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Notation

Notation:

ANumber of layers:
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Alnput vector:

Alnput dimension:
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The Scope of This Work

We study homogeneous DNNs with piecewise linear activations
ARectifier Linear UnitReLV):
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For piecewise linear activationshe DNNmodelsa piecewise lineafunction
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What Piecewise Linear Regression?

2 S aiudzRé (KS ¢ dzihn@abddiogsthat GabhXhdse€ONAIS can
attain, both theoreticallyand empirically
AEach linear region is mapped to the output by a single affine function
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What Piecewise Linear Regression?

2 S aiddzRé (0KS ¥ dzihaalildioBsthat cahJhds€ONals can
attain, both theoreticallyand empirically
AEach linear region is mapped to the outputdgingleaffine function

AThe configuration affects theumberandform of the linear regions
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The Number of Regions Approach

Linear regions could be a proxy for model complexity
Pascantet al. 2013Montufar et al. 2014, Raghu et al. 20IMMontufar 2017, Aroraet al. 2018
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The Number of Regions Approach

Linear regions could be a proxy for model complexity
Pascantet al. 2013Montufar et al. 2014, Raghu et al. 20IMMontufar 2017, Aroraet al. 2018

AEnough capacity to fivell
the training datawell (ow training error)

ANot so much thatve single out
the training points |Ow test error)
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Model complexity
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Bounds on The Number of Linear Regions

Negativesare important
AFind limits to what functions can la@proximated
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Bounds on The Number of Linear Regions

Negativesare important
AFind limits to what functions can tag@proximated

AComparison betweedifferent configurations
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Activation Patterns and Linear Regions
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Activation Patterns and Linear Regions

ForRelLUswe characterize these regions using the
concept ofactivation patternSraghu et al., 201 Montufar, 2017}
AFor a given inpué
AThere is an activation sgf' P h 8 f»

for each layer | such thatt -|®iff i |
AThe activation pattern obis* - 8 "

A linear regions the set of all points
with a same activation pattern
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Bounds orRRectifier Networks

A Better theoretical limits to the number oégions



Bounding Deep Networks, Act O

The number of activation patterns is a first upper bown6lutaret al., 2014
8 =4
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Bounding Deep Networks, Act O

The number of activation patterns is a first upper bown6lutaret al., 2014
8 =4

However, we cannot differentiate configurations with same number of units



BuildingBlocks to Bound Linear Regions

Foreachunit 1 in layerl, 57 'and-H—'deflne anactivationhyperplaneon I' :
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BuildingBlocks to Bound Linear Regions

Foreachunit i in layerl, 3¢ 'and-H—'deflne anactivationhyperplaneon I' ;

By Arvind Narayanan
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BuildingBlocks to Bound Linear Regions

Foreachunit i in layerl, 3¢ 'and-H—'deflne anactivationhyperplaneon I' ;

Active points:

--------
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Building Blocks to Bound Linear Regions

Foreachunit i in layerl, 3¢ 'and-H—'deflne anactivationhyperplaneon I' ;

Active points:
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Inactive points:

By Arvind Narayanan
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Building Blocks to Bound Linear Regions

We can use théheory of hyperplane
arrangementon the layerszasiavskyio7s;

AThe number of fultlimensional regions
defined by= hyperplanes im is

()

By Kilom691 Own work, CC BSA 4.0,
https://commons.wikimedia.org/w/index.php?curid=37508909
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The Effect of a Single Layer

Each fulldimensional polyhedron defined by the arrangement of activation
hyperplanes of a given layer corresponds to a distinct activation set
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Bounding Shallow Networks

The number of regions of a shallow network Is at most

. (%)
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Bounding Shallow Networks
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. ()

With 4 hyperplanes in 2 dimensions, we have:
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Bounding Shallow Networks

The number of regions of a shallow network Is at most

()

With 4 hyperplanes in 2 dimensions, we have: -

() 0) ()

We can always reach that bound -, TR

Hyperplane 4

Hyperplane 1
Reg. 2

Reg. 3

Hyperplane 3

Reg. 4

From https://onionesquereality.wordpress.com/2012/11/23/
maximumnumberof-regionsin-arrangementof-hyperplanes



Bounding Deep Networks, Act 1

We can generalize the previous idea to multiple layers:
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Bounding Deep Networks, Act 1

We can generalize the previous idea to multiple layers:

AEach LR in layecan be potentially combined
with all LRs in the subsequent layers

Implicit iInRaghu et al@oi7;
Fora rectifler DNN, there are at most

linear regions.



Propagating Dimensions through Width

A layer with small width restricts the dimension o
hyperplane arrangements in subsequent layers
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Propagating Dimensions through Width

A layer with small width restricts the dimension o
hyperplane arrangements in subsequent layers

AFor layem we have 5 hyperplanes in dimension 3
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A layer with small width restricts the dimension o
hyperplane arrangements in subsequent layers
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Propagating Dimensions through Width

A layer with small width restricts the dimension o
hyperplane arrangements in subsequent layers

More generality, themaximum dimensiomf the arrangement in layemis
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Conseguence to the Upper Bound, Act 2

Montufar co17; For a rectifier DNN, there are at most
J |

linear regions.
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Refining Dimensions through Activation Pattern

In the last example, nothing changes if lamer has extranactiveunits
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Refining Dimensions through Activation Pattern

In the last example, nothing changes if lamer hasextrainactiveunits

In fact, we could make stronger statements:

AGiven® , the arrangement in layew
consists of 5 hyperplanes in dimension 2

AHence, for that|® , outputsi ' andi '
are both contained in 2D regions
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How This Looks In Practice
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How This Looks In Practice
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Bounding Deep Networks, Act 3

Theorem ls. Tjandraatmadja Ramalinganeo1say FOr a rectifier DNN, there are at most

TTTITIN ¥4 Nennnnan TTTITIN ¥4 N~ asssams
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Bounding Deep Networks, Act 3

Theorem ls. Tjandraatmadja Ramalinganeo1say FOr a rectifier DNN, there are at most

TTTITIN ¥4 Nennnnan TTTITIN ¥4 N~ asssams

This bound is tight when
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Insights from the New Upper Bound

We uniformly distribute 60 units in 1 to 6 layers and vary input dimension
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(a) Theorem 1 (b) Montufar (2017)



