Manifold Learning for the Sciences

Marina Meilă

University of Washington mmp@stat.washington.edu

imm

Geometry of Big Data2019 Workshop

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Outline

Metric manifold learning

What is non-linear dimension reduction? Estimating the Riemannian metric Consistency Examples

From abstract to physical manifold parametrization Functional Lasso Pulling back the coordinate gradients

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When to do (non-linear) dimension reduction

- ▶ high-dimensional data $p \in \mathbb{R}^D$, $D = 64 \times 64$
- \triangleright can be described by a small number *d* of continuous parameters

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Usually, large sample size n

When to do (non-linear) dimension reduction

Why?

- To save space and computation
 - $n \times D$ data matrix $\rightarrow n \times s$, $s \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
 - preserve large scale features, suppress fine scale features

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

- Preprocessed by Jacob VanderPlas and Grace Telford
- n = 675,000 spectra $\times D = 3750$ dimensions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Molecular configurations

- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- n ≈ 200,000 configurations × D ~ 20 60 dimensions

- Big data
 - Necessary in non-parametric estimation
 - Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Big data
 - Necessary in non-parametric estimation
 - Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified
 - hard/impossible if d > 3

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Big data
 - Necessary in non-parametric estimation
 - Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified
 - hard/impossible if d > 3
 - demanding on expert time

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

- Big data
 - Necessary in non-parametric estimation
 - Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified
 - hard/impossible if d > 3
 - demanding on expert time

Select all peptides that bind to this substrate

Select all images with AGN (Active Galactic Nuclei)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Big data

- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified

- hard/impossible if d > 3
- demanding on expert time
- discovering what known?

Big data

- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
 - results/correctness should be quantified
 - hard/impossible if d > 3
 - demanding on expert time
 - discovering what known?

This talk

- Metric Manifold Learning arxiv:1305.7255
 - estimate/correct the geometric distortion
 - "effectively" isometric embedding
- physical meaning of manifold coordinates arxiv 1811.11891

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- ▶ Input Data $p_1, \ldots p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$

- ▶ Input Data $p_1, \ldots p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

- ▶ Input Data $p_1, ..., p_n$, embedding dimension *m*, neighborhood scale parameter ϵ
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- Construct a $n \times n$ matrix: its leading eigenvectors are the coordinates $\phi(p_{1:n})$

LAPLACIAN EIGENMAPS/DIFFUSION MAPS [Belkin,Niyogi 02,Nadler et al 05]

Construct similarity matrix

 $S = [S_{\rho p'}]_{p,p' \in \mathcal{D}}$ with $S_{pp'} = e^{-rac{1}{\epsilon}||p-p'||^2}$ iff p,p' neighbors

- Construct Laplacian matrix $L = I T^{-1}S$ with T = diag(S1)
- Calculate $\phi^{1...m}$ = eigenvectors of *L* (smallest eigenvalues)
- coordinates of $p \in \mathcal{D}$ are $(\phi^1(p), \ldots \phi^m(p))$

- Input Data p₁,... p_n, embedding dimension m, neighborhood scale parameter ε
- ▶ Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- ► Construct a *n* × *n* matrix: its leading eigenvectors are the coordinates φ(*p*_{1:n})

ISOMAP [Tennenbaum, deSilva & Langford 00]

 Find all shortest paths in neighborhood graph, construct matrix of distances

$$M = [distance_{pp'}^2]$$

► use *M* and Multi-Dimensional Scaling (MDS) to obtain *m* dimensional coordinates for *p* ∈ D

Embedding in 2 dimensions by different manifold learning algorithms

Original data (Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding (LLE)

Local Tangent Space Alignment (LTSA)

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

How to evaluate the results objectively?

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

if not "correct", what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps (HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)

How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?

- if not "correct", what failed?
- what if I have real data?

Preserving topology vs. preserving (intrinsic) geometry

- ▶ Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- ► Mapping M → φ(M) is diffeomorphism preserves topology often satisfied by embedding algorithms
- Mapping ϕ preserves
 - distances along curves in M
 - angles between curves in \mathcal{M}
 - areas, volumes
 - ... i.e. ϕ is isometry
 - For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Berard,Besson,Gallot 94]
- algorithm based on Nash's theorem (isometric embedding for very low d) [Verma 11]
- Isomap [Tennenbaum,]recovers flat manifolds isometrically
- Consistency results for Laplacian and eigenvectors
 - [Hein & al 07, Coifman & Lafon 06, Singer 06, Ting & al 10, Gine & Koltchinskii 06]
 - imply isometric recovery for LE, DM in special situations

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]
- Sampling density distorts the geometry for LE [Coifman& Lafon 06]

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

 mapping \u03c6 that preserves topology true in many cases

Objective

- augment φ with geometric information g so that (φ, g) preserves the geometry
- g is the Riemannian metric.

Dominique Perrault-Joncas

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

The Riemannian metric g

Mathematically

- $\mathcal{M} = (\text{smooth}) \text{ manifold}$
- ▶ p point on M
- $T_p\mathcal{M} =$ tangent subspace at p
- g =Riemannian metric on \mathcal{M}
 - g defines inner product on $T_p\mathcal{M}$

$$\langle v, w \rangle = v^T \underline{G}_p w$$
 for $v, w \in T_p \mathcal{M}$ and for $p \in \mathcal{M}$

- g is symmetric and positive definite tensor field
- g also called first fundamental form
- (\mathcal{M}, g) is a Riemannian manifold

In coordinates at each point $p \in \mathcal{M}$, G_p is a positive definite matrix of rank d

All (intrinsic) geometric quantities on \mathcal{M} involve g

Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

Length of curve c

$$l(c) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms estimate M
- This talk: estimate g along with \mathcal{M}

(and in the same coordinates)

► Given:

- data set $\mathcal{D} = \{p_1, \dots, p_n\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^D$
- embedding { $x_i = \phi(p_i), p_i \in \mathcal{D}$ } by e.g LLE, Isomap, LE, ...

► Estimate $G_i \in \mathbb{R}^{m \times m}$ the (pushforward) Riemannian metric for $p_i \in \mathcal{D}$ in the embedding coordinates ϕ

• The embedding $\{x_{1:n}, G_{1:n}\}$ will preserve the geometry of the original data

g for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
 - head moves up/down and right/left

LTSA Algoritm

Laplacian Eigenmaps

Relation between g and Δ

$$\blacktriangleright \Delta = \operatorname{div} \cdot \operatorname{grad}$$

• on
$$C^2$$
, $\Delta f = \sum_j \frac{\partial^2 f}{\partial x_i^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \text{diag} \{ t_p \} - S$

Proposition 1 (Differential geometric fact)

$$\Delta f = \sqrt{\det(G)} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\frac{1}{\sqrt{\det(G)}} \sum_{k} (G^{-1})_{lk} \frac{\partial}{\partial x^{k}} f \right) \,,$$

・ロト・日本・モト・モート ヨー うへで

Estimation of g

Proposition

Let Δ be the Laplace-Beltrami operator on \mathcal{M} . Then

$$h_{kl}(p) = \frac{1}{2}\Delta(\phi_k - \phi_k(p))(\phi_l - \phi_l(p))|_{\phi_k(p),\phi_l(p)}$$

where $h = g^{-1}$ (matrix inverse) and k, l = 1, 2, ..., m are embedding dimensions

Intuition:

- ▶ at each point $p \in M$, G(p) is a $d \times d$ matrix
- ▶ apply Δ to embedding coordinate functions ϕ_1, \ldots, ϕ_m
- ▶ this produces G⁻¹(p) in the given coordinates
- our algorithm implements matrix version of this operator result
- ▶ consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]

Algorithm to Estimate Riemann metric g

Given dataset ${\mathcal D}$

- 1. Preprocessing (construct neighborhood graph, ...)
- 2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- 3. Estimate discretized Laplace-Beltrami operator L
- 4. Estimate H_p and $G_p = H_p^{\dagger}$ for all p

4.1 For
$$i, j = 1 : m$$
,
 $H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$
where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^N$
4.2 For $p \in \mathcal{D}$, $H_p = [H_p^{ij}]_{ij}$ and $G_p = H_p^{\dagger}$
struct $(\phi_p = C_p)$ for all $p = [H_p^{ij}]_{ij}$

Output (ϕ_p, G_p) for all p

Algorithm METRICEMBEDDING

Input data \mathcal{D} , *m* embedding dimension, ϵ resolution

- 1. Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- 2. Construct similary matrix $S_{pp'} = e^{-\frac{1}{\epsilon}||p-p'||^2}$ iff p, p' neighbors, $S = [S_{pp'}]_{p,p' \in D}$
- 3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1
$$t_p = \sum_{p' \in \mathcal{D}} S_{pp'}, T = \text{diag } t_p, p \in \mathcal{D}$$

3.2 $\tilde{S} = I - T^{-1}ST^{-1}$
3.3 $\tilde{t}_p = \sum_{p' \in \mathcal{D}} \tilde{S}_{pp'}, \tilde{T} = \text{diag } \tilde{t}_p, p \in \mathcal{D}$
3.4 $P = \tilde{T}^{-1}\tilde{S}.$

- 4. Embedding $[\phi_p]_{p\in\mathcal{D}} = \text{GENERICEMBEDDING}(\mathcal{D}, m)$
- 5. Estimate embedding metric H_p at each point
 - denote Z = X * Y, $X, Y \in \mathbb{R}^N$ iff $Z_i = X_i Y_i$ for all i5.1 For i, j = 1 : m, $H^{ij} = \frac{1}{2} \left[P(\phi_i * \phi_j) - \phi_i * (P\phi_j) - \phi_j * (P\phi_i) \right]$ (column vector)

5.2 For $p \in \mathcal{D}$, $\tilde{H}_p = [H_p^{ij}]_{ij}$ and $H_p = \tilde{H}_p^{\dagger}$

Ouput $(\phi_p, H_p)_{p \in \mathcal{D}}$

Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G_i along with embedding coordinates Why useful

- Measures local distortion induced by any embedding algorithm $G_i = I_d$ when no distortion at p_i
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable
- Models built from compressed data are more interpretable

Applications

- Estimating distortion
- Correcting distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco])
- Accelerating Topological Data Analysis, selecting eigencoordinates,... (in progress)

Consistency of the Riemannian metric estimator

Proposition

- If the embedding $\phi: \mathcal{M} \to \phi(\mathcal{M})$ is
 - A diffeomorphic
 - **B** consistent $\phi(\mathcal{D}_n) \xrightarrow{n \to \infty} \phi(\mathcal{M})$
 - **C** Laplacian consistent $L_n\phi(\mathcal{D}_n) \stackrel{n \to \infty}{\longrightarrow} \Delta\phi(\mathcal{M})$

then the dual Riemannian metric estimator h is consistent

$$(\phi(\mathcal{D}_n), h_n) \stackrel{n \to \infty}{\longrightarrow} (\phi(\mathcal{M}), h)$$

▶ Laplacian Eigenmaps and Diffusion Map satisfy A, B if M compact

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

true distance d = 1.57

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path <i>d</i> _G	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap <i>s</i> = 2	1.66	1.75	1.63	3.7%
LTSA <i>s</i> = 2	0.07	0.08	1.65	4.8%
LE <i>s</i> = 2	0.08	0.08	1.62	3.1%

$$I(c) = \int_{a}^{b} \sqrt{\sum_{ij} G_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

Manifold learning for SDSS Spectra of Galaxies

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

• n = 675,000 spectra in D = 3750 dimensions

- data curated by Grace Telford,
- "noise removal" by Jake VanderPlas

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Embedding into 3 dimensions

embedding by

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三世

How distorted is this embedding?

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Find principal curves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Points near principal curves, colored by $\log_{10}(G_i)$ (0 means no distortion)

Points near principal curves, colored by $\log_{10}(G_i)$, after Riemannian Relaxation (0 means no distortion)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

All data after Riemannian Relaxation

Embedding and Riemannian Relaxation for Ethanol molecular configurations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Metric manifold learning

What is non-linear dimension reduction? Estimating the Riemannian metric Consistency Examples

From abstract to physical manifold parametrization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Functional Lasso Pulling back the coordinate gradients

Motivation

- 2 rotation angles parametrize this manifold
- Can we discover these features automatically? Can we select these angles from a larger set of features with physical meaning?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Given

- data $\xi_i \in \mathbb{R}^D, i \in 1 \dots n$
- embedding of data $\phi(\xi_{1:n})$ in \mathbb{R}^m
- Assume
 - \blacktriangleright data sampled from smooth manifold ${\cal M}$
 - \mathcal{M} Riemannian with metric inherited from \mathbb{R}^D
 - embedding algorithm $\phi : \mathcal{M} \to \phi(\mathcal{M})$ is smooth embedding

Sam Koelle

Yu-chia Chen

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

Given

• data
$$\xi_i \in \mathbb{R}^D, \ i \in 1 \dots n$$

- embedding of data $\phi(\xi_{1:n})$ in \mathbb{R}^m
- dictionary of domain-related smooth functions

$$\mathcal{G} = \{ g_1, \dots g_{
ho}, ext{ with } g_j : \mathbb{R}^D o \mathbb{R} \}$$
 .

e.g. all torsions in ethanol

Assume

- \blacktriangleright data sampled from smooth manifold ${\cal M}$
- \mathcal{M} Riemannian with metric inherited from \mathbb{R}^D
- embedding algorithm $\phi : \mathcal{M} \to \phi(\mathcal{M})$ is smooth embedding

Yu-chia Chen

Given

- data $\xi_i \in \mathbb{R}^D, \ i \in 1 \dots n$
- embedding of data $\phi(\xi_{1:n})$ in \mathbb{R}^m
- dictionary of domain-related smooth functions
 - $\mathcal{G} = \{g_1, \ldots g_p, \text{ with } g_j : \mathbb{R}^D \to \mathbb{R}\}.$
 - e.g. all torsions in ethanol

Assume

- data sampled from smooth manifold \mathcal{M}
- *M* Riemannian with metric inherited from R^D
- embedding algorithm $\phi : \mathcal{M} \to \phi(\mathcal{M})$ is smooth embedding
- Goal to express the embedding coordinate functions $\phi_1 \dots \phi_m$ in terms of functions in \mathcal{G} .

More precisely, we assume that

 $\phi(x) = h(g_{j_1}(x), \dots, g_{j_s}(x)) \quad \text{with } g_{j_1,\dots,j_s} \subset \mathcal{G}.$

Problem: find $S = \{j_1, \ldots j_s\}$

Challenges

$$\phi(x) = h(g_{j_1}(x), \dots, g_{j_s}(x)) \quad \text{with } g_{j_1,\dots, j_s} \subset \mathcal{G}.$$

Framework: sparse recovery

- Challenges
- h non-linear (but smooth)
- ϕ defined up to diffeomorphism
 - hence, h cannot assume a parametric form
 - will not assume one-to-one correspondence between \u03c6k k coordinates and gj in dictionary

$$\begin{array}{ll} \phi_1 = g_1 g_2, & \phi_1 = \sin(\tau_1) \\ \text{e.g.} & \phi_2 = g_1 \sin(g_3^2) & \text{or} & \phi_2 = \cos(\tau_1) (\text{ethanol}) \\ & \phi_3 = \sin(\tau_2) \end{array}$$

Challenges

$$\phi(x) = h(g_{j_1}(x), \dots, g_{j_s}(x)) \quad \text{with } g_{j_1,\dots, j_s} \subset \mathcal{G}.$$

Framework: sparse recovery

- Challenges
- h non-linear (but smooth)
- ϕ defined up to diffeomorphism
 - hence, h cannot assume a parametric form
 - will not assume one-to-one correspondence between \u03c6k k coordinates and gj in dictionary

$$\begin{array}{ll} \phi_1 = g_1 g_2, & \phi_1 = \sin(\tau_1) \\ \text{e.g.} & \phi_2 = g_1 \sin(g_3^2) & \text{or} & \phi_2 = \cos(\tau_1) (\text{ethanol}) \\ & \phi_3 = \sin(\tau_2) \end{array}$$

- we do not assume \u03c6 isometric (but smooth)
- what requirements on dictionary functions $g_{1:p}$ for unique recovery?

First Idea: from non-linear to linear

• If $\phi = h \circ g$, then

$$\mathsf{D}\phi = \mathsf{D}h\mathsf{D}\mathsf{g}$$

▶ Sparse non-linear, non-parametric recovery → Sparse linear recovery

A sparse linear system for every data point i

- Require subset S is same for all i
 - group Lasso problem

Functional Lasso

optimize

(FLASSO)
$$\min_{\beta} J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^{n} ||y_i - \mathbf{X}_i \beta_i||_2^2 + \lambda/\sqrt{n} \sum_{j} ||\beta_j||,$$

- with $y_i = \nabla \phi(\xi_i)$, $X_i = \nabla g_{1:p}(\xi)$, $\beta_{ij} = \frac{\partial h}{\partial g_j}(\xi_i)$
- support S of β selects $g_{i_1,...,i_s}$ from G

$Multidimensional \ {\rm FLasso}$

Assume

$$y_{ik} = \nabla f_k(\xi_i) \quad \mathbf{X}_i = \nabla g_{1:p}(\xi) \quad \beta_{ijk} = \frac{\partial h_k}{\partial g_j}(\xi_i) \tag{1}$$

 and

$$\beta_j = \operatorname{vec}(\beta_{ijk}, \ i = 1: n, k = 1: m) \in \mathbb{R}^{mn}, \quad \beta_{ik} = \operatorname{vec}(\beta_{ijk}, \ j = 1: p) \in \mathbb{R}^p.$$
(2)

$$J_{\lambda}(\beta) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{m} ||y_{ik} - \mathbf{X}_{i}\beta_{ik}||^{2} + \frac{\lambda}{\sqrt{mn}} \sum_{j=1}^{p} ||\beta_{j}||.$$
(3)

FLassO in manifold setting

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

- ▶ gradients $\nabla \rightarrow$ manifold gradients grad
- ▶ grad g_j is in T_{ξi} M
 - ▶ ∇g_j known analytically
- grad ϕ_k is in $\mathcal{T}_{\phi(\xi_i)}\phi(\mathcal{M})$
 - must be estimated
- must pull-back grad $\phi_k(\phi(\xi_i))$ to $\mathcal{T}_{\xi_i}\mathcal{M}$

Second Idea: pulling back gradients

- Estimating grad g_j
 - 1. Estimate tangent subspace at ξ_i by (weighted) PCA
 - 2. Project ∇g_j on tangent subspace
- Pulling back gradients of $\phi_{1:k}$
- ▶ Will use (push-forward) Riemannian metric G_i
- $\nabla \phi_k = \text{unit vector in } \mathbb{R}^m$
- $y_k = \operatorname{grad} \phi_k$ is projection of $\nabla \phi_k$ on $\mathcal{T}_{\phi(\xi_i)} \phi(\mathcal{M})$

$$\boldsymbol{Y}_i = \operatorname{\mathsf{grad}}_{\mathcal{T}} \phi(\xi_i) \in \mathbb{R}^{m imes d}$$

- ► Idea Use G_i
 - Create neighbor matrices for ξ_i and $\phi(\xi_i)$.

$$A_i = \left[\mathsf{Proj}_{\mathcal{T}_{\xi_i} \mathcal{M}}(\xi_{i'} - \xi_i) \right]_{i' \in \mathcal{N}_i} \quad B_i = \left[\phi(\xi_{i'}) - \phi(\xi_i) \right]_{i' \in \mathcal{N}_i},$$

- Remember $(\phi(\mathcal{M}), g)$ isometric to (\mathcal{M}, id) .
- Solve linear system

$$\langle A_i, Y_i \rangle \approx \langle B_i, I \rangle_{G_i} \qquad A_i^T Y_i \approx B_i^T G_i I$$

- column span of G_i is $\mathcal{T}_{\phi(\xi_i)}\phi(\mathcal{M})$
- Proj on $\mathcal{T}_{\phi(\xi_i)}\phi(\mathcal{M})$ is implicit in G_i

Theory

- When is S unique? / When can M be uniquely parametrized by G? Functional independence conditions on dictionary G and subset g_{i1},...,js
- Basic result

 $g_S = h \circ g_{S'}$ on U iff

$$\operatorname{rank} \left(egin{array}{c} Dg_S \ Dg_{S'} \end{array}
ight) = \operatorname{rank} Dg_{S'} \quad ext{ on } U$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theory

- When is S unique? / When can M be uniquely parametrized by G? Functional independence conditions on dictionary G and subset g_{j1,...js}
- Basic result

 $g_S = h \circ g_{S'}$ on U iff

$$\operatorname{rank} \left(egin{array}{c} Dg_{S} \\ Dg_{S'} \end{array}
ight) = \operatorname{rank} Dg_{S'} \quad \text{on } U$$

When can FLASSO recover S ? Incoherence conditions

$$\mu = \max_{i=1:n,j\in S, j'\notin S} |\mathbf{X}_{ji}^T \mathbf{X}_{j'i}| \quad \nu = \frac{1}{\min_{i=1:n} ||\mathbf{X}_{iS}^T \mathbf{X}_{iS}||_2} \quad nd\sigma^2 = \sum_{i,k} \epsilon_{ik}^2$$

<u>Theorem</u> If $\mu\nu\sqrt{s} + \frac{\sigma\sqrt{nd}}{\lambda} < 1$ then $\beta_j = 0$ for $j \notin S$.

Ethanol MD simulation

Toluene MD simulation

Malondialdehyde MD simulation

Torsion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Manifold learning for sciences and engineering

Manifold learning should be like PCA

- tractable/scalable
- "automatic" minimal burden on human
- first step in data processing pipe-line should not introduce artefacts

More than PCA

- estimate richer geometric/topological information
- dimension
- borders, stratification
- clusters
- Morse complex
- meaning of coordinates/continuous parametrization

Manifold Learning for engineering and the sciences

- "physical laws through machine learning"
- scientific discovery by quantitative/statistical data analysis
- manifold learning as preprocessing for other tasks

イロト イポト イヨト イヨト

Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub Dominique-Perrault Joncas (Google), James McQueen (Amazon)

Jacob VanderPlas, Grace Telford (UW Astronomy) Jim Pfaendtner (UW), Chris Fu (UW) A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you

