Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang, CMU → TTIC

Yaodong Yu (UVa) Jiantao Jiao (UCB) Eric Xing (CMU) Laurent Ghaoui (UCB) Mike Jordan (UCB)

Deep Geometric Learning of Big Data and Applications
May 21st, 2019

Deep networks are unsafe

 $+.007 \times$

=

"black hole" 87.7% confidence

"donut" 99.3% confidence

Deep networks are unsafe

Why are there adversarial examples?

We use a wrong loss function

Linear Case

Non-Linear Case

Trade-off between Robustness and Accuracy

$$R_{rob}(f) := \mathbb{E}_{(X,Y) \sim D} \mathbb{1} \{ \exists X' \in \mathbb{B}(X,\varepsilon) \ s. \ t. \ f(X')Y \le 0 \}$$
$$R_{nat}(f) := \mathbb{E}_{(X,Y) \sim D} \mathbb{1} \{ f(X)Y \le 0 \}$$

An example of trade-off:

	Bayes Optimal Classifier	All-One Classifier
$\overline{\mathcal{R}_{\mathrm{nat}}}$	0 (optimal)	1/2
$\mathcal{R}_{ ext{rob}}$	1	1/2 (optimal)

Trade-off between Robustness and Accuracy

• Our goal: Find a classifier \hat{f} such that $R_{rob}(\hat{f}) \leq OPT + \delta$

$$\text{OPT:} = \min_{f} R_{rob}\left(f\right), \quad \text{s.t.} \quad R_{nat}(f) \leq R_{nat}^* + \delta$$

$$\text{suffice to show } R_{rob}(f) - R_{nat}^* \leq \delta$$

Computationally, both $R_{nat}(f)$ and $R_{rob}(f)$ are non-differentiable.

Surrogate Loss

Classification-calibrated loss φ:

$$H(\eta) := \min_{\alpha \in \mathbb{R}} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))$$

$$H^{-}(\eta) := \min_{\alpha : \alpha(2\eta - 1) \le 0} (\eta \phi(\alpha) + (1 - \eta)\phi(-\alpha))$$

Definition (classification-calibrated loss):

 ϕ is classification-calibrated loss, if for any $\eta \neq 1/2$, $H^-(\eta) > H(\eta)$.

Intuitive explanation:

- Think about η as $\eta(x) = \Pr[Y = +1 | X = x]$, and α as score of positive class by f
- Then $H(\eta) = \min_f R_{nat}(f)$ $H^-(\eta) = \min_f R_{nat}(f)$ s.t. f is inconsistent with Bayes optimal classifier
- Classification-calibrated loss: wrong classifier leads to larger loss for all $\eta(x)$

Surrogate Loss

Theorem 1 (Informal, upper bound, ZYJXGJ'19):

We have
$$R_{rob}(f) - R_{nat}^* \le R_{\phi}(f) - R_{\phi}^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$$
.

Proof Sketch:

• An important decomposition: $R_{rob}(f) = R_{nat}(f) + R_{bdy}(f)$ where $R_{bdy}(f) = \mathbb{E}_{(X,Y)\sim D} 1\{\exists X \in \varepsilon \text{ neighbour of } f \text{ s. t. } f(X)Y > 0\}$

[ZYJXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Theorem 1 (Informal, upper bound, ZYJXGJ'19):

We have
$$R_{rob}(f) - R_{nat}^* \le R_{\phi}(f) - R_{\phi}^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$$
.

Proof Sketch:

- An important decomposition: $R_{rob}(f) = R_{nat}(f) + R_{bdy}(f)$ where $R_{bdy}(f) = \mathbb{E}_{(X,Y)\sim D} 1\{\exists X \in \varepsilon \text{ neighbour of } f \text{ s. t. } f(X)Y > 0\}$
- $R_{rob}(f) R_{nat}^* = R_{nat}(f) R_{nat}^* + R_{bdv}(f)$
- $R_{nat}(f) R_{nat}^* \le R_{\phi}(f) R_{\phi}^*$ by [BJM'06]
- $R_{bdy}(f) = \mathbb{E} \max_{X' \in \mathbb{B}(X,\varepsilon)} 1(f(X')f(X) < 0) \le \mathbb{E} \max_{X' \in \mathbb{B}(X,\varepsilon)} \phi(f(X')f(X)/\lambda)$

Theorem 1 (Informal, upper bound, ZYJXGJ'19):

We have
$$R_{rob}(f) - R_{nat}^* \le R_{\phi}(f) - R_{\phi}^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$$
.

Theorem 2 (Informal, lower bound, ZYJXGJ'19):

There exist a data distribution, a classifier f, and an $\lambda > 0$ such that $R_{rob}(f) - R_{nat}^* \ge R_{\phi}(f) - R_{\phi}^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$.

Theorem 1 (Informal, upper bound, ZYJXGJ'19):

We have
$$R_{rob}(f) - R_{nat}^* \leq R_{\phi}(f) - R_{\phi}^* + \mathbb{E} \max_{X' \in \mathbb{B}(X, \varepsilon)} \phi(f(X')f(X)/\lambda)$$
.

New Surrogate Loss:

$$\min_{f} \left[\mathbb{E} \phi \left(Y f(X) \right) + \mathbb{E} \max_{X' \in B_{\mathcal{E}}(X)} \phi \left(f(X) f(X') / \lambda \right) \right]$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.5$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

[ZYJXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

PyTorch Package

New Surrogate Loss:

$$\min_{f} \left[\mathbb{E} \phi \left(Y f(X) \right) + \mathbb{E} \max_{X' \in B_{\varepsilon}(X)} \phi (f(X) f(X') / \lambda) \right]$$

replace

Natural training:

def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() loss = F.cross_entropy(model(data), target) loss.backward() optimizer.step()

Adversarial training by TRADES:

To apply TRADES, cd into the directory, put 'trades.py' to the directory.

```
from trades import trades loss
def train(args, model, device, train loader, optimizer, epoch):
    model.train()
    for batch idx, (data, target) in enumerate(train loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero grad()
        # calculate robust loss - TRADES loss
        loss = trades loss(model=model,
                           x_natural=data,
                           y=target,
                           optimizer=optimizer,
                           step size=args.step size,
                           epsilon=args.epsilon,
                           perturb steps=args.num steps,
                           batch size=args.batch size,
                           beta=args.beta,
                           distance='l inf')
        loss.backward()
        optimizer.step()
```

Link: https://github.com/yaodongyu/TRADES

Significant Experimental Results

Experiments --- CIFAR10

Defense	Defense type	Under which attack	Dataset	Distance	$\mathcal{A}_{\mathrm{nat}}(f)$	$\mathcal{A}_{\mathrm{rob}}(f)$		
[BRRG18]	gradient mask	[ACW18]	CIFAR10	$0.031 (\ell_{\infty})$	-	0%		
[MLW ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	5%		
[DAL ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	0%		
[SKN ⁺ 18]	gradient mask	[ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	-	9%		
[NKM17]	gradient mask	[ACW18]	CIFAR10	$0.015 (\ell_{\infty})$	-	15%		
[WSMK18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	27.07%	23.54%		
[MMS ⁺ 18]	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	87.30%	47.04%		
$\min_{f} \max_{X' \in B_{\varepsilon}(X)} \phi(Yf(X'))$ (by Madry et al.)								
TRADES $(1/\lambda = 1)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	49.14%		
TRADES $(1/\lambda = 6)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	84.92%	56.61%		
$\min_{f} \left[\mathbb{E} \phi \big(Y f(X) \big) + \mathbb{E} \max_{X' \in B_{\varepsilon}(X)} \phi \big(f(X) f(X') \big) / \lambda \right] \text{(ours)}$								
TRADES $(1/\lambda = 6)$	regularization	LBFGSAttack	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	81.58%		
TRADES $(1/\lambda = 1)$	regularization	MI-FGSM	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	51.26%		
TRADES $(1/\lambda = 6)$						31.2070		
$(1/\lambda - 0)$	regularization	MI-FGSM	CIFAR10	$0.031 \ (\ell_{\infty})$	84.92%	57.95%		
TRADES $(1/\lambda = 0)$	regularization regularization	MI-FGSM C&W	CIFAR10 CIFAR10	$0.031 \ (\ell_{\infty}) \ 0.031 \ (\ell_{\infty})$	84.92% 88.64%			
	•					57.95%		
TRADES $(1/\lambda = 1)$	regularization	C&W C&W [ACW18]	CIFAR10	$0.031 \ (\ell_{\infty})$	88.64%	57.95% 84.03%		
TRADES $(1/\lambda = 1)$ TRADES $(1/\lambda = 6)$	regularization regularization	C&W C&W [ACW18] FGSM ⁴⁰ (PGD)	CIFAR10 CIFAR10	$0.031 \ (\ell_{\infty})$ $0.031 \ (\ell_{\infty})$	88.64%	57.95% 84.03% 81.24%		
TRADES $(1/\lambda = 1)$ TRADES $(1/\lambda = 6)$ [SKC18]	regularization regularization gradient mask	C&W C&W [ACW18]	CIFAR10 CIFAR10 MNIST	$0.031 \ (\ell_{\infty})$ $0.031 \ (\ell_{\infty})$ $0.005 \ (\ell_{2})$	88.64% 84.92% -	57.95% 84.03% 81.24% 55%		

Competition I: NeurIPS 2018 Adversarial Vision Challenge

Evaluation criterion

- 400+ teams, ~2,000 submissions
- Tiny ImageNet dataset
- Model Track and Attack Track
- Participants in the two tracks play against each other

Competition I: NeurIPS 2018 Adversarial Vision Challenge

Final Result

Unrestricted Adversarial Examples Challenge Duild Passing

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean, unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are currently accepting defenses for the warm-up.

Warm-up & Contest Timeline

warm-up warm-up attacks
begins are soundly beaten contest begins & defenses are evaluated each week defender prize

current status

Interpretability

(a) clean example

(b) adversarial example by boundary attack with random spatial transformation

(a) clean example

(b) adversarial example by boundary attack with random spatial transformation

(c) clean example

(d) adversarial example by boundary attack with random spatial transformation

(c) clean example

(d) adversarial example by boundary attack with random spatial transformation

(e) clean example

(f) adversarial example by boundary attack with random spatial transformation

(e) clean example

(f) adversarial example by boundary attack with random spatial transformation

the class of bird

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADESv2	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADESv2	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADESv2	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADESv2	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADESv2	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Conclusions

- Adversarial Robustness
 - Trade-off matters in the adversarial defense
 - Matching upper and lower bounds on $R_{rob}(f) R_{nat}^*$
 - New surrogate loss for adversarial defense
 - PyTorch package
 - Winners of NeurIPS 2018 Adversarial Vision Challenge
 Unrestricted Adversarial Example Challenge

Future Directions about Robustness

- Computational and Statistical Theory
 - Understand the optimization principal of new surrogate loss
 - (Tight) sample complexity of adversarial learning
- Applications of Al Security
 - Robotics, autonomous cars
 - Medical diagnose
- Extensions with other frameworks
 - Self-supervised/semi-supervised learning
 - Neural ODE

Thank You