Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang, CMU → TTIC

Yaodong Yu (UVa) Jiantao Jiao (UCB) Eric Xing (CMU) Laurent Ghaoui (UCB) Mike Jordan (UCB)

Deep Geometric Learning of Big Data and Applications
May 21st, 2019
Deep networks are unsafe

“black hole”
87.7% confidence

+ .007 ×

“donut”
99.3% confidence
Deep networks are unsafe

[BCZOCG’18] Unrestricted Adversarial Example, 2018
Why are there adversarial examples?

- We use a wrong loss function

Linear Case

- SVM decision boundary (largest margin)
- Cross-entropy min. decision boundary (poor margin)

Non-Linear Case
Trade-off between Robustness and Accuracy

\[R_{rob}(f) = \mathbb{E}_{(X,Y) \sim D} 1\{\exists X' \in \mathbb{B}(X, \varepsilon) \text{ s.t. } f(X')Y \leq 0\} \]
\[R_{nat}(f) = \mathbb{E}_{(X,Y) \sim D} 1\{f(X)Y \leq 0\} \]

- An example of trade-off:

\[\eta(x) = \Pr(Y = +1 | X = x) \]

<table>
<thead>
<tr>
<th>Bayes Optimal Classifier</th>
<th>All-One Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{nat})</td>
<td>0 (optimal)</td>
</tr>
<tr>
<td>(R_{rob})</td>
<td>1</td>
</tr>
</tbody>
</table>

\(X \sim U[0,1] \)
Trade-off between Robustness and Accuracy

- Our goal: Find a classifier \hat{f} such that $R_{rob}(\hat{f}) \leq \text{OPT} + \delta$

$$\text{OPT: } = \min_f R_{rob}(f), \quad \text{s.t. } R_{nat}(f) \leq R_{nat}^* + \delta$$

\[R_{rob}(f) - R_{nat}^* \leq \delta \]

Computationally, both $R_{nat}(f)$ and $R_{rob}(f)$ are non-differentiable.
Surrogate Loss

- Classification-calibrated loss ϕ:

$$
H(\eta) := \min_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))
$$

$$
H^{-}(\eta) := \min_{\alpha : \alpha (2\eta - 1) \leq 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))
$$

Definition (classification-calibrated loss):

ϕ is classification-calibrated loss, if for any $\eta \neq 1/2$, $H^{-}(\eta) > H(\eta)$.

Intuitive explanation:

- Think about η as $\eta(x) = \Pr[Y = +1|X = x]$, and α as score of positive class by f
- Then $H(\eta) = \min_{f} R_{nat}(f)$

 $$
 H^{-}(\eta) = \min_{f} R_{nat}(f) \text{ s.t. } f \text{ is inconsistent with Bayes optimal classifier}
 $$

- Classification-calibrated loss: wrong classifier leads to larger loss for all $\eta(x)$

[BJM’06] Convexity, Classification, and Risk Bounds, 2006
Surrogate Loss

[BJM’06] Convexity, Classification, and Risk Bounds, 2006
Main Results

Theorem 1 (Informal, upper bound, ZYJXGJ’19):

We have $R_{rob}(f) - R^*_{nat} \leq R_{\phi}(f) - R^*_\phi + \mathbb{E} \max_{X', \in B(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$.

Proof Sketch:

- An important decomposition: $R_{rob}(f) = R_{nat}(f) + R_{bdy}(f)$

where $R_{bdy}(f) = \mathbb{E}_{(X,Y) \sim D} 1\{\exists X \in \varepsilon \text{ neighbour of } f \text{ s.t. } f(X)Y > 0\}$

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
Main Results

Theorem 1 (Informal, upper bound, ZYJXGJ’19):
We have \(R_{rob}(f) - R_{nat}^* \leq R_\phi(f) - R_\phi^* + \mathbb{E}_{X' \in \mathbb{B}(X, \varepsilon)} \max_{X \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda) \).

Proof Sketch:
• An important decomposition: \(R_{rob}(f) = R_{nat}(f) + R_{bdy}(f) \) where \(R_{bdy}(f) = \mathbb{E}_{(X,Y) \sim D} 1\{\exists X \in \varepsilon \text{ neighbour of } f \text{ s.t. } f(X)Y > 0\} \)
• \(R_{rob}(f) - R_{nat}^* = R_{nat}(f) - R_{nat}^* + R_{bdy}(f) \)
• \(R_{nat}(f) - R_{nat}^* \leq R_\phi(f) - R_\phi^* \) by [BJM’06]
• \(R_{bdy}(f) = \mathbb{E}_{X' \in \mathbb{B}(X, \varepsilon)} 1(f(X')f(X) < 0) \leq \mathbb{E}_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda) \)

[BJM’06] Convexity, Classification, and Risk Bounds, 2006
[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
Main Results

Theorem 1 (Informal, upper bound, ZYJXGJ’19):
We have $R_{rob}(f) - R_{nat}^* \leq R_\phi(f) - R_\phi^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$.

Theorem 2 (Informal, lower bound, ZYJXGJ’19):
There exist a data distribution, a classifier f, and an $\lambda > 0$ such that $R_{rob}(f) - R_{nat}^* \geq R_\phi(f) - R_\phi^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$.

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
Main Results

Theorem 1 (Informal, upper bound, ZYJXGJ’19):

We have \(R_{rob}(f) - R_{nat}^{*} \leq R_{\phi}(f) - R_{\phi}^{*} + \mathbb{E}_{\{\phi(\max_{\delta: \phi} f(X')f(X)/\lambda)\}^{2}} \).

- New Surrogate Loss:

\[
\min_{f} [\mathbb{E} \phi(Yf(X)) + \mathbb{E} \max_{X' \in B_{\theta}(X)} \phi(f(X')f(X)/\lambda)]
\]

[ZYJXGJ’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
PyTorch Package

- **New Surrogate Loss:**

\[
\min_f \mathbb{E} \phi(Y_f(X)) + \mathbb{E} \max_{X \in \mathbb{B}_\epsilon(X)} \frac{\phi(f(X)f(X'))}{\lambda}
\]

Natural training:

```python
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        loss = F.cross_entropy(model(data), target)
        loss.backward()
        optimizer.step()
```

Adversarial training by TRADES:

To apply TRADES, cd into the directory, put 'trades.py' to the directory.

```python
from trades import trades_loss

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        # calculate robust loss - TRADES loss
        loss = trades_loss(model=model,
                           x_natural=data,
                           y=target,
                           optimizer=optimizer,
                           step_size=args.step_size,
                           epsilon=args.epsilon,
                           perturb_steps=args.num_steps,
                           batch_size=args.batch_size,
                           beta=args.beta,
                           distance='l_inf')
        loss.backward()
        optimizer.step()
```

- **Link:** https://github.com/yaodongyu/TRADES
Significant Experimental Results
Experiments --- CIFAR10

<table>
<thead>
<tr>
<th>Defense</th>
<th>Defense type</th>
<th>Under which attack</th>
<th>Dataset</th>
<th>Distance</th>
<th>$A_{nat}(f)$</th>
<th>$A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BRRG18]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>[MLW+18]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>[DAL+18]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>[SKN+18]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>[NKM17]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>CIFAR10</td>
<td>0.015 (ℓ_∞)</td>
<td>-</td>
<td>15%</td>
</tr>
<tr>
<td>[WSMK18]</td>
<td>robust opt.</td>
<td>FGSM20 (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>27.07%</td>
<td>23.54%</td>
</tr>
<tr>
<td>[MMS+18]</td>
<td>robust opt.</td>
<td>FGSM20 (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>87.30%</td>
<td>47.04%</td>
</tr>
</tbody>
</table>

$$\min_f \max_{X' \in B_\varepsilon(X)} \phi(Yf(X'))$$ (by Madry et al.)

<table>
<thead>
<tr>
<th>Defense</th>
<th>Defense type</th>
<th>Under which attack</th>
<th>Dataset</th>
<th>Distance</th>
<th>$A_{nat}(f)$</th>
<th>$A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADES (1/λ = 1)</td>
<td>regularization</td>
<td>FGSM20 (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>88.64%</td>
<td>49.14%</td>
</tr>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>FGSM20 (PGD)</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>84.92%</td>
<td>56.61%</td>
</tr>
</tbody>
</table>

$$\min_f [\mathbb{E} \phi(Yf(X)) + \mathbb{E} \max_{X' \in B_\varepsilon(X)} \phi(f(X)f(X'))/\lambda]$$ (ours)

<table>
<thead>
<tr>
<th>Defense</th>
<th>Defense type</th>
<th>Under which attack</th>
<th>Dataset</th>
<th>Distance</th>
<th>$A_{nat}(f)$</th>
<th>$A_{rob}(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>LBFGSAttack</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>84.92%</td>
<td>81.58%</td>
</tr>
<tr>
<td>TRADES (1/λ = 1)</td>
<td>regularization</td>
<td>MI-FGSM</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>88.64%</td>
<td>51.26%</td>
</tr>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>MI-FGSM</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>84.92%</td>
<td>57.95%</td>
</tr>
<tr>
<td>TRADES (1/λ = 1)</td>
<td>regularization</td>
<td>C&W</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>88.64%</td>
<td>84.03%</td>
</tr>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>C&W</td>
<td>CIFAR10</td>
<td>0.031 (ℓ_∞)</td>
<td>84.92%</td>
<td>81.24%</td>
</tr>
<tr>
<td>[SKC18]</td>
<td>gradient mask</td>
<td>[ACW18]</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>-</td>
<td>55%</td>
</tr>
<tr>
<td>[MMS+18]</td>
<td>robust opt.</td>
<td>FGSM40 (PGD)</td>
<td>MNIST</td>
<td>0.3 (ℓ_∞)</td>
<td>99.36%</td>
<td>96.01%</td>
</tr>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>FGSM40 (PGD)</td>
<td>MNIST</td>
<td>0.3 (ℓ_∞)</td>
<td>99.48%</td>
<td>96.07%</td>
</tr>
<tr>
<td>TRADES (1/λ = 6)</td>
<td>regularization</td>
<td>C&W</td>
<td>MNIST</td>
<td>0.005 (ℓ_2)</td>
<td>99.48%</td>
<td>99.46%</td>
</tr>
</tbody>
</table>
Competition I: NeurIPS 2018 Adversarial Vision Challenge

• Evaluation criterion
 • 400+ teams, ~2,000 submissions
 • Tiny ImageNet dataset
 • Model Track and Attack Track
 • Participants in the two tracks play against each other
Competition I: NeurIPS 2018 Adversarial Vision Challenge

Final Result

1st (TRADES) 2.256
2nd 2.025
3rd 1.637
4th 1.585
5th 1.476
6th 1.401
Competition II: Unrestricted Adversarial Example

Unrestricted Adversarial Examples Challenge

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean, unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper.

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are currently accepting defenses for the warm-up.

Warm-up & Contest Timeline

<table>
<thead>
<tr>
<th>Warm-up begins</th>
<th>Warm-up attacks are soundly beaten</th>
<th>Contest begins & defenses are evaluated each week</th>
<th>Contestant claims defender prize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>current status</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interpretability

(a) clean example (b) adversarial example by boundary attack with random spatial transformation

(c) clean example (d) adversarial example by boundary attack with random spatial transformation

(e) clean example (f) adversarial example by boundary attack with random spatial transformation

(a) clean example (b) adversarial example by boundary attack with random spatial transformation

(c) clean example (d) adversarial example by boundary attack with random spatial transformation

(e) clean example (f) adversarial example by boundary attack with random spatial transformation

the class of bicycle

the class of bird
Competition II: Unrestricted Adversarial Example

<table>
<thead>
<tr>
<th>Defense</th>
<th>Submitted by</th>
<th>Clean data</th>
<th>Common corruptions</th>
<th>Spatial grid attack</th>
<th>SPSA attack</th>
<th>Boundary attack</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pytorch ResNet50 (trained on bird-or-bicycle extras)</td>
<td>TRADESv2</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.5%</td>
<td>100.0%</td>
<td>95.0%</td>
<td>Jan 17th, 2019 (EST)</td>
</tr>
<tr>
<td>Keras ResNet (trained on ImageNet)</td>
<td>Google Brain</td>
<td>100.0%</td>
<td>99.2%</td>
<td>92.2%</td>
<td>1.6%</td>
<td>4.0%</td>
<td>Sept 29th, 2018</td>
</tr>
<tr>
<td>Pytorch ResNet (trained on bird-or-bicycle extras)</td>
<td>Google Brain</td>
<td>98.8%</td>
<td>74.6%</td>
<td>49.5%</td>
<td>2.5%</td>
<td>8.0%</td>
<td>Oct 1st, 2018</td>
</tr>
</tbody>
</table>
Competition II: Unrestricted Adversarial Example

<table>
<thead>
<tr>
<th>Defense</th>
<th>Submitted by</th>
<th>Clean data</th>
<th>Common corruptions</th>
<th>Spatial grid attack</th>
<th>SPSA attack</th>
<th>Boundary attack</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pytorch ResNet50 (trained on bird-or-bicycle extras)</td>
<td>TRADESv2</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.5%</td>
<td>100.0%</td>
<td>95.0%</td>
<td>Jan 17th, 2019 (EST)</td>
</tr>
<tr>
<td>Keras ResNet (trained on ImageNet)</td>
<td>Google Brain</td>
<td>100.0%</td>
<td>99.2%</td>
<td>92.2%</td>
<td>1.6%</td>
<td>4.0%</td>
<td>Sept 29th, 2018</td>
</tr>
<tr>
<td>Pytorch ResNet (trained on bird-or-bicycle extras)</td>
<td>Google Brain</td>
<td>98.8%</td>
<td>74.6%</td>
<td>49.5%</td>
<td>2.5%</td>
<td>8.0%</td>
<td>Oct 1st, 2018</td>
</tr>
</tbody>
</table>
Competition II: Unrestricted Adversarial Example

<table>
<thead>
<tr>
<th>Defense</th>
<th>Submitted by</th>
<th>Clean data</th>
<th>Common corruptions</th>
<th>Spatial grid attack</th>
<th>SPSA attack</th>
<th>Boundary attack</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pytorch ResNet50 (trained on bird-or-bicycle extras)</td>
<td>TRADESv2</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.5%</td>
<td>100.0%</td>
<td>95.0%</td>
<td>Jan 17th, 2019 (EST)</td>
</tr>
<tr>
<td>Keras ResNet (trained on ImageNet)</td>
<td>Google Brain</td>
<td>100.0%</td>
<td>99.2%</td>
<td>92.2%</td>
<td>1.6%</td>
<td>4.0%</td>
<td>Sept 29th, 2018</td>
</tr>
<tr>
<td>Pytorch ResNet (trained on bird-or-bicycle extras)</td>
<td>Google Brain</td>
<td>98.8%</td>
<td>74.6%</td>
<td>49.5%</td>
<td>2.5%</td>
<td>8.0%</td>
<td>Oct 1st, 2018</td>
</tr>
</tbody>
</table>
Competition II: Unrestricted Adversarial Example

<table>
<thead>
<tr>
<th>Defense</th>
<th>Submitted by</th>
<th>Clean data</th>
<th>Common corruptions</th>
<th>Spatial grid attack</th>
<th>SPSA attack</th>
<th>Boundary attack</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pytorch ResNet50 (trained on bird-or-bicycle extras)</td>
<td>TRADESv2</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.5%</td>
<td>100.0%</td>
<td>95.0%</td>
<td>Jan 17th, 2019 (EST)</td>
</tr>
<tr>
<td>Keras ResNet (trained on ImageNet)</td>
<td>Google Brain</td>
<td>100.0%</td>
<td>99.2%</td>
<td>92.2%</td>
<td>1.6%</td>
<td>4.0%</td>
<td>Sept 29th, 2018</td>
</tr>
<tr>
<td>Pytorch ResNet (trained on bird-or-bicycle extras)</td>
<td>Google Brain</td>
<td>98.8%</td>
<td>74.6%</td>
<td>49.5%</td>
<td>2.5%</td>
<td>8.0%</td>
<td>Oct 1st, 2018</td>
</tr>
</tbody>
</table>
Competition II: Unrestricted Adversarial Example

<table>
<thead>
<tr>
<th>Defense</th>
<th>Submitted by</th>
<th>Clean data</th>
<th>Common corruptions</th>
<th>Spatial grid attack</th>
<th>SPSA attack</th>
<th>Boundary attack</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pytorch ResNet50 (trained on bird-or-bicycle extras)</td>
<td>TRADESv2</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.5%</td>
<td>100.0%</td>
<td>95.0%</td>
<td>Jan 17th, 2019 (EST)</td>
</tr>
<tr>
<td>Keras ResNet (trained on ImageNet)</td>
<td>Google Brain</td>
<td>100.0%</td>
<td>99.2%</td>
<td>92.2%</td>
<td>1.6%</td>
<td>4.0%</td>
<td>Sept 29th, 2018</td>
</tr>
<tr>
<td>Pytorch ResNet (trained on bird-or-bicycle extras)</td>
<td>Google Brain</td>
<td>98.8%</td>
<td>74.6%</td>
<td>49.5%</td>
<td>2.5%</td>
<td>8.0%</td>
<td>Oct 1st, 2018</td>
</tr>
</tbody>
</table>
Conclusions

• Adversarial Robustness
 • Trade-off matters in the adversarial defense
 • Matching upper and lower bounds on $R_{rob}(f) - R_{nat}^*$
 • New surrogate loss for adversarial defense
 • PyTorch package
 • Winners of NeurIPS 2018 Adversarial Vision Challenge
 Unrestricted Adversarial Example Challenge
Future Directions about Robustness

- Computational and Statistical Theory
 - Understand the optimization principal of new surrogate loss
 - (Tight) sample complexity of adversarial learning

- Applications of AI Security
 - Robotics, autonomous cars
 - Medical diagnose

- Extensions with other frameworks
 - Self-supervised/semi-supervised learning
 - Neural ODE
Thank You