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The Answer to Life, the Universe, and Everything
2

By Matteo Kofler
https://towardsdatascience.com/deep-learning-with-
tensorflow-part-1-b19ce7803428



Or, Sometimes, Maybe Not…
3

By Matt Hopkins
https://www.pedestrian.tv/tech/the-computer-from-
hitchhikers-guide-to-the-galaxy-is-being-made-irl/



Notation

Notation:

• Number of layers: 𝑳

• Width of layer 𝒍: 𝒏𝒍

• Output of layer 𝒍: 𝒉𝒍 ∈ ℝ𝒏𝒍

• Input vector: 𝒙 (𝒉𝟎)

• Input dimension: 𝒏𝟎

𝒙 (𝒉𝟎)

𝒉𝟏

𝒉𝑳−𝟏

𝒚 (𝒉𝑳)
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The Scope of This Work

We study homogeneous DNNs with piecewise linear activations
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The Scope of This Work

We study homogeneous DNNs with piecewise linear activations

• Rectifier Linear Unit (ReLU):
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The Scope of This Work

We study homogeneous DNNs with piecewise linear activations

• Rectifier Linear Unit (ReLU):

For piecewise linear activations, the DNN models a piecewise linear function
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𝒍 = 𝒎𝒂𝒙 { 𝟎, 𝑾𝒊
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𝒍 }
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What Piecewise Linear Regression?

We study the number of “pieces”, or linear regions, that can those DNNs can 
attain, both theoretically and empirically
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What Piecewise Linear Regression?

We study the number of “pieces”, or linear regions, that can those DNNs can 
attain, both theoretically and empirically

• Each linear region is mapped to the output by a single affine function

• The configuration affects the number and form of the linear regions
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The Number of Regions Approach

Linear regions could be a proxy for model complexity

By Yurii
https://stats.stackexchange.com/questions/184103/why-the-error-
on-a-training-set-is-decreasing-while-the-error-on-the-validation
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The Number of Regions Approach

Linear regions could be a proxy for model complexity

• Enough capacity to fit well 
the training data well (low training error)

• Not so much that we single out 
the training points (low test error)

By Yurii
https://stats.stackexchange.com/questions/184103/why-the-error-
on-a-training-set-is-decreasing-while-the-error-on-the-validation
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Bounds on The Number of Linear Regions

Negatives are important

• Find limits to what functions can be approximated
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Bounds on The Number of Linear Regions

Negatives are important

• Find limits to what functions can be approximated

• Comparison between different configurations
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):

• For a given input 𝒙
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

𝑺𝟏 = {𝟏, 𝟑, 𝟒}
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):
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For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):
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𝑺𝟑 = {𝟓}
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

• The activation pattern of 𝒙 is 𝓢 = (𝑺𝟏, … , 𝑺𝒍)

𝑺𝟏 = {𝟏, 𝟑, 𝟒}

𝑺𝟐 = {𝟐, 𝟒}

𝑺𝟑 = {𝟓}

𝑺𝟒 = {𝟑, 𝟒, 𝟓}
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Raghu et al., 2017; Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

• The activation pattern of 𝒙 is 𝓢 = (𝑺𝟏, … , 𝑺𝒍)

A linear region is the set of all points 
with a same activation pattern

𝑺𝟏 = {𝟏, 𝟑, 𝟒}

𝑺𝟐 = {𝟐, 𝟒}

𝑺𝟑 = {𝟓}

𝑺𝟒 = {𝟑, 𝟒, 𝟓}
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Bounds on Rectifier Networks
• Better theoretical limits to the number of regions



Bounding Deep Networks, Act 0

The number of activation patterns is a first upper bound (Montufar et al., 2014):

𝟐𝒏𝟏+ …+𝒏𝑳
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Bounding Deep Networks, Act 0

The number of activation patterns is a first upper bound (Montufar et al., 2014):

𝟐𝒏𝟏+ …+𝒏𝑳

However, we cannot differentiate configurations with same number of units!
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Building Blocks to Bound Linear Regions

For each unit i in layer l, 𝑾𝒊
𝒍 and 𝒃𝒊

𝒍 define an activation hyperplane on 𝒉𝒍−𝟏:
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https://33bits.wordpress.com/2010/12/20/the-unsung-success-of-can-spam/

Active points:

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 > 𝟎

Inactive points:

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎



Building Blocks to Bound Linear Regions

We can use the theory of hyperplane 
arrangements on the layers (Zaslavsky, 1975):

• The number of full-dimensional regions 
defined by 𝒏 hyperplanes in ℝ𝑑 is



𝒊=𝟎

𝒅
𝒏

𝒊
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By Kilom691 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=37508909



The Effect of a Single Layer

Each full-dimensional polyhedron defined by the arrangement of activation 
hyperplanes of a given layer corresponds to a distinct activation set
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Bounding Shallow Networks

The number of regions of a shallow network is at most



𝒊=𝟎

𝒏𝟎
𝒏𝟏
𝒊
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Bounding Shallow Networks

The number of regions of a shallow network is at most



𝒊=𝟎

𝒏𝟎
𝒏𝟏
𝒊

With 4 hyperplanes in 2 dimensions, we have: 

𝟒

𝟎
+

𝟒

𝟏
+

𝟒

𝟐
= 𝟏 + 𝟒 + 𝟔 = 𝟏𝟏
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Bounding Shallow Networks

The number of regions of a shallow network is at most



𝒊=𝟎

𝒏𝟎
𝒏𝟏
𝒊

With 4 hyperplanes in 2 dimensions, we have: 

𝟒

𝟎
+

𝟒

𝟏
+

𝟒

𝟐
= 𝟏 + 𝟒 + 𝟔 = 𝟏𝟏

We can always reach that bound

From https://onionesquereality.wordpress.com/2012/11/23/
maximum-number-of-regions-in-arrangement-of-hyperplanes/
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Bounding Deep Networks, Act 1

We can generalize the previous idea to multiple layers:
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We can generalize the previous idea to multiple layers:

• Each LR in layer 𝒍 can be potentially combined 
with all LRs in the subsequent layers
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Bounding Deep Networks, Act 1

We can generalize the previous idea to multiple layers:

• Each LR in layer 𝒍 can be potentially combined 
with all LRs in the subsequent layers

Implicit in Raghu et al. (2017): 
For a rectifier DNN, there are at most

ෑ

𝒍=𝟏

𝑳



𝒋=𝟎

𝒏𝒍−𝟏
𝒏𝒍
𝒋

linear regions.
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Propagating Dimensions through Width

A layer with small width restricts the dimension of 
hyperplane arrangements in subsequent layers

Layer 𝒍 − 𝟐

Layer 𝒍 − 𝟏

Layer 𝒍
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Propagating Dimensions through Width

A layer with small width restricts the dimension of 
hyperplane arrangements in subsequent layers

• For layer 𝒍, we have 5 hyperplanes in dimension 3

• In fact, the output 𝐡𝐥 is contained in a 3D region

More generality, the maximum dimension of the arrangement in layer 𝒍 is

𝒅𝒍−𝟏 = 𝒎𝒊𝒏 𝒏𝟎, 𝒏𝟏, … , 𝒏𝒍−𝟏

Layer 𝒍 − 𝟐

Layer 𝒍 − 𝟏

Layer 𝒍
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Consequence to the Upper Bound, Act 2

Montufar (2017): For a rectifier DNN, there are at most

ෑ

𝒍=𝟏

𝑳



𝒋=𝟎

𝒅𝒍
𝒏𝒍
𝒋

linear regions.
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Refining Dimensions through Activation Patterns

In the last example, nothing changes if layer 𝒍 − 𝟏 has extra inactive units

Layer 𝒍 − 𝟐

Layer 𝒍 − 𝟏

Layer 𝒍
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Refining Dimensions through Activation Patterns

In the last example, nothing changes if layer 𝒍 − 𝟏 has extra inactive units

In fact, we could make stronger statements:

• Given 𝑺𝒍−𝟐, the arrangement in layer 𝒍 − 𝟏
consists of 5 hyperplanes in dimension 2

• Hence, for that 𝑺𝒍−𝟐, outputs 𝐡𝐥−𝟏 and 𝐡𝐥

are both contained in 2D regions

Layer 𝒍 − 𝟐

Layer 𝒍 − 𝟏

Layer 𝒍
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How This Looks in Practice
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How This Looks in Practice
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Bounding Deep Networks, Act 3

Theorem 1 (S., Tjandraatmadja, Ramalingam 2018a): For a rectifier DNN, there are at most



𝒋𝟏,…,𝒋𝑳 ∈𝑱

ෑ

𝒍=𝟏

𝑳
𝒏𝒍
𝒋𝒍

linear regions, where 

𝑱 = { 𝒋𝟏, … , 𝒋𝑳 ∈ ℤ𝑳: 𝟎 ≤ 𝒋𝒍 ≤ 𝐦𝐢𝐧 𝒏𝟎, 𝒏𝟏 − 𝒋𝟏, … , 𝒏𝒍−𝟏 − 𝒋𝒍−𝟏, 𝒏𝒍 ∀𝒍 =
𝟏,… , 𝑳}.
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Bounding Deep Networks, Act 3

Theorem 1 (S., Tjandraatmadja, Ramalingam 2018a): For a rectifier DNN, there are at most



𝒋𝟏,…,𝒋𝑳 ∈𝑱

ෑ

𝒍=𝟏

𝑳
𝒏𝒍
𝒋𝒍

linear regions, where 

𝑱 = { 𝒋𝟏, … , 𝒋𝑳 ∈ ℤ𝑳: 𝟎 ≤ 𝒋𝒍 ≤ 𝐦𝐢𝐧 𝒏𝟎, 𝒏𝟏 − 𝒋𝟏, … , 𝒏𝒍−𝟏 − 𝒋𝒍−𝟏, 𝒏𝒍 ∀𝒍 =
𝟏,… , 𝑳}.

This bound is tight when 𝒏𝟎 = 𝟏
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Insights from the New Upper Bound

We uniformly distribute 60 units in 1 to 6 layers and vary input dimension
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Insights from the New Upper Bound

We uniformly distribute 60 units in 1 to 6 layers and vary input dimension

When the input dimension is very large, shallow networks have more LRs
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Insights from the New Upper Bound

We uniformly distribute 60 units in 1 to 6 layers and vary input dimension

When the input dimension is very large, shallow networks have more LRs

For a fixed input dimension, there is a depth that maximizes the bound
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Exact Counting on 
Rectifier Networks
• MILP-based procedure to enumerate linear regions



Linear Regions and Polyhedra

For ReLUs, given a pattern 𝑺, we can first represented the linear region 
in the lifted space 𝒙, 𝒉𝟏, … , 𝒉𝑳−𝟏, 𝒚:

𝒉𝒊
𝒍 = 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 > 𝟎 ∀ 𝒊 ∈ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
𝒉𝒊
𝒍 = 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
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Linear Regions and Polyhedra

If we slightly relax the definition of active units (borders overlap), 
each linear region corresponds to a polyhedron in 𝒙, 𝒉𝟏, … , 𝒉𝑳−𝟏, 𝒚:

𝒉𝒊
𝒍 = 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≥ 𝟎 ∀ 𝒊 ∈ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
𝒉𝒊
𝒍 = 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
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A Disjunctive Program

The union of the polyhedra corresponding to the sets of activation patterns 
is a disjunctive program, which can be translated to a MILP formulation

𝒉𝒊
𝒍 = 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≥ 𝟎 ∀ 𝒊 ∈ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
𝒉𝒊
𝒍 = 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
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is a disjunctive program, which can be translated to a MILP formulation
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𝒍 ≤ 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
𝒉𝒊
𝒍 = 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

We obtain the polyhedron in 𝒙 by Fourier-Motzkin elimination
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A Disjunctive Program

The union of the polyhedra corresponding to the sets of activation patterns 
is a disjunctive program, which can be translated to a MILP formulation

𝒉𝒊
𝒍 = 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 ≥ 𝟎 ∀ 𝒊 ∈ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 ≤ 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}
𝒉𝒊
𝒍 = 𝟎 ∀ 𝒊 ∉ 𝑺𝒍, 𝒍 ∈ {𝟏, … , 𝑳}

We obtain the polyhedron in 𝒙 by Fourier-Motzkin elimination

We find all linear regions using a mixed-integer formulation
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Mapping Inputs to Outputs on Units

The following constraints represent a ReLU 𝒊 in layer 𝒍:

𝑾𝒊
𝒍𝒉𝒍−𝟏 + 𝒃𝒊

𝒍 = 𝒈𝒊
𝒍

𝒈𝒊
𝒍 = 𝒉𝒊

𝒍 − ഥ𝒉𝒊
𝒍

𝒉𝒊
𝒍 ≥ 𝟎

ഥ𝒉𝒊
𝒍 ≥ 𝟎

𝒉𝒊
𝒍 ≤ 𝑯𝒊

𝒍 𝒛𝒊
𝒍

ഥ𝒉𝒊
𝒍 ≤ ഥ𝑯𝒊

𝒍(𝟏 − 𝒛𝒊
𝒍)

𝒛𝒊
𝒍 ∈ {𝟎, 𝟏}

• ഥ𝒉𝒊
𝒍 is the output of a fictitious complementary unit

• 𝒛𝒊
𝒍 is a binary variable modeling if the neuron is active

• 𝑯𝒊
𝒍 and ഥ𝑯𝒊

𝒍 are sufficiently large and positive constants (bounded inputs)
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The following constraints represent a ReLU 𝒊 in layer 𝒍:
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Mapping Inputs to Outputs on Units

The following constraints represent a ReLU 𝒊 in layer 𝒍:
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Counting LRs as Integer Solutions

The number of LRs of a rectifier DNN corresponds to the number of solutions 
on 𝒛 with positive value for the following mixed-integer program:

𝒎𝒂𝒙 𝒇

s.t. 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 for each neuron 𝑖 in layer 𝑙
𝒇 ≤ 𝒉𝒊

𝒍 + 𝟏 − 𝒛𝒊
𝒍 𝑴 for each neuron 𝑖 in layer 𝑙

𝒙 ∈ 𝑿
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Counting LRs as Integer Solutions

The number of LRs of a rectifier DNN corresponds to the number of solutions 
on 𝒛 with positive value for the following mixed-integer program:

𝒎𝒂𝒙 𝒇

s.t. 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 for each neuron 𝑖 in layer 𝑙
𝒇 ≤ 𝒉𝒊

𝒍 + 𝟏 − 𝒛𝒊
𝒍 𝑴 for each neuron 𝑖 in layer 𝑙

𝒙 ∈ 𝑿

Similar mixed-integer formulations proposed around the time:
C.-H. Cheng et al. (2017), Fischetti and Jo (2017)
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Computational Results
• How theoretical and empirical numbers compare

• How these numbers mean in practice



Setup

We trained rectifier networks on the MNIST benchmark
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Setup

We trained rectifier networks on the MNIST benchmark

• Input is 28x28, final layer has 10 units (one per digit)
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Setup

We trained rectifier networks on the MNIST benchmark

• Input is 28x28, final layer has 10 units (one per digit)

• Two other layers share 22 units
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Setup

We trained rectifier networks on the MNIST benchmark

• Input is 28x28, final layer has 10 units (one per digit)

• Two other layers share 22 units

• For each possible configuration, 10 networks were trained and counted
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Bounding vs. Counting Results

Comparison of bounds with average of 10 networks and min-max bars
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Linear Regions and Accuracy

Plot with all points in heat scale by width, from 1,21,10 to 21,1,10
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Linear Regions and Accuracy

Same plot, but configurations are limited from 4,18,10 to 18,4,10
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Towards Faster Methods to
Measure Expressiveness
• SAT-inspired probabilistic lower bounds



Sampling with XOR Constraints

XOR constraints on Boolean variables, and parity constraints on 0—1 
variables, have good sampling properties to splitting arbitrary solution sets

𝑋𝑂𝑅 𝑥1, 𝑥2, 𝑥3 ↔ 𝑥1 + 𝑥2 + 𝑥3 𝑀𝑂𝐷 2 = 1
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Sampling with XOR Constraints

XOR constraints on Boolean variables, and parity constraints on 0—1 
variables, have good sampling properties to splitting arbitrary solution sets

𝑋𝑂𝑅 𝑥1, 𝑥2, 𝑥3 ↔ 𝑥1 + 𝑥2 + 𝑥3 𝑀𝑂𝐷 2 = 1

• After adding r of such constraints multiple times, we may compute the 
probability of a lower bound of 𝟐𝒓 if the resulting set is more often feasible

• Upper bounds require sufficiently large XORs, but we do not need them
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Empirical Bounding Results

Comparison of bound with coefficients and approximate counting
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Summary



Conclusion

Bounds on linear regions

• We discovered tighter bounds that are maximized at particular depths

• The ReLU bound is precise for input of size 1

• Shallow networks can define more linear regions

Counting linear regions

• We proposed an MILP-based method

• We decussed an exact approach using decision diagrams

What does the number of linear regions tells us?

• The number of regions can potentially help comparing similar 
configurations

• The shape (at least the lineality) may also be important
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Conclusion

Bounds on linear regions

• We discovered tighter bounds that are maximized at particular depths

• The ReLU bound is precise for input of size 1

• Shallow networks can define more linear regions

Counting linear regions

• We proposed an MILP-based method

• We developed SAT-inspired probabilistic lower bounds

What does the number of linear regions tells us?

• We can compare similar configurations through the number of regions

• The shape may also be important
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Future Work

Practical uses for the characterization by linear regions:

• Compress neural nets without loss
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Future Work

Practical uses for the characterization by linear regions:

• Compress neural nets without loss

Two-way exchange with integer programming:

• Counting and approximating solution sets

• Application to postoptimality analysis

New research directions:

• Understand other types of architectures

• Connect geometry with data
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