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Classical 3D reconstruction from images

« Classical 3D from image approach
— Relative pose between images (structure-from-motion)
— Per pixel depth estimation (multi-view stereo matching)
— Surface reconstruction (TSDF, poisson, graph energy minimization)
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Semantic 3D reconstruction

W Building
® Ground
—_ B Vegetation
Clutter

« Joint 3D reconstruction and class segmentation
— Obtain separate surface for each class of object
— Corresponds to multi-label volumetric segmentation problem
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Discrete and Continuous Formulations

Discrete Domain

Smoothness:
transitions along edges

Formulation: Linear Program
[Schlesinger 1976]

Arbitrary smoothness cost allowed

Continuous Domain

Smoothness:
(anisotropic) boundary length

Formulation: Convex Program
[Chambolle, Cremers, Pock 2008]

Smoothness needs to form a metric



Convex, Continuous Multi-Label Formulation
[Zach, Hane, Pollefeys, CVPR 2012, TPAMI 2014]

® Metric smoothness fulfills triangle inequality
* Truncated quadratic smoothness non-metric

® Our continuously inspired formulation
® Takes best from both worlds
® Non-metric and anisotropic boundary length cost
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Energy Formulation
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Energy Formulation
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Energy Formulation
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Wulff shapes

The shape of an equilibrium crystal is obtained, according to the Gibbs

thermodynamic principle, by minimizing the total surface free energy
associated to the crystal-medium interface. http://www.scholarpedia.org/

Wulff's theorem: The minimum surface energy for a given volume of a
polyhedron will be achieved if the distances of its faces from one given
point are proportional to their surface tension

Proposed use for anisotropic regularization
[Esedoglu and Oscher 2004, Zach et al. 2009, Haene et al. 2013/14/15]
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Dense Semantic 3D Reconstruction
[Hane, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Input Images

Semantic Classifier

!

Sparse Reconstruction

Dense Matching

|

Class Likelihoods

Depth Maps




Dense Semantic 3D Reconstruction
[Hane, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Class Likelihoods

Depth Maps

Joint Fusion, Convex Optimization

v

Dense Semantic 3D Model




Formulation: Labeling of a Voxel Space
[Hane, Zach, Cohen, Angst, Pollefeys, CVPR 2013]

Data Term: Described as Regularization Term:
per-vo?(el unary Class-specific, direction
potentials dependent, surface area
penalization
Learned from
training data

subject to z* = Z(l‘?)k, T, = Z(I';i—ek)k
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Class specific training/selection of ¢ (-)

building ground vegetation

building

ground

vegetation
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Joint 3D reconstruction and class segmentation
(Haene et al CVPR13)
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Weakly Observed Structures |

® Buildings standing on the ground




Outline

Semantic 3D reconstruction

* Joint reconstruction, recognition and segmentation
* High-order ray potentials

 Joint classifier

* Modeling objects
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Weakly Observed Structures Il

® Building separated from vegetation




Unobserved Surfaces

® Labels can be separated



Unobserved Surfaces

® Labels can be separated




Higher-order ray potentials to model visibility
(Savinov et al, CVPR15/CVPR16)

 Volumetric formulation

Ray potentials Pairwise regularizer

« Cost based on the first occupied voxel along the ray

freespace

depth label



Cost based on the first occupied voxel along the ray

(Savinov et al, CVPR15/CVPR16)

Ur(X") = (3, Ted)

K" =3 No dependency on those voxels



Visibility Consistency Constraint
(Savinov et al, CVPR16)

(non-convex)
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Results

minimize A

inference J} I generative

(Savinov et al, CVPR15/16) EL-I



2-label V-Constraint: SOTA on Middlebury

V-Constraint: nicely handles thin objects



Can our approach also handle objects?

« Extend approach from ,Stuff” to , Things”

~

Introduce location dependent anisotropic smoothness prior
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Learning location-dependent

anisotropic smoothnes prior
(Haene et al CVPR 2014)

* Download training data from Google 3D warehouse

« At every voxel in 3D bounding box, estimate distribution
of observed shape normals

* Determine convex Wulff shape which best represents
observed statistics
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Cars
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Car reconstructions



Advantages of multi-class segmentation

Learn separate statistics for car-air and car-ground transition likelihoods
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Semantic multi-class 3D head reconstruction
(Maninchedda et al. ECCV2016)

 Align prior to data by minimizing smoothness term
towards position

parametric implicit semantic E Lll
Shape model Shape model and Geometry Lab



Segment based 3D object shape priors

represent non-convex object shape priors as combination of convex part priors
Karimi, Haene, Pollefeys (CVPR15)

build prior by performing (approximate) convex decomposition of example

(and observe which transitions occur)
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Result: Tables



Result: Trees



Result Mug



Detect and regularize for symmetries
(Speciale et al. ECCV2016)

A preference for symmetry can be introduced by adding non-local
regularization terms



Semantic 3D Reconstruction

- Compared to a fixed-grid = 20 x faster, 30 — 40 x less memory
—> Allows for city scale reconstructions

Large-Scale Semantic 3D Reconstruction: an Adaptive Multi-Resolution Model for Multi- Class Volumetric Labeling,
Maros Blaha, Christoph Vogel, Audrey Richard, Jan D. Wegner, Thomas Pock, Konrad Schindler, CVPR 2016
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Overview of Regularizers

Gz (v) = v,

Isotropic spatially Isotropic spatially Anisotropic Anisotropic
homogeneous TV varying weighted TV spatially varying spatially varying
weighted TV Wulff shape
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Learning Regularization

- Generalize gradient operator in regularizer
- Learn label interactions

IVvully, = Wull,;,

(Vogel and Pock GCPR2017) (Cherabier et al ECCV2018)

Multi-label segmentation/
3D reconstruction

Saddle-point problem

Iterate primal-dual
update steps
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Neural Network via Optimization Unrolling

Iterate primal-dual
update steps

Primal Dual



Neural Network via Optimization Unrolling

Iterate primal-dual
update steps

Pre-processing Primal Dual Post-processing



Multi-scale Architecture

J \Q AN J

Y Y Y
Pre-processing Variational Optimization Post-processing
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Potential to combine with Multi-Sensor Depth Map Fusion

Multi-Sensor Aggregation Semantic 3D
Reconstruction
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2D Experiments



3D Experiments



3D Experiments on ScanNet



Learning Regularization



Learning Regularization



Learning Regularization



Learning Regularization



Learning Regularization



Visual Localization

Compute exact position and orientation of query image.



Visual Localization

[Bernhard Zeisl, Torsten Sattler and Marc Pollefeys.
Camera Pose Voting for Large-Scale Image-Based Localization. ICCV, 2015]

Computer Vision
and Geometry Lab



3D Semantic Localization

3D semantic volume 3D semantic volume

[Schonberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR
2018]
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3D Semantic Localization

global semantic map

latent space
local semantic map

[Schonberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR
2018]
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The 180° Case

[Schonberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR
2018]
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Strong Viewpoint Change

KITTl dataset  4<@ :5::

depth from stereo

ours image features 3D features learning

[Schonberger, Pollefeys, Geiger, Sattler, Semantic Visual Localization, CVPR 2018]

Understanding the Limitations of CNN-based Absolute Camera Pose Regression, Sattler et al CVPR 2019
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Questions?
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