Semantic 3D Reconstruction and localization

Marc Pollefeys

joint work with Christian Haene, Nikolay Savinov, Ian Cherabier, Lubor Ladicky, Martin Oswald, Christopher Zach, Andrea Cohen, Johannes Schoenberger. Andreas Geiger

Classical 3D reconstruction from images

- Classical 3D from image approach
 - Relative pose between images (structure-from-motion)
 - Per pixel depth estimation (multi-view stereo matching)
 - Surface reconstruction (TSDF, poisson, graph energy minimization)

$$E(x) = \sum_{S \in \Omega} \rho_S x_S + \phi(\nabla x_S)$$

unary depth evidence term P_S

isotropic shape prior ϕ

Semantic 3D reconstruction

- Joint 3D reconstruction and class segmentation
 - Obtain separate surface for each class of object
 - Corresponds to multi-label volumetric segmentation problem

Discrete and Continuous Formulations

Discrete Domain

Smoothness: transitions along edges

Formulation: Linear Program
[Schlesinger 1976]
Arbitrary smoothness cost allowed

Continuous Domain

Smoothness: (anisotropic) boundary length

Formulation: Convex Program
[Chambolle, Cremers, Pock 2008]
Smoothness needs to form a metric

Convex, Continuous Multi-Label Formulation [Zach, Häne, Pollefeys, CVPR 2012, TPAMI 2014]

- Metric smoothness fulfills triangle inequality
 - Truncated quadratic smoothness non-metric
- Our continuously inspired formulation
 - Takes best from both worlds
 - Non-metric and anisotropic boundary length cost

$$E(x) = \sum_{s \in \Omega} \left(\sum_{i} \rho_s^i x_s^i + \sum_{i,j:i < j} \phi_s^{ij} (x_s^{ij} - x_s^{ji}) \right)$$

subject to
$$x_s^i=\sum_j(x_s^{ij})_k,\quad x_s^i=\sum_j(x_{s-e_k}^{ji})_k$$

$$x_s^i\geq 0,\quad \sum_i x_s^i=1,\quad x_s^{ij}\geq 0$$

Energy Formulation

$$\begin{split} E(x) = & \sum_{s \in \Omega} \left(\sum_i \rho_s^i x_s^i + \sum_{i,j:i < j} \phi_s^{ij} (x_s^{ij} - x_s^{ji}) \right) \\ \text{subject to} \quad & x_s^i = \sum_j (x_s^{ij})_k, \quad x_s^i = \sum_j (x_{s-e_k}^{ji})_k \\ & x_s^i \geq 0, \quad \sum_i x_s^i = 1, \quad x_s^{ij} \geq 0 \end{split}$$

Label transition gradients $y_s^{ij} := x_s^{ij} - x_s^{ji}$

Cost for boundary:

$$\phi_s^{ij}(\cdot): \mathbb{R}^N \to \mathbb{R}_0^+$$

Energy Formulation

$$\begin{split} E(x) = & \sum_{s \in \Omega} \left(\sum_{i} \rho_s^i x_s^i + \sum_{i,j:i < j} \phi_s^{ij} (x_s^{ij} - x_s^{ji}) \right) \\ \text{subject to} \quad & x_s^i = \sum_{j} (x_s^{ij})_k, \quad x_s^i = \sum_{j} (x_{s-e_k}^{ji})_k \\ & x_s^i \geq 0, \quad \sum_{i} x_s^i = 1, \quad x_s^{ij} \geq 0 \end{split}$$

Label transition gradients $y_s^{ij} := x_s^{ij} - x_s^{ji}$

Cost for boundary:

$$\phi_s^{ij}(\cdot): \mathbb{R}^N \to \mathbb{R}_0^+$$

Energy Formulation

$$E(x) = \sum_{s \in \Omega} \left(\sum_{i} \rho_s^i x_s^i + \sum_{i,j:i < j} \phi_s^{ij} (x_s^{ij} - x_s^{ji}) \right)$$
 subject to
$$x_s^i = \sum_{j} (x_s^{ij})_k, \quad x_s^i = \sum_{j} (x_{s-e_k}^{ji})_k$$

$$x_s^i \geq 0, \quad \sum_{i} x_s^i = 1, \quad x_s^{ij} \geq 0$$

Cost for boundary:

$$\phi_s^{ij}(\cdot): \mathbb{R}^N \to \mathbb{R}_0^+$$

Wulff shapes

The shape of an equilibrium crystal is obtained, according to the Gibbs thermodynamic principle, by minimizing the total surface free energy associated to the crystal-medium interface. http://www.scholarpedia.org/

Wulff's theorem: The minimum surface energy for a given volume of a polyhedron will be achieved if the distances of its faces from one given point are proportional to their surface tension

Proposed use for anisotropic regularization [Esedoglu and Oscher 2004, Zach et al. 2009, Haene et al. 2013/14/15]

Dense Semantic 3D Reconstruction

[Häne, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Dense Semantic 3D Reconstruction

[Häne, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Formulation: Labeling of a Voxel Space

[Häne, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Learned from training data

Class specific training/selection of $\phi_s^{ij}(\cdot)$

	building	ground	vegetation	air
building				
ground				
vegetation				
stuff	No. of the state o		10 10 10 10 10 10 10 10 10 10 10 10 10 1	

Joint 3D reconstruction and class segmentation

(Haene et al CVPR13)

Weakly Observed Structures I

Buildings standing on the ground

Outline

Semantic 3D reconstruction

- Joint reconstruction, recognition and segmentation
- High-order ray potentials
- Joint classifier
- Modeling objects

Weakly Observed Structures II

Building separated from vegetation

Unobserved Surfaces

Labels can be separated

Unobserved Surfaces

Labels can be separated

Higher-order ray potentials to model visibility

(Savinov et al, CVPR15/CVPR16)

Volumetric formulation

$$E(\mathbf{x}) = \sum_{r \in \mathcal{R}} \psi_r(\mathbf{x}^r) + \sum_{(i,j) \in \mathcal{E}} \psi_p(x_i, x_j)$$

Ray potentials

Pairwise regularizer

Cost based on the first occupied voxel along the ray

$$\psi_r(\mathbf{x}^r) = \phi_r(K^r, x_{K^r}^r)$$
 depth label
$$K^r = \begin{cases} \min(i|x_i^r \neq l_f) & \text{if } \exists x_i^r \neq l_f \\ N_r & \text{otherwise} \end{cases}$$

Cost based on the first occupied voxel along the ray

(Savinov et al, CVPR15/CVPR16)

Visibility Consistency Constraint

$$\psi_r(\mathbf{x}_r) = \sum_{\ell \in \mathcal{L}} \sum_{i=0}^N c_i^{\ell} y_i^{\ell}$$

(Savinov et al, CVPR16)

$$\text{s.t.} \ \ y_i^\ell \leq y_{i-1}^f, \ y_i^\ell \leq x_{s_i}^\ell, \ y_i^\ell \geq 0 \ \ \forall \ell \in \mathcal{L}, \forall i$$

$$\sum_{\ell \in \mathcal{L} \backslash \{f\}} y_i^\ell \leq \max(0, y_{i-1}^f - x_{s_i}^f) \qquad \forall i$$
 (non-convex)

Results

$minimize \, \Delta$

V-Constraint: nicely handles thin objects

Can our approach also handle objects?

Extend approach from "Stuff" to "Things"

$$E(x) = \sum_{\Omega \in s} \left(\sum_{i} \rho_s^i x_s^i + \sum_{i,j:i < j} \phi_s^{ij} (x_s^{ij} - x_s^{ji}) \right)$$

Introduce location dependent anisotropic smoothness prior

Learning location-dependent anisotropic smoothnes prior

(Haene et al CVPR 2014)

Download training data from Google 3D warehouse

- At every voxel in 3D bounding box, estimate distribution of observed shape normals $P_s(n)$
- Determine convex Wulff shape which best represents observed statistics $d_s^n = -\log(P_s(n))$

Cars

Real Car 1 80 Images

Car reconstructions

Advantages of multi-class segmentation

Learn separate statistics for *car-air* and *car-ground* transition likelihoods

Semantic multi-class 3D head reconstruction

(Maninchedda et al. ECCV2016)

Align prior to data by minimizing smoothness term

towards position

$$E(\mathbf{x}, \underline{\mathcal{T}}) = \sum_{s \in \Omega} \left(\sum_{i} \rho_s^i(\mathcal{T}) x_s^i + \sum_{i,j:i < j} \phi_s^{ij}(\mathcal{T}, x_s^{ij} - x_s^{ji}) \right)$$

s. t.
$$x_s^i = \sum_j (x_s^{ij})_k$$
, $x_s^i = \sum_j (x_{s-e_k}^{ji})$,

$$\sum_{i} x_s^i = 1, \quad x_s^i \ge 0, \quad x_s^{ij} \ge 0.$$
 (1)

parametric shape model

Segment based 3D object shape priors

represent non-convex object shape priors as combination of convex part priors

Karimi, Haene, Pollefeys (CVPR15)

build prior by performing (approximate) convex decomposition of example (and observe which transitions occur)

Result: Tables

Result: Trees

Result Mug

Detect and regularize for symmetries

(Speciale et al. ECCV2016)

A preference for symmetry can be introduced by adding non-local regularization terms

Semantic 3D Reconstruction

- → Compared to a fixed-grid ≈ 20 x faster, 30 40 x less memory
- → Allows for city scale reconstructions

Large-Scale Semantic 3D Reconstruction: an Adaptive Multi-Resolution Model for Multi-Class Volumetric Labeling, Maros Blaha, Christoph Vogel, Audrey Richard, Jan D. Wegner, Thomas Pock, Konrad Schindler, CVPR 2016

Overview of Regularizers

minimize
$$\int_{\Omega} \left(\underbrace{\phi_{\mathbf{x}}(u)}_{\text{regularization data fidelity}} + \underbrace{fu}_{\text{data fidelity}} \right) d\mathbf{x} \quad \text{subject to} \quad \forall \mathbf{x} \in \Omega : \sum_{\ell} u_{\ell}(\mathbf{x}) = 1$$

$$\phi_{\boldsymbol{x}}(v) = \|v\|_2$$

$$\phi_{\boldsymbol{x}}(v) = g(x) \|v\|_2$$

$$\phi_{\boldsymbol{x}}(v) = g(x) \|v\|_2 \qquad \phi_{\boldsymbol{x}}(v) = \sqrt{v(x)^T D_x v(x)}$$

$$\phi_{\boldsymbol{x}}(v) = \max_{\mu \in W_{\phi}} \langle \mu, v \rangle$$

Isotropic spatially homogeneous TV

Isotropic spatially varying weighted TV

Anisotropic spatially varying weighted TV

Anisotropic spatially varying Wulff shape

- → Generalize gradient operator in regularizer
- → Learn label interactions

$$\|\nabla u\|_{2,1}$$
 \longrightarrow $\|Wu\|_{2,1}$

(Vogel and Pock GCPR2017)

(Cherabier et al ECCV2018)

Multi-label segmentation/ **3D reconstruction**

$$\underset{u}{\text{minimize}} \quad \int_{\varOmega} \left(\|Wu\|_{2} + fu \right) \, d\mathbf{x} \quad \text{subject to} \quad \forall \mathbf{x} \in \varOmega : \, \sum\nolimits_{\ell} u_{\ell} \left(\mathbf{x} \right) = 1$$

Saddle-point problem

$$\underset{u}{\operatorname{minimize}} \max_{\|\xi\|_{\infty} \leq 1} \langle Wu, \xi \rangle + \langle f, u \rangle + \nu \left(1 - \sum_{\ell} u_{\ell} \right)$$

Iterate primal-dual update steps

$$\begin{split} \nu^{t+1} &= \nu^t + \sigma \left(\sum_{\ell} \bar{u}_{\ell}^t - 1 \right) & u^{t+1} &= \Pi_{[0,1]} \left[u^t + \tau (W^* \xi^{t+1} - f) \right] \\ \xi^{t+1} &= \Pi_{\|\cdot\| \le 1} \left[\xi^t + \sigma W \bar{u}^t \right] & \bar{u}^{t+1} &= 2u^{t+1} - u^t \end{split}$$

Neural Network via Optimization Unrolling

Iterate primal-dual update steps

$$\begin{split} \nu^{t+1} &= \nu^t + \sigma \left(\sum_{\ell} \bar{u}_{\ell}^t - 1 \right) \qquad u^{t+1} = \Pi_{[0,1]} \left[u^t + \tau (W^* \xi^{t+1} - f) \right] \\ \xi^{t+1} &= \Pi_{\|\cdot\| \le 1} \left[\xi^t + \sigma W \bar{u}^t \right] \qquad \bar{u}^{t+1} = 2u^{t+1} - u^t \end{split}$$

Primal Dual

Neural Network via Optimization Unrolling

Iterate primal-dual update steps

$$\begin{split} \nu^{t+1} &= \nu^t + \sigma \left(\sum_{\ell} \bar{u}_{\ell}^t - 1 \right) \qquad u^{t+1} = \Pi_{[0,1]} \left[u^t + \tau (W^* \xi^{t+1} - f) \right] \\ \xi^{t+1} &= \Pi_{\|\cdot\| \le 1} \left[\xi^t + \sigma W \bar{u}^t \right] \qquad \bar{u}^{t+1} = 2u^{t+1} - u^t \end{split}$$

Pre-processing

Primal Dual

Post-processing

Multi-scale Architecture

Potential to combine with Multi-Sensor Depth Map Fusion

Multi-Sensor Aggregation

Semantic 3D Reconstruction

minimize
$$\int_{\Omega} \left(\|Wu\|_{2} + \sum_{s \in \mathcal{S}} (c_{s} \circ f_{s}) u \right) d\mathbf{x}$$
subject to
$$\forall \mathbf{x} \in \Omega : \sum_{\ell \in \mathcal{L}} u_{\ell} (\mathbf{x}) = 1$$

2D Experiments

3D Experiments

3D Experiments on ScanNet

Methods	Overall	Freespace	Occupied	Semantic
Input data	59.8	39.1	99.7	68.4
TV-L1 (50 it.)	92.8	71.0	91.4	87.8
TV-L1 (500 it.)	95.8	86.4	92.3	88.5
C2F (50 it.)	21.0	26.7	99.9	31.4
Ours-5 (50 it.)	96.7	95.8	93.9	86.4
Ours-300 (0 it.)	97.3	97.6	92.3	90.2
Ours-300 (50 it.)	98.7	98.6	94.4	91.5

Visual Localization

Compute exact position and orientation of query image.

Visual Localization

[Bernhard Zeisl, Torsten Sattler and Marc Pollefeys. Camera Pose Voting for Large-Scale Image-Based Localization. ICCV, 2015]

3D Semantic Localization

Horizon 2020 European Union funding

[Schönberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR 2018]

3D Semantic Localization

[Schönberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR 2018]

The 180° Case

Horizon 2020 European Union funding

[Schönberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR 2018]

Strong Viewpoint Change

Understanding the Limitations of CNN-based Absolute Camera Pose Regression, Sattler et al CVPR 2019

Questions?

