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Semi-supervised learning

@ Colors denote real-valued labels
@ Task: Assign real-valued labels to all of the data points



Semi-supervised learning

@ Graph is used to represent the geometry of the data set



Semi-supervised learning

@ Consider graph-based objective functions which reward the regularity
of the estimator and impose agreement with preassigned labels



From point clouds to graphs

@ Let V= {xi,...,X,} be apoint cloud in R

@ Connect nearby vertices: Edge weights W, ;.



Graph Constructions

@ proximity based graphs

Wij = n(x — x)

L L

@ kNN graphs: Connect each vertex with its k nearest neighbors



p-Dirichelt energy

o V,={x1,...,Xxn}, weight matrix W:
Wi == n([xi — xl) -

@ p-Dirichlet energy of f, : V;; = R is
E(fy) = Z Wil fa(xi) — fa(x;)1P.
@ For p = 2 associated operator is the (unnormalized) graph laplacian
L=D-W,

where D = diag(ds, ..., dp) and d; = 3, W;.



p-Laplacian semi-supervised learning

Assume we are given k labeled points

(X17y1)7"'7(xk7yk)

and unlabeled points Xx41, ..., Xn.

Question. How to label the rest of the points?

p-Laplacian SSL

I 1
Minimize E(fy) = - Z Wi [fa(xi) — fa(x;)|P
i

subject to constraint f(x))=y; fori=1,... k.

Zhu, Ghahramani, and Lafferty '03 introduced the approach with p = 2.
Zhou and Schélkopf '05 consider general p.



p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

o 1
Minimize E(f) =5 D Wylfa(xi) — fa(x)[P
if
subject to constraint f(x)y=y;i fori=1,... k.
Questions.

@ What happens as n — c0?

@ Do minimizers f, converge to a solution of a limiting problem?

@ In what topology should the question be considered?
Remark.

@ We would like to localize n as n — oc.



p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

Minimize (fr) = 2n2 Zns = %) fa(xi) — 1)) [P
subject to constraint fa(Xi) = yi for i=1,... k.
where

ng(.):;?n(é>_

Questions.
@ Do minimizers f, converge to a solution of the limiting problem?
@ In what topology should the question be considered?
@ How shall the bandwidth ¢, scale with n for the convergence to hold?




Ground Truth Assumption

We assume points xq, X, . .., are drawn i.i.d out of measure dv = pdx
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We also assume p is supported on a Lipschitz domain £ and is bounded
above and below by positive constants.



Ground Truth Assumption: Manifold version

Assume points xq, X2, ..., are drawn i.i.d out of measure dv = pd Vol ,,
where M is a compact manifold without boundary, and 0 < p < C is
continuous.

x=x,y=+2 cos(t) (1 -x?)""2 (cos(3 x) - 8/5))/5, z = (2 sin(t) (1 - x2)'? (cos(3 x) - 8/5))/5
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2 the minimizers are

Nadler, Srebro, and Zhou ‘09 observed that for p
spiky as n — oo. [Also see Wahba ’90.]

2, n = 1280, i.i.d. data on square; training

Figure: Graph of the minimizer for p

points (0.5, 0.2) with label 0 and (0.5, 0.8) with label 1.
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p-Laplacian semi-supervised learning

El Alaoui, Cheng, Ramdas, Wainwright, and Jordan ’16, show that spikes
can occur for all p < d and propose using p > d.

Heuristics.
EP () anZ Z”E — X)) |f(xi) — f(x;)P
ij=1
00 f(x)—f P
"2 / [ .06 x) ('””') o(x)ply)dcly
2o, [ 1900 Po(x

Sobolev space W'P(Q) embeds into continuous functions iff p > d.



Continuum p-Laplacian semi-supervised learning

(- measure with density p, positive on Q.

Continuum p-Laplacian SSL
Minimize
Ex(f) = [ [910x)Pp(x %o
Q

subject to constraints that

f(x;) = yi foralli=1,... k.

@ The functional is convex

@ The problem has a unique minimizer iff p > d. The minimizer lies in
WiP(Q)




p-Laplacian semi-supervised learning

Here: d = 1 and p = 1.5. For ¢ > 0.02 the minimizers lack the expected
regularity.
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p-Laplacian semi-supervised learning

Theorem (Thorpe and S. ’17)

Letp > 1. Let f, be a sequence of minimizers of E,Sp ) satisfying
constraints. Let f be a minimizer of Eég) satisfying constraints.

)
. _1 logn\d . ,
() fd>3andn rp>¢ep> oi) then p > d, f is continuous and

f, converges locally uniformly to f, meaning that for any Q' cc Q

% (k<n- ey 1) = x| = 0.

.
(i) If1 > ¢e,> n r then there exists a sequence of real numbers cp,
such that f, — ¢, converges to zero locally uniformly.

Note that in case (ii) all information about labels is lost in the limit.
The discrete minimizers exhibit spikes.



p-Laplacian semi-supervised learning

. e
S
GRS el
ROt U
BR Sl
< e e

(a) discrete minimizer (b) continuum minimizer

Minimizer for p = 4, n = 1280, ¢ = 0.058 i.i.d. data on square, with
training points (0.2,0.5) and (0.8,0.5) and labels 0 and 1 respectively.



p-Laplacian semi-supervised learning
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p = 4 which in 2D is in the well-posed regime



Improved p-Laplacian semi-supervised learning

p > d. Labeled points {(x;,y;) : i=1,...,k}.
p-Laplacian SSL
Minimize

1
Enlf) = 5 > m:(% = %)) = fn)l?
i.f

subject to constraint

fa(xm) = yi whenever |xn — xi| < (14 6)e, foralli=1,..., k.

v

where

na(-)zgfdn(é)
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Asymptotics of improved p-Laplacian SSL

Theorem (Thorpe and S. ’17)
Letp > d.

@ f, be a sequence of minimizers of improved p-Laplacian SSL on
n-point sample.

@ f minimizer of Egg)

continuous.

satisfying constraints. Since p > d we know f is

1
[ d
Ifd>3and1>¢e,> (oin> then f, converges locally uniformly to f,

meaning that for any Q' cC Q

li f(xx) — fa(xk)| = 0.
nLrQo{kgn"?"j;‘eQ/}’ (Xk) — fn(xk)|
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Comparing the original and improved model

Here: d = 1, p = 2, and n = 1280. Labeled points are (0,0) and (1, 1).
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Note that the axes on the error plots for the models are not the same
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general approach developed with Garcia—Trillos (ARMA '16)

@ [-convergence. Notion and set of techniques of calculus of variations
to consider asymptotics of functionals (here random discrete to
continuum)

@ TLP space. Notion of topology based on optimal transportation which
allows to compare functions defined on different spaces (here
fo € LP(up) and f € LP(u))
We also need
@ Nonlocal operators and their asymptotics

@ In SSL, for constraint to be satisfied we need uniform convergence.
This also requires discrete regularity and finer compactness results.
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Topology

Consider domain D and V,, = {x1, ..., X} random i.i.d points.
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@ How to compare f,: V, - Rand u: D — R in a way consistent with
L' topology?

1 n
Note that u € L'(v) and f, € L'(v,), where v, = - Z Oy
p
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Topology

Consider domain D and V,, = {Xi, ..., X5} random i.i.d points.

@ How to compare u, € L'(v,) and u € L'(D) in a way consistent with
L' topology?
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Composition

Transport map .

Tnﬁl/ ="Up
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TLP Space

Definition

TLP = {(v,f) : v € P(D), f e LP(v)}

Aol N0 = _inf [ ly=xP-+1g(y) — 1) Per(x.).

where

MN(v,o0) ={m € P(Dx D) : w(Ax D) =v(A), n(D x A) =c(A)}.

Lemma
(TLP, dr10) is a metric space. J
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TLP convergence

@ The topology of TLP agrees with the LP convergence in the sense that
,£) T (v, f) iff £, 2 ¢

@ (vn,fn) R (v, f) iff the measures (/ x f,);vn, weakly converge to
(I x f)sv. That is if graphs, considered as measures converge weakly.

@ The space TLP is not complete. Its completion are the probability
measures on the product space D x R.

If (vn, fn) AL (v, f) then there exists a sequence of transportation plans v,
such that

(1) / |x — y|Pdmn(x,y) — 0 as n— oo.
DxD

We call a sequence of transportation plans 7, € (v, v) stagnating if it
satisfies (1).

28



Stagnating sequence: [, |x — y[Pdma(x,y) — 0
TFAE:
TLP
Q@ (v, fr) — (v,f)as n — <.

@ v, — v and there exists a stagnating sequence of transportation
plans {mp} .y for which

2) //DXD |f(x) — f2(y)|P dma(x,y) — 0, as n — oo.

© v, — v and for every stagnating sequence of transportation plans
n, (2) holds.
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Formally TLP(D) is a fiber bundle over P(D).

L1(vn) L*(vo)

P(D)
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[ convergence for p-Laplacian

Theorem. Energy
En(f) = Zne = %)) = Tl PP
-converges in TLP space to

cE(f) = o /Q V()P p(x)2dx

as n — oo provided that
log n
1>ep> < ,g7 >

@ Associated compactness property also holds.
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Uniform convergence for p-Laplacian SSL

Recall: Energy
1
Enln) = =55 10— %)) = falg)1?
i.j

can be low even if the solutions are not regular:

"
P
ATV
%A R
B
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Role of nonlocal operators

Heuristics.

EP () ePnz Z ne(x; — x;)|f(x;) — f(x;)[P
7/ 1

. / IVH(X)|P p(x)20lx

@ Discrete problem on graph is closer to a nonlocal functional (with
scale ¢) than to limiting differential one

@ Nonlocal energy does not have the smoothing properties of the
differential one.
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Lack of regularity for graph p-Dirichlet energy

S )lfa) — )P

7./ 1

f(xj)—{1 if j = 1

Consider

0 else.

Then

2 1 |x1 — Xj| 1 1
EP(f) = — M)~ = ned= - =0
n () P2 — ﬂn €n ehn2 " bp

=

as n — oo, when £hn — oo.
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Regularity for graph p-Dirichlet energy

(p)
En( = Pn2

/ / 1 (x = Y)IF(X) = F(9) P pin(x)-dpin(y).
Step 1. For a > 0 fixed

max max |f(2) — (k)| < neb 5(p)(f ):
Xk z€B(xk,a€)

Step 2. Provided that e, > || T, — /||
eMNP(f, 0 To: i) < CEP (i )

Step 3.
EPN(Je # £, Q) < CENEP)(£; Q).
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PDE based p-Laplacian semi-supervised learning

Manfredi, Oberman, Sviridov, 2012, Calder 2017
The infinity laplacian is defined by

L (xi) = max wii(f(x;) = () + min wi(1() — F(x;))
and the p-laplacian is defined by

1
LPf = aL%‘,f + A(p — 2)L>F.
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PDE based p-Laplacian semi-supervised learning

1
LPf = aLif + Mp — 2)L>F.
SSL problem

Lhf=0 onQ\Q
f(x)=y;, foralli=1,... k.

Theorem (Calder ’17)

1
log n\ 3472

Assumep > d. Ifd > 3 ande, > . Then f, converges

uniformly to f, the solution of the limiting problem.

Note that there is no upper bound on ¢, needed.
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Weighted Laplacian semi-supervised learning

Labeled points: (X1, y1), ... (Xk, ¥k)- Let T = {x1,..., X}
Unlabeled points: Xx41, ... Xs.

weighted Laplacian SSL

N 1
Minimize En(un) = P Zy(x) Wil un(x:) — un(x)|?
i.f
subject to constraint un(x))=y; fori=1,... k.
00} @
h =14+ (—2 r
where ~v(x) + <dist(x, F)> near

where W are as before,
Wi = ne(ny (1% — x1) -

Shi, Osher, Zhu, JSC ’ 17: Consider v ~ non ' and v = 1 otherwise.
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Continuum Weighted Laplacian semi-supervised learning

LetT = {xy,..., Xk} be the set of labeled points: (x1, y1), - .. (Xk, Yk)-

Continuum weighted Laplacian SSL

awzgéwwwwfw

subject to constraint f(x)=yi fori=1,... k,

00} @
h =14+ —2 .
where ~¥(x) + <dist(x, F)> near I’
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Weighted Sobolev space

Continuum weighted Laplacian:

Ew) = 5 [ 200IVulF

() @
h =14+ —2 .
where ~v(x) + <dist(x, I‘)> near

Weighted Sobolev Space
HI(Q) = {u e H'(Q) : E(u) < oo}

Trace theorem

[Calder and S. 18] There exists Tr : H](Q2) — L?(I') such that when
[u— Vg <1

| Tr[u] — Tr[v]| < C(1 + E(u) + E(v))|lu — vn1 d/<°‘+2>
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Properly-weighted Laplacian semi-supervised learning

Theorem (Calder and S. '18)
Let u, be a sequence of minimizers of E,, satisfying constraints. Consider

y(x) =1+ (dist(x, F)> nearT.

;
. logn\d
(i) Ifa>d—2>0ande, > (oi ) then

up — u in TL2, where u minimizes E and ulx))=yifori=1,... k.

(i) Ifa < d — 2 then there exists a sequence of real numbers ¢, such
that u, — ¢, converges to zero.
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(c)a=0

(b) a =
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Synthetic classification example

e

(b) Graph Laplacian (c) Lap. of SOZ (d) Our method (o = 5)

Figure: Comparison of results for a synthetic classification problem for (a) the
standard graph Laplacian, (b) the nonlocal graph Laplacian [SOZ], and (C) our
properly weighted graph Laplacian. The domain is [0, 1]* and the density is 1
except for the strip [0.45,0.55] x [0, 1] x [0, 1] where it is 0.6. The given labeled
points are g(0,0.2,0.2) = 0 and g(1,0.2,0.2) = 1. There are n = 50,000 points
in the domain. Connectivity distance for the graph construction is 3/n% and for
our method o = 5.
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin ’11.
Random sample xq, ... x,. Labels are known if x; € Q;, open
Using graph laplacian L, we define

An = (Lo + T21)".

Power of a symmetric matrix is defined by M® = PD*P~" for M = PDP~".
Higher order SSL

1
Minimize E(f) = §<fn,Anfn>un

subject to constraint fa(xi) = yi whenever x; € Q.
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Higher order regularizations in SSL

An = (Lo + T21)".
Higher order SSL

’
Minimize E(f) = §<fn7Anfn>u,,

subject to constraint fa(xi) = yi  whenever x; € ;.

Theorem (Dunlop, Stuart, S. Thorpe)

For a > ¢, under usual assumptions, minimizers f, converge in TL? to the

minimizer of E(f) = a/ﬂu(x)(Au)(x)p(x)dx

subject to constraint u(x;) =yi whenever x; € Q,.

where A = (oLe + 7/)* and Lou = — 1 div(p?Vu).
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin '11.

k labeled points, (x1, ¥1), - .. (Xk, ¥k), and a random sample Xx1, . . . X

Using graph laplacian L, we define

An = (Lp+ T21)".

Higher order SSL

’
Minimize E(f) = §<fnaAnfn>un

subject to constraint foxi)=y; fori=1,... k.
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Higher order regularizations

An = (Lp+ 721)".

Higher order SSL

L 1
Minimize E(f) = §<fn:Anfn>un
subject to constraint fa(x))=y;, fori=1,... k.

Lemma (Dunlop, Stuart, S., Thorpe)

If1>ep> n~ze then minimizers f, converge in TL? along a
subsequence to a constant. That is spikes occur.
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The extrapolation of a sparsely defined function on a graph using the
kriging model, for various choices of parameter a.
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