Manifold Learning for the Sciences

Marina Meilă

University of Washington
mmp@stat.washington.edu

i@m

Geometry of Big Data2019 Workshop

Outline

Metric manifold learning
What is non-linear dimension reduction?
Estimating the Riemannian metric
Consistency
Examples

From abstract to physical manifold parametrization
Functional Lasso
Pulling back the coordinate gradients

- high-dimensional data $p \in \mathbb{R}^{D}, D=64 \times 64$
- can be described by a small number d of continuous parameters
- Usually, large sample size n

When to do (non-linear) dimension reduction

Why?

- To save space and computation
- $n \times D$ data matrix $\rightarrow n \times s, s \ll D$
- To use it afterwards in (prediction) tasks
- To understand the data better
- preserve large scale features, suppress fine scale features

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

- Preprocessed by Jacob VanderPlas and Grace Telford
- $n=675,000$ spectra $\times D=3750$ dimensions

WWW.sdss.org

Molecular configurations

aspirin molecule

- Data from Molecular Dynamics (MD) simulations of small molecules by [Chmiela et al. 2016]
- $n \approx 200,000$ configurations $\times D \sim 20-60$ dimensions

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified
- hard/impossible if $d>3$

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified
- hard/impossible if $d>3$
- demanding on expert time

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified
- hard/impossible if $d>3$
- demanding on expert time

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified
- hard/impossible if $d>3$
- demanding on expert time
- discovering what known?

Geometric Learning for the sciences

- Big data
- Necessary in non-parametric estimation
- Big data contains more complex patterns
- Beyond "validation by visualization"
- results/correctness should be quantified
- hard/impossible if $d>3$
- demanding on expert time
- discovering what known?

This talk

- Metric Manifold Learning arxiv:1305.7255
- estimate/correct the geometric distortion
- "effectively" isometric embedding
- physical meaning of manifold coordinates arxiv 1811.11891

Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ

Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$

Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix: its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix: its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

Laplacian Eigenmaps/Diffusion Maps [Belkin,Niyogi 02,Nadler et al 05]

- Construct similarity matrix

$$
S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}} \quad \text { with } \quad S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}} \quad \text { iff } p, p^{\prime} \text { neighbors }
$$

- Construct Laplacian matrix $L=I-T^{-1} S$ with $T=\operatorname{diag}(S 1)$
- Calculate $\phi^{1 \ldots m}=$ eigenvectors of L (smallest eigenvalues)
- coordinates of $p \in \mathcal{D}$ are $\left(\phi^{1}(p), \ldots \phi^{m}(p)\right)$

Brief intro to manifold learning algorithms

- Input Data $p_{1}, \ldots p_{n}$, embedding dimension m, neighborhood scale parameter ϵ
- Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
- Construct a $n \times n$ matrix: its leading eigenvectors are the coordinates $\phi\left(p_{1: n}\right)$

ISOMAP [Tennenbaum, deSilva \& Langford 00]

- Find all shortest paths in neighborhood graph, construct matrix of distances

$$
M=\left[\operatorname{distance}_{p p^{\prime}}^{2}\right]
$$

- use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional coordinates for $p \in \mathcal{D}$

Embedding in 2 dimensions by different manifold learning algorithms

Hessian Eigenmaps (HE)

Local Linear Embedding (LLE)

Isomap

Local Tangent Space Alignment (LTSA)

How to evaluate the results objectively?

How to evaluate the results objectively?

- which of these embedding are "correct"?
- if several "correct", how do we reconcile them?
- if not "correct", what failed?
- what if I have real data?

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^{D} \longrightarrow \phi(p)=x \in \mathbb{R}^{m}$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism
preserves topology
often satisfied by embedding algorithms
- Mapping ϕ preserves
- distances along curves in \mathcal{M}
- angles between curves in \mathcal{M}
- areas, volumes
...i.e. ϕ is isometry
For most algorithms, in most cases, ϕ is not isometry
Preserves topology
Preserves topology + intrinsic geometry

Previous known results in geometric recovery

Positive results

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Berard,Besson, Gallot 94]
- algorithm based on Nash's theorem (isometric embedding for very low d) [Verma 11]
- Isomap [Tennenbaum,]recovers flat manifolds isometrically
- Consistency results for Laplacian and eigenvectors
- [Hein \& al 07,Coifman \& Lafon 06, Singer 06, Ting \& al 10, Gine \& Koltchinskii 06]
- imply isometric recovery for LE, DM in special situations

Negative results

- obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg\&al 08]
- Sampling density distorts the geometry for LE [Coifman\& Lafon 06]

Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]
Given

- mapping ϕ that preserves topology
true in many cases

Objective

- augment ϕ with geometric information g so that (ϕ, g) preserves the geometry

Dominique Perrault-Joncas
g is the Riemannian metric.

The Riemannian metric g

Mathematically

- $\mathcal{M}=$ (smooth) manifold
- p point on \mathcal{M}
- $T_{p} \mathcal{M}=$ tangent subspace at p
- $g=$ Riemannian metric on \mathcal{M} g defines inner product on $T_{p} \mathcal{M}$

$$
<v, w>=v^{\top} G_{p} w \quad \text { for } v, w \in T_{p} \mathcal{M} \text { and for } p \in \mathcal{M}
$$

- g is symmetric and positive definite tensor field
- g also called first fundamental form
- (\mathcal{M}, g) is a Riemannian manifold

In coordinates at each point $p \in \mathcal{M}, G_{p}$ is a positive definite matrix of rank d

All (intrinsic) geometric quantities on \mathcal{M} involve g

- Volume element on manifold

$$
\operatorname{Vol}(W)=\int_{W} \sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{d}
$$

- Length of curve c

$$
I(c)=\int_{a}^{b} \sqrt{\sum_{i j} g_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}} d t
$$

- Under a change of parametrization, g changes in a way that leaves geometric quantities invariant
- Current algorithms estimate \mathcal{M}
- This talk: estimate g along with \mathcal{M} (and in the same coordinates)

Problem formulation

- Given:
- data set $\mathcal{D}=\left\{p_{1}, \ldots p_{n}\right\}$ sampled from manifold $\mathcal{M} \subset \mathbb{R}^{D}$
- embedding $\left\{x_{i}=\phi\left(p_{i}\right), p_{i} \in \mathcal{D}\right\}$ by e.g LLE, Isomap, LE, ...
- Estimate $G_{i} \in \mathbb{R}^{m \times m}$ the (pushforward) Riemannian metric for $p_{i} \in \mathcal{D}$ in the embedding coordinates ϕ
- The embedding $\left\{x_{1: n}, G_{1: n}\right\}$ will preserve the geometry of the original data

g for Sculpture Faces

- $n=698$ gray images of faces in $D=64 \times 64$ dimensions
- head moves up/down and right/left

LTSA Algoritm

Relation between g and Δ

- $\Delta=$ Laplace-Beltrami operator on \mathcal{M}
- $\Delta=\operatorname{div} \cdot \operatorname{grad}$
- on $C^{2}, \Delta f=\sum_{j} \frac{\partial^{2} f}{\partial x_{j}^{2}}$
- on weighted graph with similarity matrix S, and $t_{p}=\sum_{p p^{\prime}} S_{p p^{\prime}}$, $\Delta=\operatorname{diag}\left\{t_{p}\right\}-S$

Proposition 1 (Differential geometric fact)

$$
\Delta f=\sqrt{\operatorname{det}(G)} \sum_{l} \frac{\partial}{\partial x^{\prime}}\left(\frac{1}{\sqrt{\operatorname{det}(G)}} \sum_{k}\left(G^{-1}\right)_{l k} \frac{\partial}{\partial x^{k}} f\right),
$$

Estimation of g

Proposition

Let Δ be the Laplace-Beltrami operator on \mathcal{M}. Then

$$
h_{k l}(p)=\left.\frac{1}{2} \Delta\left(\phi_{k}-\phi_{k}(p)\right)\left(\phi_{l}-\phi_{l}(p)\right)\right|_{\phi_{k}(p), \phi_{l}(p)}
$$

where $h=g^{-1}$ (matrix inverse) and $k, I=1,2, \ldots m$ are embedding dimensions

Intuition:

- at each point $p \in \mathcal{M}, G(p)$ is a $d \times d$ matrix
- apply Δ to embedding coordinate functions $\phi_{1}, \ldots \phi_{m}$
- this produces $G^{-1}(p)$ in the given coordinates
- our algorithm implements matrix version of this operator result
- consistent estimation of Δ is well studied [Coifman\&Lafon 06,Hein\&al 07]

Algorithm to Estimate Riemann metric g

Given dataset \mathcal{D}

1. Preprocessing (construct neighborhood graph, ...)
2. Find an embedding ϕ of \mathcal{D} into \mathbb{R}^{m}
3. Estimate discretized Laplace-Beltrami operator L
4. Estimate H_{p} and $G_{p}=H_{p}^{\dagger}$ for all p
4.1 For $i, j=1: m$,

$$
H^{i j}=\frac{1}{2}\left[L\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(L \phi_{j}\right)-\phi_{j} *\left(L \phi_{i}\right)\right]
$$

where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^{N}$
4.2 For $p \in \mathcal{D}, H_{p}=\left[H_{p}^{i j}\right]_{i j}$ and $G_{p}=H_{p}^{\dagger}$

Output $\left(\phi_{p}, G_{p}\right)$ for all p

Algorithm MetricEmbedding

Input data \mathcal{D}, m embedding dimension, ϵ resolution

1. Construct neighborhood graph p, p^{\prime} neighbors iff $\left\|p-p^{\prime}\right\|^{2} \leq \epsilon$
2. Construct similary matrix
$S_{p p^{\prime}}=e^{-\frac{1}{\epsilon}\left\|p-p^{\prime}\right\|^{2}}$ iff p, p^{\prime} neighbors, $S=\left[S_{p p^{\prime}}\right]_{p, p^{\prime} \in \mathcal{D}}$
3. Construct (renormalized) Laplacian matrix [Coifman \& Lafon 06]
$3.1 t_{p}=\sum_{p^{\prime} \in \mathcal{D}} S_{p p^{\prime}}, T=\operatorname{diag} t_{p}, p \in \mathcal{D}$
$3.2 \tilde{S}=I-T^{-1} S T^{-1}$
$3.3 \tilde{t}_{p}=\sum_{p^{\prime} \in \mathcal{D}} \tilde{S}_{p p^{\prime}}, \tilde{T}=\operatorname{diag} \tilde{t}_{p}, p \in \mathcal{D}$
$3.4 P=\tilde{T}^{-1} \tilde{S}$.
4. Embedding $\left[\phi_{p}\right]_{p \in \mathcal{D}}=\operatorname{GenericEmbedding}(\mathcal{D}, m)$
5. Estimate embedding metric H_{p} at each point
5.1 For $i, j=1: m, H^{i j}=\frac{1}{2}\left[P\left(\phi_{i} * \phi_{j}\right)-\phi_{i} *\left(P \phi_{j}\right)-\phi_{j} *\left(P \phi_{i}\right)\right]$ (column vector)
5.2 For $p \in \mathcal{D}, \tilde{H}_{p}=\left[H_{p}^{i j}\right]_{i j}$ and $H_{p}=\tilde{H}_{p}^{\dagger}$

Ouput $\left(\phi_{p}, H_{p}\right)_{p \in \mathcal{D}}$

Metric Manifold Learning summary

Metric Manifold Learning $=$ estimating (pushforward) Riemannian metric G_{i} along with embedding coordinates
Why useful

- Measures local distortion induced by any embedding algorithm $G_{i}=I_{d}$ when no distortion at p_{i}
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable
- Models built from compressed data are more interpretable

Applications

- Estimating distortion
- Correcting distortion
- Integrating with the local volume/length units based on G_{i}
- Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and of intrinsic dimension d (variant of [Chen, Little,Maggioni,Rosasco])
- Accelerating Topological Data Analysis, selecting eigencoordinates,... (in progress)

Consistency of the Riemannian metric estimator

Proposition

- If the embedding $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is

A diffeomorphic
B consistent $\phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \phi(\mathcal{M})$
C Laplacian consistent $L_{n} \phi\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} \Delta \phi(\mathcal{M})$
then the dual Riemannian metric estimator h is consistent

$$
\left(\phi\left(\mathcal{D}_{n}\right), h_{n}\right) \xrightarrow{n \rightarrow \infty}(\phi(\mathcal{M}), h)
$$

- Laplacian Eigenmaps and Diffusion Map satisfy A, B if \mathcal{M} compact

Calculating distances in the manifold \mathcal{M}

Manifold learning for SDSS Spectra of Galaxies

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000 spectra originally in 3750 dimensions).

- $n=675,000$ spectra in $D=3750$ dimensions

- data curated by Grace Telford,
- "noise removal" by Jake VanderPlas

Embedding into 3 dimensions

How distorted is this embedding?

Riemannian Relaxation along principal curves

Find principal curves

Riemannian Relaxation along principal curves

Points near principal curves, colored by $\log _{10}\left(G_{i}\right)$ (0 means no distortion)

Riemannian Relaxation along principal curves

Points near principal curves, colored by $\log _{10}\left(G_{i}\right)$, after Riemannian Relaxation (0 means no distortion)

Riemannian Relaxation along principal curves

All data after Riemannian Relaxation

Embedding and Riemannian Relaxation for Ethanol molecular configurations

Distortion

Embedding after RR

Outline

Metric manifold learning
 What is non-linear dimension reduction? Estimating the Riemannian metric Consistency Examples

From abstract to physical manifold parametrization
Functional Lasso
Pulling back the coordinate gradients

Motivation

torsion 1

torsion 2

persistence

- 2 rotation angles parametrize this manifold
- Can we discover these features automatically? Can we select these angles from a larger set of features with physical meaning?

Problem formulation

- Given
- data $\xi_{i} \in \mathbb{R}^{D}, i \in 1 \ldots n$
- embedding of data $\phi\left(\xi_{1: n}\right)$ in \mathbb{R}^{m}
- Assume
- data sampled from smooth manifold \mathcal{M}
- \mathcal{M} Riemannian with metric inherited from \mathbb{R}^{D}
- embedding algorithm $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is smooth embedding

Problem formulation

- Given
- data $\xi_{i} \in \mathbb{R}^{D}, i \in 1 \ldots n$
- embedding of data $\phi\left(\xi_{1: n}\right)$ in \mathbb{R}^{m}
- dictionary of domain-related smooth functions
$\mathcal{G}=\left\{g_{1}, \ldots g_{p}\right.$, with $\left.g_{j}: \mathbb{R}^{D} \rightarrow \mathbb{R}\right\}$.
- e.g. all torsions in ethanol
- Assume
- data sampled from smooth manifold \mathcal{M}
- \mathcal{M} Riemannian with metric inherited from \mathbb{R}^{D}
- embedding algorithm $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is smooth embedding

Problem formulation

- Given
- data $\xi_{i} \in \mathbb{R}^{D}, i \in 1 \ldots n$
- embedding of data $\phi\left(\xi_{1: n}\right)$ in \mathbb{R}^{m}
- dictionary of domain-related smooth functions
$\mathcal{G}=\left\{g_{1}, \ldots g_{p}\right.$, with $\left.g_{j}: \mathbb{R}^{D} \rightarrow \mathbb{R}\right\}$.
- e.g. all torsions in ethanol
- Assume
- data sampled from smooth manifold \mathcal{M}
- \mathcal{M} Riemannian with metric inherited from \mathbb{R}^{D}
- embedding algorithm $\phi: \mathcal{M} \rightarrow \phi(\mathcal{M})$ is smooth embedding
- Goal to express the embedding coordinate functions $\phi_{1} \ldots \phi_{m}$ in terms of functions in \mathcal{G}.
More precisely, we assume that

$$
\phi(x)=h\left(g_{j_{1}}(x), \ldots g_{j_{s}}(x)\right) \quad \text { with } g_{j_{1}, \ldots j_{s}} \subset \mathcal{G}
$$

Problem: find $S=\left\{j_{1}, \ldots j_{s}\right\}$

Challenges

$$
\phi(x)=h\left(g_{j_{1}}(x), \ldots g_{j_{s}}(x)\right) \quad \text { with } g_{j_{1}, \ldots j_{s}} \subset \mathcal{G}
$$

- Framework: sparse recovery
- Challenges
- h non-linear (but smooth)
- ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- will not assume one-to-one correspondence between ϕ_{k} coordinates and g_{j} in dictionary

$$
\begin{array}{ll}
\phi_{1}=g_{1} g_{2}, & \phi_{1}=\sin \left(\tau_{1}\right) \\
\text { e.g. } \quad \phi_{2}=g_{1} \sin \left(g_{3}^{2}\right) \quad \text { or } \quad \phi_{2}=\cos \left(\tau_{1}\right)(\text { ethanol }) \\
\phi_{3}=\sin \left(\tau_{2}\right)
\end{array}
$$

Challenges

$$
\phi(x)=h\left(g_{j_{1}}(x), \ldots g_{j_{s}}(x)\right) \quad \text { with } g_{j_{1}, \ldots j_{s}} \subset \mathcal{G}
$$

- Framework: sparse recovery
- Challenges
- h non-linear (but smooth)
- ϕ defined up to diffeomorphism
- hence, h cannot assume a parametric form
- will not assume one-to-one correspondence between ϕ_{k} coordinates and g_{j} in dictionary

$$
\begin{array}{ll}
\phi_{1}=g_{1} g_{2}, & \phi_{1}=\sin \left(\tau_{1}\right) \\
\text { e.g. } \quad \phi_{2}=g_{1} \sin \left(g_{3}^{2}\right) \quad \text { or } \quad \phi_{2}=\cos \left(\tau_{1}\right)(\text { ethanol }) \\
\phi_{3}=\sin \left(\tau_{2}\right)
\end{array}
$$

- we do not assume ϕ isometric (but smooth)
- what requirements on dictionary functions $g_{1: p}$ for unique recovery?

First Idea: from non-linear to linear

- If $\phi=h \circ g$, then

$$
\mathrm{D} \phi=\mathrm{DhDg}
$$

- Sparse non-linear, non-parametric recovery \rightarrow Sparse linear recovery
- A sparse linear system for every data point i
- Require subset S is same for all i
- group Lasso problem
- Functional Lasso
- optimize

$$
\text { (FLASSO) } \min _{\beta} J_{\lambda}(\beta)=\frac{1}{2} \sum_{i=1}^{n}\left\|y_{i}-\mathbf{X}_{i} \boldsymbol{\beta}_{i}\right\|_{2}^{2}+\lambda / \sqrt{n} \sum_{j}\left\|\beta_{j}\right\|,
$$

- with $y_{i}=\nabla \phi\left(\xi_{i}\right), \mathbf{X}_{i}=\nabla g_{1: p}(\xi), \beta_{i j}=\frac{\partial h}{\partial g_{j}}\left(\xi_{i}\right)$
- support S of β selects $g_{j_{1}, \ldots j_{s}}$ from \mathcal{G}

Multidimensional FLasso

- Assume

$$
\begin{equation*}
y_{i k}=\nabla f_{k}\left(\xi_{i}\right) \quad \mathbf{X}_{i}=\nabla g_{1: p}(\xi) \quad \beta_{i j k}=\frac{\partial h_{k}}{\partial g_{j}}\left(\xi_{i}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{j}=\operatorname{vec}\left(\beta_{i j k}, i=1: n, k=1: m\right) \in \mathbb{R}^{m n}, \quad \beta_{i k}=\operatorname{vec}\left(\beta_{i j k}, j=1: p\right) \in \mathbb{R}^{p} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
J_{\lambda}(\beta)=\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{m}\left\|y_{i k}-\mathbf{X}_{i} \beta_{i k}\right\|^{2}+\frac{\lambda}{\sqrt{m n}} \sum_{j=1}^{p}\left\|\beta_{j}\right\| \tag{3}
\end{equation*}
$$

FLasso in manifold setting

\mathcal{M}

- gradients $\nabla \rightarrow$ manifold gradients grad
- grad g_{j} is in $\mathcal{T}_{\xi_{i}} \mathcal{M}$
- ∇g_{j} known analytically
$-\operatorname{grad} \phi_{k}$ is in $\mathcal{T}_{\phi\left(\xi_{i}\right)} \phi(\mathcal{M})$
- must be estimated
- must pull-back $\operatorname{grad} \phi_{k}\left(\phi\left(\xi_{i}\right)\right)$ to $\mathcal{T}_{\xi_{i}} \mathcal{M}$

Second Idea: pulling back gradients

- Estimating grad g_{j}

1. Estimate tangent subspace at ξ_{i} by (weighted) PCA
2. Project ∇g_{j} on tangent subspace

- Pulling back gradients of $\phi_{1: k}$
- Will use (push-forward) Riemannian metric G_{i}
- $\nabla \phi_{k}=$ unit vector in \mathbb{R}^{m}
- $y_{k}=\operatorname{grad} \phi_{k}$ is projection of $\nabla \phi_{k}$ on $\mathcal{T}_{\phi\left(\xi_{i}\right)} \phi(\mathcal{M})$

$$
Y_{i}=\operatorname{grad}_{\mathcal{T}} \phi\left(\xi_{i}\right) \in \mathbb{R}^{m \times d}
$$

- Idea Use G_{i}
- Create neighbor matrices for ξ_{i} and $\phi\left(\xi_{i}\right)$.

$$
A_{i}=\left[\operatorname{Proj}_{\mathcal{E}_{\xi_{i}} \mathcal{M}}\left(\xi_{i^{\prime}}-\xi_{i}\right)\right]_{i^{\prime} \in \mathcal{N}_{i}} \quad B_{i}=\left[\phi\left(\xi_{i^{\prime}}\right)-\phi\left(\xi_{i}\right)\right]_{i^{\prime} \in \mathcal{N}_{i}},
$$

- Remember $(\phi(\mathcal{M}), g)$ isometric to $(\mathcal{M}, i d)$.
- Solve linear system

$$
\left\langle A_{i}, Y_{i}\right\rangle \approx\left\langle B_{i}, I\right\rangle_{G_{i}} \quad A_{i}^{T} Y_{i} \approx B_{i}^{T} G_{i} I
$$

- column span of G_{i} is $\mathcal{T}_{\phi\left(\xi_{i}\right)} \phi(\mathcal{M})$
- Proj on $\mathcal{T}_{\phi\left(\xi_{i}\right)} \phi(\mathcal{M})$ is implicit in G_{i}

Theory

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ? Functional independence conditions on dictionary \mathcal{G} and subset $g_{j_{1}, \ldots j_{s}}$
- Basic result

$$
g_{s}=h \circ g_{s^{\prime}} \text { on } U \text { iff }
$$

$$
\operatorname{rank}\binom{D g_{S}}{D g_{s^{\prime}}}=\operatorname{rank} D g_{S^{\prime}} \quad \text { on } U
$$

- When is S unique? / When can \mathcal{M} be uniquely parametrized by \mathcal{G} ? Functional independence conditions on dictionary \mathcal{G} and subset $g_{j_{1}}, \ldots j_{s}$
- Basic result

$$
g_{S}=h \circ g_{S^{\prime}} \text { on } U \text { iff }
$$

$$
\operatorname{rank}\binom{D g_{S}}{D g_{S^{\prime}}}=\operatorname{rank} D g_{S^{\prime}} \quad \text { on } U
$$

- When can FLasso recover S ?

Incoherence conditions

$$
\mu=\max _{i=1: n, j \in S, j^{\prime} \notin S}\left|\mathbf{X}_{j i}^{T} \mathbf{X}_{j^{\prime} i}\right| \quad \nu=\frac{1}{\min _{i=1: n}\left\|\mathbf{X}_{i S}^{T} \mathbf{X}_{i S}\right\|_{2}} \quad n d \sigma^{2}=\sum_{i, k} \epsilon_{i k}^{2}
$$

Theorem If $\mu \nu \sqrt{s}+\frac{\sigma \sqrt{n d}}{\lambda}<1$ then $\beta_{j}=0$ for $j \notin S$.

Ethanol MD simulation

Toluene MD simulation

Toluene

[^0]
Malondialdehyde MD simulation

Manifold learning for sciences and engineering

Manifold learning should be like PCA

- tractable/scalable
- "automatic" - minimal burden on human
- first step in data processing pipe-line should not introduce artefacts

More than PCA

- estimate richer geometric/topological information
- dimension
- borders, stratification
- clusters
- Morse complex
- meaning of coordinates/continuous parametrization

Manifold Learning for engineering and the sciences

- "physical laws through machine learning"
- scientific discovery by quantitative/statistical data analysis
- manifold learning as preprocessing for other tasks

Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub Dominique-Perrault Joncas (Google), James McQueen (Amazon)

> Jacob VanderPlas, Grace Telford (UW Astronomy) Jim Pfaendtner (UW), Chris Fu (UW)
A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you

[^0]: Torsion
 -- 0
 $--1$

 | $-\quad 1$ |
 | :--- |
 | $-\quad 3$ |

 | $-\quad 3$ |
 | :--- |
 | $-\quad 4$ |
 | $-\quad 5$ |

 -- 5
 -- 6

