GMNN: Graph Markov Neural Networks

Jian Tang
HEC Montreal
Mila-Quebec Al Institute
CIFAR Al Research Chair

HEC

_7
’_\/_
,g/\
3V

Mila

Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. To appear at ICML'19.

MONTREAL

Graphs are Ubiquitous

* A general and flexible data structure to encode the relations between objects

Protein-protein
Interaction Network

Social Network Road Network Citation Network

e Cover a variety of domains and applications
* node classification
* Link prediction
* Information diffusion

Semi-supervised Object Classification

* Given G= (V, E, xv)
* V =V, UVy: objects/nodes
* E:edges
* Xy: object features

* Give some labeled objects V;, we want to infer the labels of the rest
of objects Iy,

* Many other tasks on graphs can be formulated as object classification
e E.g., link classification

Related Work: Statistical Relational Learning

* Models the joint distribution of the object labels given the object
features, i.e., p(yy|Xy) with conditional random fields

1Y N ©
Pyv IXv) = Z(Xv) i (Yin Y ,Xv)
(i,j)2E e

iV v, xy) = eXP(z Mcfie (Vo vi X0, X)) + e g (Vi X))
k=1

Q Object labels

B Object features

Edge potential functions node potential functions

Optimization of Statistical Relational Learning

* Learning by maximizing the likelihood of the observed labels

log p(yL|xv)

* Inferring the posterior distributions p(yy|yL, Xy) with approximate
methods such as loop belief propagation is used

Pros and Cons of Statistical Relation Learning

* Pros
* Capable of modeling the dependency between the object labels

* Cons
* Some manually defined potential functions
* Limited model capacity
* Inference is difficult due to the complicated graph structures

Related Work: Graph Neural Networks

* Learning effective node representations and then predicting the node
labels independently
e Graph convolutional Networks (Kipf et al. 2016)
* Graph attention networks (Velickovic et al. 2017)
* Neural message passing (Gilmer et al. 2017)

* Predicting the node labels independently with the node
representations

Graph Convolutional Networks
(Kipf et al. 2016)

* lteratively update the node representations by aggregating the node
representations of neighbors and its own node representations
 Starting from the initial node features Hy = Xy,

Hqy1y = f(HLA)
A=A+1 O CK‘8'})
o b

~_1 1
f(H,A) =0(D 2z AD 2H, W)

Pros and Cos of Graph Neural Networks

* Pros
* Learns effective node representations by feature propagations
* High model compacity by using multiple non-linear graph convolutional layers

* Cons
* |gnore the dependency between node labels

Can we combine the advantages of both
worlds?

GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML'19)

* Towards combining statistical relational learning and graph neural
networks

* Learning effective node representations for predicting the node labels
* Modeling the label dependencies of nodes

 State-of-the-art performance
* semi-supervised node classification
e unsupervised node representation
* link classification

GMNN: Graph Markov Neural Networks

* Model the joint distribution of object labels y;, conditioned on object
attributes xy, i.e., py (Yv |Xv)

* Learning the model parameters ¢ by maximizing the lower-bound of
log-likelihood of the observed data, log pg (¥ |Xy)

log pe(yr|xv) >
ﬂqg (yul|xv) [1Og P (YLv YU ‘XV) — lOg do (YU‘XV)]

Optimization with Pseudolikelihood
Variational-EM

* E-step: fix py and update the variational distribution q4 (yy|Xy) to
approximate the true posterior distribution p (yy|y., Xy).

* M-step: fix qg and update py to maximize the lower bound
€(¢) — qu (yul|xv) [IOgPCb (YLa YU‘XV)]

* Directly optimize the joint likelihood is difficult due to the partition
function in p, instead we optimize the pseudolikelihood function

tpL(0) £ Egyyox) [Y 108 Do (Ynlyvin, xv)]
neV

— qu (yulxv) [Z lnggb(yn‘YNB(n)? XV)]

nevVv

Inference/E-step: approximate pg (Yy VL, Xy)

 Approximate it with variational distribution g (yy|Xy). Specifically
we use mean-field method:

wo(yulxv) =][w(yalxv)
nelU

* We parametrize each variational distribution with a Graph Neural
Network

qo(Yn|xv) = Cat(y,|softmax(Wyhy ,,))

Object representations learned by GNN

Inference/E-step: approximate pg (Yy VL, Xy)

* The optimal variational distribution satisfies:

log de (yn ‘XV) —
By (yxnnynor1x1) 108 Pg (Yn[yNB(n), Xv)] + const.

* Estimate the right term by sampling from qg(yNB(n) nU|XV) , and
then we have

go (Yn|xv) = qu(Yn‘yNB(n)ax‘/)
° —

Label distribution of object n by the learning module

Inference/E-step: approximate pg (Yy VL, Xy)

* Minimize the KL-divergence between the two distributions

* The supervision from the learning module is used as pseudo label to train the
variational distribution

Opuv = Z By (70 1950 xv) 108 G0 (Y |XV/)]

nelU
* The variational distribution can also by trained on the labeled data

Og,L = Z log go (yn|xv)

neL
* Final objective:

Op = Oy + Oy, L.

Learning/M-step:

* The log-pseudo likelihood:

A

EPL((/b) — qu(yU|xV) [Z logpgb(y.n‘YV\na XV)]
neVv

— qu(yylxv) [Z logpgb(}In‘YNB(n)a XV)]
neVvV
* According to the inference, only the pcb(YnlYNB(n):XV) is required

* Parametrize pg(¥nl¥nBm) Xv) with another GCN

p¢(yn|yNB(n), xy) = Cat(y,|softmax(W,hy ,,))

Learning/M-step:

* Estimate the expectation by drawing a sample from qg (yy|Xy)
* Final objective:

Op = Z log py (¥ n|YNB@)s XV)

neV \

V.. ~qg (Yy|Xy), if nis unlabeled

V., is the ground truth label, if n is labeled

Overall Optimization Procedure

* Two Graph Neural Networks Collaborate with each other
* Dy learning network, modeling the label dependency
* gg: inference network, learning the object representations

* qg infer the labels of unlabeled objects trained with supervision from
Py and labeled objects

* Py is trained with a fully labeled graph, where the unlabeled objects
are labeled by gy

Applications: Object/Node Classification

* Train, validation, and test are standard split
 State-of-the-art performance

Category Algorithm Cora Citeseer Pubmed
SSL LP 74.2 56.3 71.6
PRM 77.0 63.4 68.3
SRL RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3
Planetoid * 75.7 64.7 77.2
GNN GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0
GMNN W/o Attr. in pg 83.4 73.1 81.4

With Attr. in pg 83.7 72.9 81.8

Results of Node Classification

 Random data splits
 State-of-the-art performance

Algorithm Cora Citeseer LPubmed

GCN 81.5 71.3 30.3
GAT 82.1 71.5 30.1
GMNN 33.1 73.0 31.9

Few-shot Learning Settings

5 labeled objects for each class
* The performance gain are even larger

Algorithm Cora Citeseer Pubmed

GCN 74.9 69.0 76.9
GAT 77.0 68.9 75.4
GMNN 78.6 72.7 79.1

Ablation Study on the Learning Network
Po (Yn \YNB(n))

* 1 mean pooling layer: just take the average distribution of labels of
neighbors,
* |label propagation!
* Model the label dependency in a linear way

Architecture Cora Citeseer Pubmed
1 Mean Pooling Layer 82.4 71.9 80.7
1 GC Layer 33.1 73.1 80.9
2 GC Layers 83.4 73.1 81.4

3 GC Layers 83.6 /3.0 81.5

Ablation Study on the Inference Network
do (YnlXy)

* Non-amortized: treat qg(v,,|Xy) as parameter, independent of xy,
* 1 Linear Layer: only use the features x,,

Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2
1 Linear Layer 55.8 57.5 69.8
1 GC Layer 72.9 67.6 71.8
2 GC Layers 83.4 /3.1 814

3 GC Layers 82.0 70.6 80.7

Convergence Analysis of Optimization

(a) Cors (9 Crileseer

Applications: Unsupervised Node
Representation Learning

* There are no labeled nodes!!

* Instead, we introduce a pseudo task. For each node n, we aims to
predict the neighbors, i.e., p(y |n, xy)

* E-step: infer the neighbor distribution for each node with gg

* M-step: update the p4 to model the local dependency of the inferred
neighbor distributions

Node/Obiject classification

* DGI: Deep Graph Infomax, Velickovic et al. 2019

Category Algorithm Cora Citeseer Pubmed
DeepWalk * 67.2 43.2 65.3
GNN DGI * 82.3 71.8 76.8
GMNN With only gg . 78.1 68.0 79.3

With ¢y and pg 82.8 71.5 81.6

Applications: Link Classification

* Construct a dual graph G from the original graph G
e Each edgein G->anodein G
 Two nodes in G are connected if the corresponding edges in G share a node

Category Algorithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58
PRM 58.59 64.37

SRL RMN 59.56 65.59
MLN 60.87 65.62

GNN DeepWalk 62.71 63.20
GCN 64.00 65.69

GMNN Wi/o Attr. in p, 65.59 66.62

With Attr. in p,, 65.86 66.83

Summary

* A fundamental problem on graphs: semi-supervised node
classification

* GMNN: towards combining statistical relational learning and graph
neural networks

* Model the label dependency with one graph neural network
* Learn effective node representations with another graph neural network

 State-of-the-art results on semi-supervised node classification,
unsupervised node representation, and link classification

* Code available at: https://github.com/DeepGraphLearning/GMNN

https://github.com/DeepGraphLearning/GMNN

Questions?

