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When to do (non-linear) dimension reduction

I high-dimensional data p ∈ RD , D = 64× 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n



When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n × D data matrix → n × s, s � D

I To use it afterwards in (prediction) tasks
I To understand the data better

I preserve large scale features, suppress fine scale features



Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

I Preprocessed by Jacob VanderPlas and Grace Telford

I n = 675, 000 spectra ×D = 3750 dimensions

embedding by James McQueen



Molecular configurations

aspirin molecule
I Data from Molecular Dynamics (MD) simulations

of small molecules by [Chmiela et al. 2016]

I n ≈ 200, 000 configurations ×D ∼ 20− 60
dimensions



Geometric Learning for the sciences

I Big data
I Necessary in non-parametric estimation
I Big data contains more complex patterns

I Beyond “validation by visualization”
I results/correctness should be quantified
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Geometric Learning for the sciences

I Big data
I Necessary in non-parametric estimation
I Big data contains more complex patterns

I Beyond “validation by visualization”
I results/correctness should be quantified
I hard/impossible if d > 3
I demanding on expert time
I discovering what known?

This talk
I Metric Manifold Learning arxiv:1305.7255

I estimate/correct the geometric distortion
I “effectively” isometric embedding

I physical meaning of manifold coordinates arxiv 1811.11891
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Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Laplacian Eigenmaps/Diffusion Maps [Belkin,Niyogi 02,Nadler et al

05]

I Construct similarity matrix

S = [Spp′ ]p,p′∈D with Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors

I Construct Laplacian matrix L = I − T−1S with T = diag(S1)

I Calculate φ1...m = eigenvectors of L (smallest eigenvalues)

I coordinates of p ∈ D are (φ1(p), . . . φm(p))



Brief intro to manifold learning algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n matrix: its leading eigenvectors are the coordinates
φ(p1:n)

Isomap [Tennenbaum, deSilva & Langford 00]

I Find all shortest paths in neighborhood graph, construct matrix of
distances

M = [distance2
pp′ ]

I use M and Multi-Dimensional Scaling (MDS) to obtain m dimensional
coordinates for p ∈ D



Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps
(LE)

Local Linear Embedding
(LLE)

Isomap

Local Tangent Space
Alignment (LTSA)



How to evaluate the results objectively?

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

Algorithms Multidimensional Scaling (MDS), Principal Components (PCA), Isomap, Locally Linear Embedding (LLE), Hessian Eigenmaps
(HE), Laplacian Eigenmaps (LE), Diffusion Maps (DM)



How to evaluate the results objectively?

Spectrum of a galaxy. Source SDSS, Jake VanderPlas

I which of these embedding are “correct”?

I if several “correct”, how do we reconcile them?

I if not “correct”, what failed?

I what if I have real data?



Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry



Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Diffusion Maps embedding is
isometric in the limit
[Berard,Besson,Gallot 94]

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

I Isomap [Tennenbaum,]recovers flat
manifolds isometrically

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10,
Gine & Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

Negative results

I obvious negative examples

I No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.



The Riemannian metric g

Mathematically

I M = (smooth) manifold

I p point on M
I TpM = tangent subspace at p

I g = Riemannian metric on M
g defines inner product on TpM

< v ,w >= vTGpw for v ,w ∈ TpM and for p ∈M

I g is symmetric and positive definite tensor field
I g also called first fundamental form
I (M, g) is a Riemannian manifold

In coordinates at each point p ∈M, Gp is a positive definite matrix of rank d



All (intrinsic) geometric quantities on M involve g

I Volume element on manifold

Vol(W ) =

∫
W

√
det(g)dx1 . . . dxd .

I Length of curve c

l(c) =

∫ b

a

√√√√∑
ij

gij
dx i

dt

dx j

dt
dt,

I Under a change of parametrization, g changes in a way that leaves
geometric quantities invariant

I Current algorithms estimate M
I This talk: estimate g along with M

(and in the same coordinates)



Problem formulation

I Given:
I data set D = {p1, . . . pn} sampled from manifold M ⊂ RD

I embedding { xi = φ(pi ), pi ∈ D }
by e.g LLE, Isomap, LE, . . .

I Estimate Gi ∈ Rm×m the (pushforward) Riemannian metric for pi ∈ D
in the embedding coordinates φ

I The embedding {x1:n,G1:n} will preserve the geometry of the original data



g for Sculpture Faces

I n = 698 gray images of faces in D = 64× 64 dimensions
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Relation between g and ∆

I ∆ = Laplace-Beltrami operator on M
I ∆ = div · grad
I on C2, ∆f =

∑
j
∂2f
∂x2

j

I on weighted graph with similarity matrix S , and tp =
∑

pp′ Spp′ ,

∆ = diag { tp} − S

Proposition 1 (Differential geometric fact)

∆f =
√

det(G)
∑
l

∂

∂x l

(
1√

det(G)

∑
k

(G−1)lk
∂

∂xk
f

)
,



Estimation of g

Proposition

Let ∆ be the Laplace-Beltrami operator on M. Then

hkl(p) =
1

2
∆(φk − φk(p)) (φl − φl(p))|φk (p),φl (p)

where h = g−1 (matrix inverse) and k, l = 1, 2, . . .m are embedding
dimensions

Intuition:

I at each point p ∈M, G(p) is a d × d matrix

I apply ∆ to embedding coordinate functions φ1, . . . φm

I this produces G−1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]



Algorithm to Estimate Riemann metric g

Given dataset D
1. Preprocessing (construct neighborhood graph, ...)

2. Find an embedding φ of D into Rm

3. Estimate discretized Laplace-Beltrami operator L

4. Estimate Hp and Gp = H†p for all p
4.1 For i , j = 1 : m,

H ij = 1
2

[
L(φi ∗ φj )− φi ∗ (Lφj )− φj ∗ (Lφi )

]
where X ∗ Y denotes elementwise product of two vectors X, Y ∈ RN

4.2 For p ∈ D, Hp = [H ij
p ]ij and Gp = H†p

Output (φp,Gp) for all p



Algorithm MetricEmbedding

Input data D, m embedding dimension, ε resolution

1. Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε

2. Construct similary matrix

Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors, S = [Spp′ ]p,p′∈D

3. Construct (renormalized) Laplacian matrix [Coifman & Lafon 06]

3.1 tp =
∑

p′∈D Spp′ , T = diag tp , p ∈ D
3.2 S̃ = I − T−1ST−1

3.3 t̃p =
∑

p′∈D S̃pp′ , T̃ = diag t̃p , p ∈ D
3.4 P = T̃−1S̃ .

4. Embedding [φp ]p∈D = GenericEmbedding(D, m)

5. Estimate embedding metric Hp at each point

denote Z = X ∗ Y , X ,Y ∈ RN iff Zi = XiYi for all i
5.1 For i , j = 1 : m, H ij = 1

2

[
P(φi ∗ φj )− φi ∗ (Pφj )− φj ∗ (Pφi )

]
(column

vector)

5.2 For p ∈ D, H̃p = [H ij
p ]ij and Hp = H̃†p

Ouput (φp,Hp)p∈D



Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates
Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Algorithm independent geometry preserving method

I Outputs of different algorithms on the same data are comparable

I Models built from compressed data are more interpretable

Applications

I Estimating distortion
I Correcting distortion

I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

I Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and
of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])

I Accelerating Topological Data Analysis, selecting eigencoordinates,. . . (in
progress)



Consistency of the Riemannian metric estimator

Proposition

I If the embedding φ :M → φ(M) is
A diffeomorphic

B consistent φ(Dn)
n→∞−→ φ(M)

C Laplacian consistent Lnφ(Dn)
n→∞−→ ∆φ(M)

then the dual Riemannian metric estimator h is consistent

(φ(Dn), hn)
n→∞−→ (φ(M), h)

I Laplacian Eigenmaps and Diffusion Map satisfy A, B if M compact



Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 2 0.08 0.08 1.62 3.1%

l(c) =

∫ b

a

√√√√∑
ij

Gij
dx i

dt

dx j

dt
dt,



Manifold learning for SDSS Spectra of Galaxies

Main sample of galaxy spectra from the Sloan Digital Sky Survey (675,000
spectra originally in 3750 dimensions).

I n =675,000 spectra in D = 3750 dimensions

I data curated by Grace Telford,

I “noise removal” by Jake VanderPlas



Embedding into 3 dimensions

embedding by James McQueen



How distorted is this embedding?

(ellipses represent G
−1
i

)



Riemannian Relaxation along principal curves

Find principal curves



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ) (0 means no distortion)



Riemannian Relaxation along principal curves

Points near principal curves, colored by log10(Gi ), after Riemannian Relaxation
(0 means no distortion)



Riemannian Relaxation along principal curves

All data after Riemannian Relaxation



Embedding and Riemannian Relaxation for Ethanol molecular configurations
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Motivation

ethanol torsion 1 torsion 2 persistence

I 2 rotation angles parametrize this manifold

I Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



Problem formulation

Hanyu Sam Yu-chia

Zhang Koelle Chen

I Given
I data ξi ∈ RD , i ∈ 1 . . . n
I embedding of data φ(ξ1:n) in Rm

I Assume
I data sampled from smooth manifold M
I M Riemannian with metric inherited from RD

I embedding algorithm φ :M→ φ(M) is smooth embedding
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Problem formulation
Hanyu Sam Yu-chia

Zhang Koelle Chen

I Given
I data ξi ∈ RD , i ∈ 1 . . . n
I embedding of data φ(ξ1:n) in Rm

I dictionary of domain-related smooth functions
G = {g1, . . . gp, with gj : RD → R}.

I e.g. all torsions in ethanol
I Assume

I data sampled from smooth manifold M
I M Riemannian with metric inherited from RD

I embedding algorithm φ :M→ φ(M) is smooth embedding

I Goal to express the embedding coordinate functions φ1 . . . φm in terms of
functions in G.
More precisely, we assume that

φ(x) = h(gj1 (x), . . . gjs (x)) with gj1,...js ⊂ G.

Problem: find S = {j1, . . . js}



Challenges

φ(x) = h(gj1 (x), . . . gjs (x)) with gj1,...js ⊂ G.

I Framework: sparse recovery

I Challenges

I h non-linear (but smooth)
I φ defined up to diffeomorphism

I hence, h cannot assume a parametric form
I will not assume one-to-one correspondence between φk coordinates and gj

in dictionary

φ1 = g1g2, φ1 = sin(τ1)
e.g. φ2 = g1 sin(g2

3 ) or φ2 = cos(τ1)(ethanol)
φ3 = sin(τ2)

I we do not assume φ isometric (but smooth)

I what requirements on dictionary functions g1:p for unique recovery?
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First Idea: from non-linear to linear

I If φ = h ◦ g, then

Dφ = DhDg

I Sparse non-linear, non-parametric recovery → Sparse linear recovery

I A sparse linear system for every data point i
I Require subset S is same for all i

I group Lasso problem

I Functional Lasso
I optimize

(FLasso) min
β

Jλ(β) = 1
2

n∑
i=1

||y i − Xiβ i ||22 + λ/
√
n
∑
j

||βj ||,

I with y i = ∇φ(ξi ), Xi = ∇g1:p(ξ), βij = ∂h
∂gj

(ξi )

I support S of β selects gj1,...js from G



Multidimensional FLasso

I Assume

yik = ∇fk(ξi ) Xi = ∇g1:p(ξ) βijk =
∂hk
∂gj

(ξi ) (1)

and

βj = vec(βijk , i = 1 : n, k = 1 : m) ∈ Rmn, βik = vec(βijk , j = 1 : p) ∈ Rp.
(2)

Jλ(β) =
1

2

n∑
i=1

m∑
k=1

||yik − Xiβik ||2 +
λ√
mn

p∑
j=1

||βj ||. (3)



FLasso in manifold setting

I gradients ∇ → manifold gradients
grad

I grad gj is in TξiM
I ∇gj known analytically

I gradφk is in Tφ(ξi )φ(M)
I must be estimated

I must pull-back gradφk(φ(ξi )) to TξiM

M

φ(M)



Second Idea: pulling back gradients
I Estimating grad gj

1. Estimate tangent subspace at ξi by (weighted) PCA
2. Project ∇gj on tangent subspace

I Pulling back gradients of φ1:k

I Will use (push-forward) Riemannian metric Gi

I ∇φk = unit vector in Rm

I yk = gradφk is projection of ∇φk on Tφ(ξi )φ(M)

Y i = gradT φ(ξi ) ∈ Rm×d

I Idea Use Gi

I Create neighbor matrices for ξi and φ(ξi ).

Ai =
[
ProjTξiM

(ξi′ − ξi )
]
i′∈Ni

Bi = [φ(ξi′ )− φ(ξi )]i′∈Ni
,

I Remember (φ(M), g) isometric to (M, id).
I Solve linear system

〈Ai , Y i 〉 ≈ 〈Bi , I 〉Gi AT
i Y i ≈ BT

i Gi I

I column span of Gi is Tφ(ξi )φ(M)

I Proj on Tφ(ξi )φ(M) is implicit in Gi



Theory

I When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj1,...js

I Basic result

gS = h ◦ gS′ on U iff

rank

(
DgS
DgS′

)
= rankDgS′ on U

I When can FLasso recover S ?
Incoherence conditions

µ = max
i=1:n,j∈S,j′ 6∈S

|XT
ji Xj′ i | ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ε2
ik

Theorem If µν
√
s + σ

√
nd
λ

< 1 then βj = 0 for j 6∈ S .
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Ethanol MD simulation



Toluene MD simulation



Malondialdehyde MD simulation



Manifold learning for sciences and engineering

Manifold learning should be like PCA

I tractable/scalable

I “automatic” – minimal burden on human

I first step in data processing pipe-line

should not introduce artefacts

More than PCA

I estimate richer geometric/topological information

I dimension

I borders, stratification

I clusters

I Morse complex

I meaning of coordinates/continuous parametrization



Manifold Learning for engineering and the sciences

I “physical laws through machine
learning”

I scientific discovery by
quantitative/statistical data
analysis

I manifold learning as preprocessing
for other tasks



Samson Koelle, Yu-Chia Chen, Hanyu Zhang, Alon Milchgrub
Dominique-Perrault Joncas (Google), James McQueen (Amazon)

Jacob VanderPlas, Grace Telford (UW Astronomy)
Jim Pfaendtner (UW), Chris Fu (UW)

A. Tkatchenko (Luxembourg), S. Chmiela (TU Berlin), A. Vasquez-Mayagoitia (ALCF)

Thank you
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