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Deep networks are unsafe
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“black hole”
87.7% confidence

“donut”
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Deep networks are unsafe

3

[BCZOCG’18] Unrestricted Adversarial Example, 2018



Why are there adversarial examples?
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Linear Case Non-Linear Case

• We use a wrong loss function



Trade-off between Robustness and Accuracy
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𝑅"#$ 𝑓 := 𝔼 ),+ ~-1{∃𝑋2 ∈ 𝔹 𝑋, 𝜀 	𝑠. 𝑡. 	𝑓 𝑋2 𝑌 ≤ 0}
𝑅>?@ 𝑓 := 𝔼 ),+ ~-1{𝑓 𝑋 𝑌 ≤ 0}

• An example of trade-off:

= Pr	(𝑌 = +1|𝑋 = 𝑥)

𝑋~𝑈[0,1]



Trade-off between Robustness and Accuracy
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OPT:= min
P
𝑅"#$ 𝑓 , s. t. 							𝑅>?@ 𝑓 ≤ 𝑅>?@∗ + 𝛿

• Our goal: Find a classifier 𝑓U such that 𝑅"#$ 𝑓U ≤ OPT + 𝛿

suffice to show 𝑅"#$ 𝑓 − 𝑅>?@∗ ≤ 𝛿

Computationally, both 𝑅>?@(𝒇) and 𝑅𝒓𝒐𝒃(𝒇)
are non-differentiable.



Surrogate Loss
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[BJM’06] Convexity, Classification, and Risk Bounds, 2006

• Classification-calibrated loss 𝜙:

𝐻 𝜂 := min
^∈ℝ

(𝜂𝜙 𝛼 + 1 − 𝜂 𝜙 −𝛼 )

𝐻a 𝜂 := min
^:^(bcad)ef

(𝜂𝜙 𝛼 + 1 − 𝜂 𝜙 −𝛼 )

Definition	(classification-calibrated	loss):

𝜙 is classification-calibrated	loss,	if	for	any	𝜂 ≠ 1/2,	𝐻a 𝜂 > 𝐻 𝜂 .

Intuitive explanation:
• Think about 𝜂 as 𝜂 𝑥 = Pr	[𝑌 = +1|𝑋 = 𝑥], and 𝛼 as score of positive class by 𝑓
• Then 𝐻 𝜂 = min

P
	𝑅>?@ 𝑓

𝐻a 𝜂 = min
P
	𝑅>?@ 𝑓 s.t. 𝑓 is inconsistent with Bayes optimal classifier

• Classification-calibrated loss: wrong classifier leads to larger loss for all 𝜂 𝑥



Surrogate Loss
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[BJM’06] Convexity, Classification, and Risk Bounds, 2006

𝜙



Main Results
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Theorem	1	(Informal,	upper	bound,	ZYJXGJ’19):

We have 𝑅"#$ 𝑓 − 𝑅>?@∗ ≤ 𝑅k 𝑓 − 𝑅k∗ + 𝔼 max
)2∈𝔹(),n)

𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆).

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Proof Sketch:
• An important decomposition: 𝑅"#$ 𝑓 = 𝑅>?@ 𝑓 + 𝑅$pq 𝑓

where 𝑅$pq 𝑓 = 𝔼 ),+ ~-1{∃𝑋 ∈ 𝜀	neighbour	of	𝑓	s. t. 	𝑓 𝑋 𝑌 > 0}
𝑓∗ 𝑓 𝑓∗ 𝑓 𝑓∗ 𝑓

= +



Main Results
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Theorem	1	(Informal,	upper	bound,	ZYJXGJ’19):

We have 𝑅"#$ 𝑓 − 𝑅>?@∗ ≤ 𝑅k 𝑓 − 𝑅k∗ + 𝔼 max
)2∈𝔹(),n)

𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆).

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Proof Sketch:
• An important decomposition: 𝑅"#$ 𝑓 = 𝑅>?@ 𝑓 + 𝑅$pq 𝑓

where 𝑅$pq 𝑓 = 𝔼 ),+ ~-1{∃𝑋 ∈ 𝜀	neighbour	of	𝑓	s. t. 	𝑓 𝑋 𝑌 > 0}
• 𝑅"#$ 𝑓 − 𝑅>?@∗ = 𝑅>?@ 𝑓 − 𝑅>?@∗ + 𝑅$pq 𝑓
• 𝑅>?@ 𝑓 − 𝑅>?@∗ ≤ 𝑅k 𝑓 − 𝑅k∗ by [BJM’06]
• 𝑅$pq 𝑓 = 𝔼 max

)2∈𝔹(),n)
1(𝑓 𝑋2 𝑓 𝑋 < 0) ≤ 𝔼 max

)2∈𝔹(),n)
𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆)

[BJM’06] Convexity, Classification, and Risk Bounds, 2006
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Theorem	1	(Informal,	upper	bound,	ZYJXGJ’19):

We have 𝑅"#$ 𝑓 − 𝑅>?@∗ ≤ 𝑅k 𝑓 − 𝑅k∗ + 𝔼 max
)2∈𝔹(),n)

𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆).

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Theorem	2	(Informal,	lower	bound,	ZYJXGJ’19):

There exist a data distribution, a classifier 𝑓, and an 𝜆 > 0 such that
𝑅"#$ 𝑓 − 𝑅>?@∗ ≥ 𝑅k 𝑓 − 𝑅k∗ + 𝔼 max

)2∈𝔹(),n)
𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆).



Main Results
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• New Surrogate Loss:
min
P
[𝔼𝜙 𝑌𝑓 𝑋 + 𝔼 max

)2∈{|())
𝜙 𝑓 𝑋 𝑓 𝑋2 /𝜆 ]

Theorem	1	(Informal,	upper	bound,	ZYJXGJ’19):

We have 𝑅"#$ 𝑓 − 𝑅>?@∗ ≤ 𝑅k 𝑓 − 𝑅k∗ + 𝔼 max
)2∈𝔹(),n)

𝜙(𝑓 𝑋2 𝑓(𝑋)/𝜆).

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

min
P
𝔼𝜙 𝑌𝑓 𝑋 min

P
[𝔼𝜙 𝑌𝑓 𝑋 + 𝔼 max

)2∈{|())
𝜙 𝑓 𝑋 𝑓 𝑋2 /𝜆 ]	



PyTorch Package
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• New Surrogate Loss:
min
P
[𝔼𝜙 𝑌𝑓 𝑋 + 𝔼 max

)2∈{|())
𝜙 𝑓 𝑋 𝑓 𝑋2 /𝜆 ]

• Link: https://github.com/yaodongyu/TRADES

replace



14

Significant Experimental Results



Experiments --- CIFAR10
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min
P

max
)2∈{|())

𝜙 𝑌𝑓 𝑋′

min
P
[𝔼𝜙 𝑌𝑓 𝑋 + 𝔼 max

)2∈{|())
𝜙 𝑓 𝑋 𝑓 𝑋2 /𝜆]

(by Madry et al.)

(ours)



Competition I: NeurIPS 2018 Adversarial Vision Challenge
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• 400+ teams, ~2,000 submissions
• Tiny ImageNet dataset
• Model Track and Attack Track
• Participants in the two tracks play 

against each other

• Evaluation criterion



17

Competition I: NeurIPS 2018 Adversarial Vision Challenge



Competition II: Unrestricted Adversarial Example
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Interpretability
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the class 
of bicycle

the class 
of bird



Competition II: Unrestricted Adversarial Example
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Competition II: Unrestricted Adversarial Example
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Competition II: Unrestricted Adversarial Example
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Competition II: Unrestricted Adversarial Example

23



Competition II: Unrestricted Adversarial Example
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Conclusions
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• Adversarial Robustness
• Trade-off matters in the adversarial defense
• Matching upper and lower bounds on 𝑅"#$ 𝑓 − 𝑅>?@∗

• New surrogate loss for adversarial defense
• PyTorch package
• Winners of NeurIPS 2018 Adversarial Vision Challenge

Unrestricted Adversarial Example Challenge



Future Directions about Robustness
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• Computational and Statistical Theory
• Understand the optimization principal of new surrogate loss
• (Tight) sample complexity of adversarial learning

• Applications of AI Security
• Robotics, autonomous cars
• Medical diagnose

• Extensions with other frameworks
• Self-supervised/semi-supervised learning
• Neural ODE



Thank You

27


