
GMNN: Graph Markov Neural Networks
Jian Tang

HEC Montreal

Mila-Quebec AI Institute

CIFAR AI Research Chair

Meng Qu, Yoshua Bengio, Jian Tang. “GMNN: Graph Markov Neural Networks”. To appear at ICML’19.

Graphs are Ubiquitous

• A general and flexible data structure to encode the relations between objects

• Cover a variety of domains and applications
• node classification
• Link prediction
• Information diffusion
• …

Social Network Road Network
Protein-protein

Interaction Network
Citation Network

Semi-supervised Object Classification

• Given G= (V, E, 𝐱V)
• 𝑉 = 𝑉𝐿⋃𝑉𝑈: objects/nodes

• E : edges

• 𝐱V: object features

• Give some labeled objects 𝑉𝐿, we want to infer the labels of the rest
of objects 𝑉𝑈

• Many other tasks on graphs can be formulated as object classification
• E.g., link classification

?

?

?

?

?

?

Object labels

Object features

Related Work: Statistical Relational Learning

• Models the joint distribution of the object labels given the object
features, i.e., 𝑝(𝐲V|𝐱V) with conditional random fields

GMNN: Graph Markov Neural Networks

relational data is an important direction in machine learn-

ing with various applications, such asobject classification

and link prediction. In thispaper, we focus on a fundamen-

tal problem, semi-supervised object classification, asmany

other applications can be reformulated as this problem.

Formally, the problem of semi-supervised object classifi-

cation considers agraph G = (V, E, xV), in which V is a

set of objects, E isaset of edgesbetween objects, and xV

stands for the attributes of all the objects. The edges in E

may havemultiple types, which represent different relations

among objects. In thispaper, for simplicity, weassumeall

edgesbelong to thesame type. Given the labels yL of a few

labeled objects L ⇢V , thegoal is to predict the labels yU

for the remaining unlabeled objects U = V \ L .

Thisproblem hasbeen extensively studied in the literature

of both statistical relation learning (SRL) and graph neural

networks (GNN). Essentially, both types of methods aim to

model the distribution of object labels conditioned on the

object attributes and thegraph structure, i.e., p(yV |xV , E).

Next, we introduce the general idea of both methods. For

notation simplicity, weomit E in the following formulas.

3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV) with conditional ran-

dom fields, which employ the following formulation:

p(yV |xV) =
1

Z (xV)

Y

(i ,j)2 E

 i ,j (y i , y j , xV). (1)

Here, (i , j) isan edge in thegraph G, and i ,j (y i , y j , xV)

is the potential score defined on the edge. Typically, the

potential score iscomputed asa linear combination of some

hand-crafted feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled

objects becomes an inference problem, i.e., inferring

the posterior label distribution of the unlabeled objects

p(yU |yL , xV). Exact inference isusually infeasible due to

thecomplicated structures between object labels. Therefore,

some approximation inference methods are often utilized,

such as loopy belief propagation (Murphy et al., 1999).

3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore

thedependency of object labels and they focus on learning

effectiveobject representations for label prediction. Specif-

ically, the joint distribution of labels is fully factorized as:

p(yV |xV) =
Y

n 2 V

p(yn |xV). (2)

Based on the formulation, GNNs will infer the label distri-

bution p(yn |xV) for each object n independently. For each

Object

! "
Object

#$

E-Step: Inference

M-Step: Learning

PredictUpdate

UpdatePredict

Figure 1. Framework overview. Yellow and grey squares are la-

beled and unlabeled objects. Grey/white gridsareattributes. His-

tograms are label distributions of objects. Orange triple circles are

object representations. GMNN is trained by alternating between

an E-step and an M-step. SeeSec. 4.4 for thedetailed explanation.

object n, GNNs predict the label in the following way:

h = g(xV , E) p(yn |xV) = Cat(yn |softmax(Whn)),

where h 2 R|V |⇥d is the representations of all theobjects,

and hn 2 Rd is the representation of object n. W 2 RK ⇥d

is a linear transformation matrix, with d as the representa-

tion dimension and K as the number of label classes. Cat

stands for categorical distributions. Basically, GNNs focus

on learning a useful representation hn for each object n.

Specifically, each hn is initialized as the attribute repre-

sentation of object n. Then each hn is iteratively updated

according to its current value and the representations of n’s

neighbors, i.e., hNB(n) . For theupdating function, thegraph

convolutional layer (GC) (Kipf & Welling, 2017) and the

graph attention layer (GAT) (Veličković et al., 2018) can be

used, or in general theneural messagepassing layer (Gilmer

et al., 2017) can beutilized. After multiple layers of update,

thefinal object representations are fed into a linear softmax

classifier for label prediction. The whole framework can be

trained in an end-to-end fashion with a few labeled objects.

4. GMNN: Graph Markov Neural Network

In this section, we introduce our approach called theGraph

Markov Neural Network (GMNN) for semi-supervised ob-

ject classification. The goal of GMNN is to combine the

advantagesof both thestatistical relational learning methods

and graph neural networks, so that wecan learn effectiveob-

jectiverepresentations for predicting object labels, aswell as

model thedependency between object labels. Specifically,

GMNN models the joint distribution of object labels condi-

tioned on object attributesp(yV |xV) by using aconditional

random field, which isoptimized with apseudolikelihood

variational EM framework. In the E-step, a graph neural

network isused to learn object representations for predicting

the object labels. In the M-step, another graph neural net-

work isemployed to model the local dependency of object

labels. Next, we introduce the details of theapproach.

?

?

?

?

?

?

Object labels

Object features

𝜓𝑖,𝑗 𝑦𝑖 , 𝑦𝑗 , 𝐱𝑉 = exp(෍

𝑘=1

𝐾

𝜆𝑘𝑓𝑘 𝑦𝑖 , 𝑦𝑗 , 𝐱𝑖 , 𝐱𝑗 + 𝜇𝑘𝑔𝑘(𝑦𝑖 , 𝐱𝑖))

Edge potential functions node potential functions

Optimization of Statistical Relational Learning

• Learning by maximizing the likelihood of the observed labels
log 𝑝(𝐲L|𝐱V)

• Inferring the posterior distributions 𝑝(𝐲U|𝐲L, 𝐱V) with approximate
methods such as loop belief propagation is used

Pros and Cons of Statistical Relation Learning

• Pros
• Capable of modeling the dependency between the object labels

• Cons
• Some manually defined potential functions

• Limited model capacity

• Inference is difficult due to the complicated graph structures

Related Work: Graph Neural Networks

• Learning effective node representations and then predicting the node
labels independently
• Graph convolutional Networks (Kipf et al. 2016)

• Graph attention networks (Veličković et al. 2017)

• Neural message passing (Gilmer et al. 2017)

• Predicting the node labels independently with the node
representations

?

?

?

?

?

?

Object labels

Object features

Graph Convolutional Networks
(Kipf et al. 2016)
• Iteratively update the node representations by aggregating the node

representations of neighbors and its own node representations
• Starting from the initial node features 𝐻0 = 𝐱𝑉

𝐻(𝑙+1) = 𝑓(𝐻𝑙 , 𝐴)

𝑓 𝐻𝑙 , 𝐴 = 𝜎(෡𝐷−
1

2 መ𝐴෡𝐷−
1

2𝐻𝑙 𝑊𝑙)

መ𝐴 = 𝐴 + 𝐼

Pros and Cos of Graph Neural Networks

• Pros
• Learns effective node representations by feature propagations

• High model compacity by using multiple non-linear graph convolutional layers

• Cons
• Ignore the dependency between node labels

Can we combine the advantages of both
worlds?

GMNN: Graph Markov Neural Networks
(Qu, Bengio, and Tang, ICML’19)
• Towards combining statistical relational learning and graph neural

networks

• Learning effective node representations for predicting the node labels

• Modeling the label dependencies of nodes

• State-of-the-art performance
• semi-supervised node classification

• unsupervised node representation

• link classification

GMNN: Graph Markov Neural Networks

• Model the joint distribution of object labels 𝐲𝑉 conditioned on object
attributes 𝐱𝑉, i.e., p𝜙(𝐲𝑉|𝐱𝑉)

• Learning the model parameters 𝜙 by maximizing the lower-bound of
log-likelihood of the observed data, log p𝜙(𝐲𝐿|𝐱𝑉)

Optimization with Pseudolikelihood
Variational-EM
• E-step: fix p𝜙 and update the variational distribution q𝜃(𝐲𝑈|𝐱𝑉) to

approximate the true posterior distribution p𝜙 𝐲𝑈|𝐲𝐿, 𝐱𝑉 .

• M-step: fix q𝜃 and update p𝜙 to maximize the lower bound

• Directly optimize the joint likelihood is difficult due to the partition
function in p𝜙, instead we optimize the pseudolikelihood function

Inference/E-step: approximate p𝜙(𝐲𝑈|𝐲𝐿, 𝐱𝑉)

• Approximate it with variational distribution q𝜃 𝐲𝑈|𝐱𝑉 . Specifically
we use mean-field method:

• We parametrize each variational distribution with a Graph Neural
Network

Object representations learned by GNN

Inference/E-step: approximate p𝜙(𝐲𝑈|𝐲𝐿, 𝐱𝑉)

• The optimal variational distribution satisfies:

• Estimate the right term by sampling from q𝜃 𝐲𝑁𝐵 𝑛 ∩𝑈|𝐱𝑉 , and
then we have

•
Label distribution of object n by the learning module

Inference/E-step: approximate p𝜙(𝐲𝑈|𝐲𝐿, 𝐱𝑉)

• Minimize the KL-divergence between the two distributions
• The supervision from the learning module is used as pseudo label to train the

variational distribution

• The variational distribution can also by trained on the labeled data

• Final objective:

Learning/M-step:

• The log-pseudo likelihood:

• According to the inference, only the is required

• Parametrize with another GCN

𝑝ϕ 𝐲𝐧|𝐲NB(n), 𝐱V

𝑝ϕ 𝐲𝐧|𝐲NB(n), 𝐱V

Learning/M-step:

• Estimate the expectation by drawing a sample from q𝜃 𝐲𝑈|𝐱𝑉
• Final objective:

ො𝐲𝑛~q𝜃 𝐲𝑈|𝐱𝑉 , if n is unlabeled

ො𝐲𝑛 is the ground truth label, if n is labeled

Overall Optimization Procedure

• Two Graph Neural Networks Collaborate with each other
• 𝑝𝜙: learning network, modeling the label dependency

• 𝑞𝜃: inference network, learning the object representations

• 𝑞𝜃 infer the labels of unlabeled objects trained with supervision from
𝑝𝜙 and labeled objects

• 𝑝𝜙 is trained with a fully labeled graph, where the unlabeled objects
are labeled by 𝑞𝜃

?

?

?

?

?

?

Object labels

Object features

Applications: Object/Node Classification

• Train, validation, and test are standard split

• State-of-the-art performance

Results of Node Classification

• Random data splits

• State-of-the-art performance

Few-shot Learning Settings

• 5 labeled objects for each class

• The performance gain are even larger

Ablation Study on the Learning Network
𝑝ϕ 𝐲𝐧|𝐲NB(n)
• 1 mean pooling layer: just take the average distribution of labels of

neighbors,
• label propagation!

• Model the label dependency in a linear way

GMNN: Graph Markov Neural Networks

anticipate the results can be further improved by using GAT,

and we leave it as futurework. In addition, by incorporating

theobject attributes in the learning network pφ, we further

improve theperformance, showing that GMNN isflexible

and also effective to useadditional features in the learning

network. For link classification, we obtain similar results.

For unsupervised node representation learning, GMNN

achieves the state-of-the-art performance on the Cora and

Pubmed datasets. Thereason is that it effectively models the

smoothness of theneighbor distributions for different nodes

with the pφ network. Also, the performance of GMNN is

quitecloseto theperformance in thesemi-supervised setting

(Tab. 2), showing that the learned representations are quite

effective. We also compare with a variant without using

the pφ network (with only q✓). In this case, we see that the

performance drops significantly, showing the importance of

using pφ as a regularizer over the neighbor distributions.

Table 4. Results of link classification.
Category Algor ithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58

SRL

PRM 58.59 64.37

RMN 59.56 65.59

MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in pφ 65.59 66.62

With Attr. in pφ 65.86 66.83

2. Analysis of the Amortized Inference. In GMNN, we

employ amortized inference, and parameterize the posterior

label distribution by using aGNN model. In thissection, we

thoroughly look into this strategy, and present some anal-

ysis in Tab. 5. Here, the variant “Non-amortized” simply

modelseach q✓(yn |xV) asacategorical distribution with in-

dependent parameters, and performs fix-point iteration (i.e.,

Eq. (8)) to calculate the value. Wesee that the performance

of this variant is very poor on all datasets. By parameter-

izing theposterior distribution asaneural network, which

leverages theown attributesof each object for inference, the

performance (1 Linear Layer) is significantly improved, but

sill not satisfactory. With several GC layers, weare able to

incorporatetheattributesfrom thesurrounding neighborsfor

each object, yielding further significant improvement. The

aboveobservations prove the effectiveness of our strategy

for inferring the posterior label distributions.

Table 5. Analysis of amortized inference.
Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2

1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8

2 GC Layers 83.4 73.1 81.4

3 GC Layers 82.0 70.6 80.7

3. Ablation Study of the Learning Network. In GMNN,

theconditional distribution pφ(yn |yNB(n), xV) is parameter-

ized as another GNN, which essentially models the local

label dependency. In this section, we compare different

architectures of the GNN on the object classification task,

and the results are presented in Tab. 6. Here, the variant “1

Mean Pooling Layer” computes thedistribution of yn as the

linear combination of { yk } k2 NB(n). Thisvariant issimilar to

the label propagation methods, and its performance isquite

competitive. However, the weights of different neighbors

during propagation are fixed. By parameterizing the con-

ditional distribution with several GC layers, weareable to

automatically learn thepropagation weights, and thusobtain

superior results on all datasets. This observation proves the

effectiveness of employing GNNs in the learning procedure.

Table 6. Ablation study of the learning network.
Architecture Cora Citeseer Pubmed

1 Mean Pooling Layer 82.4 71.9 80.7

1 GC Layer 83.1 73.1 80.9

2 GC Layers 83.4 73.1 81.4

3 GC Layers 83.6 73.0 81.5

4. Convergence Analysis. In GMNN, weutilize thevaria-

tional EM algorithm for optimization, which consists of an

E-step and an M-step in each iteration. Next, we analyze

the convergence of GMNN. Wetake the Cora and Citeseer

datasets on object classification as examples, and report the

validation accuracy of both the q✓ and pφ networks at each

iteration. Fig. 2 presents the convergence curve, in which it-

eration 0 correspondsto thepre-training stage. GMNN takes

only few iterations to convergence, which isvery efficient.

(a) Cora (b) Citeseer

Figure 2. Convergence analysis.

7. Conclusion

This paper studies semi-supervised object classification,

which is a fundamental problem in relational data mod-

eling, and anovel approach called theGMNN isproposed.

GMNN employs a conditional random field to model the

joint distribution of object labels, and two graph neural net-

worksareutilized to improveboth theinferenceand learning

procedures. Experimental results on three tasks prove the

effectiveness of GMNN. In the future, we plan to further

improve GMNN to deal with graphs with multiple edge

types, such as knowledge graphs (Bollacker et al., 2008).

Ablation Study on the Inference Network
q𝜃 𝐲𝒏|𝐱𝑽
• Non-amortized: treat q𝜃 𝐲𝑛|𝐱𝑉 as parameter, independent of 𝐱𝑉
• 1 Linear Layer: only use the features 𝐱𝑛

GMNN: Graph Markov Neural Networks

anticipate the results can be further improved by using GAT,

and weleave it as futurework. In addition, by incorporating

theobject attributes in the learning network pφ, we further

improve theperformance, showing that GMNN isflexible

and also effective to useadditional features in the learning

network. For link classification, we obtain similar results.

For unsupervised node representation learning, GMNN

achieves the state-of-the-art performance on the Cora and

Pubmed datasets. Thereason isthat it effectively models the

smoothness of theneighbor distributions for different nodes

with the pφ network. Also, the performance of GMNN is

quitecloseto theperformance in thesemi-supervised setting

(Tab. 2), showing that the learned representations are quite

effective. We also compare with a variant without using

the pφ network (with only q✓). In this case, we see that the

performance drops significantly, showing the importance of

using pφ as a regularizer over the neighbor distributions.

Table 4. Results of link classification.
Category Algor ithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58

SRL

PRM 58.59 64.37

RMN 59.56 65.59

MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in pφ 65.59 66.62

With Attr. in pφ 65.86 66.83

2. Analysis of the Amortized Inference. In GMNN, we

employ amortized inference, and parameterize the posterior

label distribution by using aGNN model. In thissection, we

thoroughly look into this strategy, and present some anal-

ysis in Tab. 5. Here, the variant “Non-amortized” simply

modelseach q✓(yn |xV) asacategorical distribution with in-

dependent parameters, and performs fix-point iteration (i.e.,

Eq. (8)) to calculate the value. We see that the performance

of this variant is very poor on all datasets. By parameter-

izing the posterior distribution asaneural network, which

leverages theown attributesof each object for inference, the

performance (1 Linear Layer) is significantly improved, but

sill not satisfactory. With several GC layers, weare able to

incorporatetheattributesfrom thesurrounding neighborsfor

each object, yielding further significant improvement. The

above observations prove the effectiveness of our strategy

for inferring the posterior label distributions.

Table 5. Analysis of amortized inference.
Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2

1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8

2 GC Layers 83.4 73.1 81.4

3 GC Layers 82.0 70.6 80.7

3. Ablation Study of the Learning Network. In GMNN,

the conditional distribution pφ(yn |yNB(n), xV) isparameter-

ized as another GNN, which essentially models the local

label dependency. In this section, we compare different

architectures of the GNN on the object classification task,

and the results are presented in Tab. 6. Here, the variant “1

Mean Pooling Layer” computes thedistribution of yn asthe

linear combination of { y k } k2 NB(n). Thisvariant issimilar to

the label propagation methods, and its performance isquite

competitive. However, the weights of different neighbors

during propagation are fixed. By parameterizing the con-

ditional distribution with several GC layers, weareable to

automatically learn thepropagation weights, and thusobtain

superior results on all datasets. This observation proves the

effectiveness of employing GNNs in the learning procedure.

Table 6. Ablation study of the learning network.
Architecture Cora Citeseer Pubmed

1 Mean Pooling Layer 82.4 71.9 80.7

1 GC Layer 83.1 73.1 80.9

2 GC Layers 83.4 73.1 81.4

3 GC Layers 83.6 73.0 81.5

4. Convergence Analysis. In GMNN, weutilize thevaria-

tional EM algorithm for optimization, which consists of an

E-step and an M-step in each iteration. Next, we analyze

the convergence of GMNN. Wetake the Cora and Citeseer

datasets on object classification as examples, and report the

validation accuracy of both the q✓ and pφ networks at each

iteration. Fig. 2 presents the convergence curve, in which it-

eration 0 corresponds to thepre-training stage. GMNN takes

only few iterations to convergence, which is very efficient.

(a) Cora (b) Citeseer

Figure 2. Convergence analysis.

7. Conclusion

This paper studies semi-supervised object classification,

which is a fundamental problem in relational data mod-

eling, and anovel approach called theGMNN isproposed.

GMNN employs a conditional random field to model the

joint distribution of object labels, and two graph neural net-

worksareutilized to improveboth theinferenceand learning

procedures. Experimental results on three tasks prove the

effectiveness of GMNN. In the future, we plan to further

improve GMNN to deal with graphs with multiple edge

types, such as knowledge graphs (Bollacker et al., 2008).

Convergence Analysis of Optimization

Applications: Unsupervised Node
Representation Learning
• There are no labeled nodes!!

• Instead, we introduce a pseudo task. For each node n, we aims to
predict the neighbors , i.e., 𝑝 𝑦 |n, 𝐱𝑽

• E-step: infer the neighbor distribution for each node with 𝑞𝜃

• M-step: update the 𝑝𝜙 to model the local dependency of the inferred
neighbor distributions

Node/Object classification

• DGI: Deep Graph Infomax, Veličković et al. 2019

Applications: Link Classification

• Construct a dual graph ෨𝐺 from the original graph G
• Each edge in G -> a node in ෨𝐺

• Two nodes in ෨𝐺 are connected if the corresponding edges in G share a node

GMNN: Graph Markov Neural Networks

anticipate the results can be further improved by using GAT,

and we leave it as futurework. In addition, by incorporating

theobject attributes in the learning network pφ, we further

improve the performance, showing that GMNN isflexible

and also effective to useadditional features in the learning

network. For link classification, we obtain similar results.

For unsupervised node representation learning, GMNN

achieves the state-of-the-art performance on the Cora and

Pubmed datasets. Thereason is that it effectively models the

smoothness of the neighbor distributions for different nodes

with the pφ network. Also, the performance of GMNN is

quitecloseto theperformance in thesemi-supervised setting

(Tab. 2), showing that the learned representations are quite

effective. We also compare with a variant without using

the pφ network (with only q✓). In this case, we see that the

performance drops significantly, showing the importance of

using pφ as a regularizer over the neighbor distributions.

Table 4. Results of link classification.
Category Algor ithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58

SRL

PRM 58.59 64.37

RMN 59.56 65.59

MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in pφ 65.59 66.62

With Attr. in pφ 65.86 66.83

2. Analysis of the Amortized Inference. In GMNN, we

employ amortized inference, and parameterize the posterior

label distribution by using aGNN model. In thissection, we

thoroughly look into this strategy, and present some anal-

ysis in Tab. 5. Here, the variant “Non-amortized” simply

modelseach q✓(yn |xV) asacategorical distribution with in-

dependent parameters, and performs fix-point iteration (i.e.,

Eq. (8)) to calculate the value. We see that the performance

of this variant is very poor on all datasets. By parameter-

izing the posterior distribution asa neural network, which

leverages theown attributesof each object for inference, the

performance (1 Linear Layer) is significantly improved, but

sill not satisfactory. With several GC layers, weare able to

incorporatetheattributesfrom thesurrounding neighborsfor

each object, yielding further significant improvement. The

aboveobservations prove the effectiveness of our strategy

for inferring the posterior label distributions.

Table 5. Analysis of amortized inference.
Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2

1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8

2 GC Layers 83.4 73.1 81.4

3 GC Layers 82.0 70.6 80.7

3. Ablation Study of the Learning Network. In GMNN,

the conditional distribution pφ(yn |yNB(n), xV) is parameter-

ized as another GNN, which essentially models the local

label dependency. In this section, we compare different

architectures of the GNN on the object classification task,

and the results are presented in Tab. 6. Here, the variant “1

Mean Pooling Layer” computes thedistribution of yn as the

linear combination of { yk } k2 NB(n). Thisvariant issimilar to

the label propagation methods, and its performance is quite

competitive. However, the weights of different neighbors

during propagation are fixed. By parameterizing the con-

ditional distribution with several GC layers, weare able to

automatically learn thepropagation weights, and thusobtain

superior results on all datasets. This observation proves the

effectiveness of employing GNNs in the learning procedure.

Table 6. Ablation study of the learning network.
Architecture Cora Citeseer Pubmed

1 Mean Pooling Layer 82.4 71.9 80.7

1 GC Layer 83.1 73.1 80.9

2 GC Layers 83.4 73.1 81.4

3 GC Layers 83.6 73.0 81.5

4. Convergence Analysis. In GMNN, we utilize thevaria-

tional EM algorithm for optimization, which consists of an

E-step and an M-step in each iteration. Next, we analyze

the convergence of GMNN. We take the Cora and Citeseer

datasets on object classification as examples, and report the

validation accuracy of both the q✓ and pφ networks at each

iteration. Fig. 2 presents the convergence curve, in which it-

eration 0 corresponds to thepre-training stage. GMNN takes

only few iterations to convergence, which is very efficient.

(a) Cora (b) Citeseer

Figure 2. Convergence analysis.

7. Conclusion

This paper studies semi-supervised object classification,

which is a fundamental problem in relational data mod-

eling, and anovel approach called theGMNN isproposed.

GMNN employs a conditional random field to model the

joint distribution of object labels, and two graph neural net-

worksareutilized to improveboth theinferenceand learning

procedures. Experimental results on three tasks prove the

effectiveness of GMNN. In the future, we plan to further

improve GMNN to deal with graphs with multiple edge

types, such as knowledge graphs (Bollacker et al., 2008).

Summary

• A fundamental problem on graphs: semi-supervised node
classification

• GMNN: towards combining statistical relational learning and graph
neural networks
• Model the label dependency with one graph neural network

• Learn effective node representations with another graph neural network

• State-of-the-art results on semi-supervised node classification,
unsupervised node representation, and link classification

• Code available at: https://github.com/DeepGraphLearning/GMNN

https://github.com/DeepGraphLearning/GMNN

Questions?

