf{x}_{V})]$$

• The variational distribution can also by trained on the labeled data

$$O_{\theta,L} = \sum_{n \in L} \log q_{\theta}(\mathbf{y}_n | \mathbf{x}_V).$$

• Final objective:

$$O_{\theta} = O_{\theta,U} + O_{\theta,L}$$

Learning/M-step:

• The log-pseudo likelihood:

$$\ell_{PL}(\phi) \triangleq \mathbb{E}_{q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})} \left[\sum_{n \in V} \log p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{V\setminus n}, \mathbf{x}_{V})\right]$$
$$= \mathbb{E}_{q_{\theta}(\mathbf{y}_{U}|\mathbf{x}_{V})} \left[\sum_{n \in V} \log p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{\text{NB}(n)}, \mathbf{x}_{V})\right]$$

- According to the inference, only the $p_{\phi}(\mathbf{y}_{\mathbf{n}}|\mathbf{y}_{\text{NB}(n)}, \mathbf{x}_{V})$ is required
- Parametrize $p_{\phi}(\mathbf{y}_{n}|\mathbf{y}_{\text{NB}(n)}, \mathbf{x}_{V})$ with another GCN

$$p_{\phi}(\mathbf{y}_n | \mathbf{y}_{\mathsf{NB}(n)}, \mathbf{x}_V) = \mathsf{Cat}(\mathbf{y}_n | \mathsf{softmax}(W_{\phi} \mathbf{h}_{\phi, n}))$$

Learning/M-step:

- Estimate the expectation by drawing a sample from $q_{\theta}(\mathbf{y}_U | \mathbf{x}_V)$
- Final objective:

$$O_{\phi} = \sum_{n \in V} \log p_{\phi}(\mathbf{\hat{y}}_{n} | \mathbf{\hat{y}}_{\text{NB(n)}}, \mathbf{x}_{V})$$
$$\mathbf{\hat{y}}_{n} \sim \mathbf{q}_{\theta}(\mathbf{y}_{U} | \mathbf{x}_{V}), \text{ if n is unlabeled}$$

 $\hat{\mathbf{y}}_n$ is the ground truth label, if n is labeled

Overall Optimization Procedure

- Two Graph Neural Networks Collaborate with each other
 - p_{ϕ} : learning network, modeling the label dependency
 - q_{θ} : inference network, learning the object representations
- q_{θ} infer the labels of unlabeled objects trained with supervision from p_{ϕ} and labeled objects
- p_{ϕ} is trained with a fully labeled graph, where the unlabeled objects are labeled by q_{θ}

Applications: Object/Node Classification

- Train, validation, and test are standard split
- State-of-the-art performance

Category	Algorithm	Cora	Citeseer	Pubmed
SSL	LP	74.2	56.3	71.6
	PRM	77.0	63.4	68.3
SRL	RMN	71.3	68.0	70.7
	MLN	74.6	68.0	75.3
GNN	Planetoid *	75.7	64.7	77.2
	GCN *	81.5	70.3	79.0
	GAT *	83.0	72.5	79.0
GMNN	W/o Attr. in p_{ϕ}	83.4	73.1	81.4
	With Attr. in p_{ϕ}	83.7	72.9	81.8

Results of Node Classification

- Random data splits
- State-of-the-art performance

Algorithm	Cora	Citeseer	Pubmed
GCN	81.5	71.3	80.3
GAT	82.1	71.5	80.1
GMNN	83.1	73.0	81.9

Few-shot Learning Settings

- 5 labeled objects for each class
- The performance gain are even larger

Algorithm	Cora	Citeseer	Pubmed
GCN	74.9	69.0	76.9
GAT	77.0	68.9	75.4
GMNN	78.6	72.7	79.1

Ablation Study on the Learning Network $p_{\phi}(\mathbf{y_n}|\mathbf{y}_{NB(n)})$

- 1 mean pooling layer: just take the average distribution of labels of neighbors,
 - label propagation!
 - Model the label dependency in a linear way

Architecture	Cora	Citeseer	Pubmed
1 Mean Pooling Layer	82.4	71.9	80.7
1 GC Layer	83.1	73.1	80.9
2 GC Layers	83.4	73.1	81.4
3 GC Layers	83.6	73.0	81.5

Ablation Study on the Inference Network $q_{\theta}(\mathbf{y}_{n} | \mathbf{x}_{V})$

- Non-amortized: treat $q_{\theta}(\mathbf{y}_n | \mathbf{x}_V)$ as parameter, independent of \mathbf{x}_V
- 1 Linear Layer: only use the features \mathbf{x}_n

Architecture	Cora	Citeseer	Pubmed
Non-amortized	45.3	28.1	42.2
1 Linear Layer	55.8	57.5	69.8
1 GC Layer	72.9	67.6	71.8
2 GC Layers	83.4	73.1	81.4
3 GC Layers	82.0	70.6	80.7

Convergence Analysis of Optimization

Applications: Unsupervised Node Representation Learning

- There are no labeled nodes!!
- Instead, we introduce a pseudo task. For each node n, we aims to predict the neighbors , i.e., $p(y | n, x_V)$
- E-step: infer the neighbor distribution for each node with q_{θ}
- M-step: update the p_{ϕ} to model the local dependency of the inferred neighbor distributions

Node/Object classification

• DGI: Deep Graph Infomax, Veličković et al. 2019

Category	Algorithm	Cora	Citeseer	Pubmed
CNN	DeepWalk *	67.2	43.2	65.3
GININ	DGI *	82.3	71.8	76.8
GMNN	With only q_{θ} .	78.1	68.0	79.3
	With $q_{ heta}$ and p_{ϕ}	82.8	71.5	81.6

Applications: Link Classification

- Construct a dual graph \tilde{G} from the original graph G
 - Each edge in G -> a node in \tilde{G}
 - Two nodes in \tilde{G} are connected if the corresponding edges in G share a node

Category	Algorithm	Bitcoin Alpha	Bitcoin OTC
SSL	LP	59.68	65.58
	PRM	58.59	64.37
SRL	RMN	59.56	65.59
	MLN	60.87	65.62
	DeepWalk	62.71	63.20
GINN	GCN	64.00	65.69
GMNN	W/o Attr. in p_{φ}	65.59	66.62
GIVITNIN	With Attr. in p_{φ}	65.86	66.83

Summary

- A fundamental problem on graphs: semi-supervised node classification
- GMNN: towards combining statistical relational learning and graph neural networks
 - Model the label dependency with one graph neural network
 - Learn effective node representations with another graph neural network
- State-of-the-art results on semi-supervised node classification, unsupervised node representation, and link classification
- Code available at: <u>https://github.com/DeepGraphLearning/GMNN</u>

Questions?