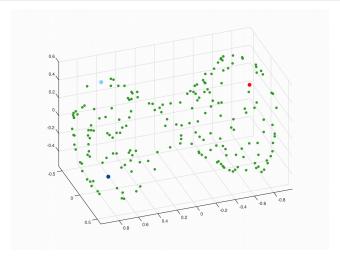
Proper regularizers for semi-supervised learning

Dejan Slepčev Carnegie Mellon University

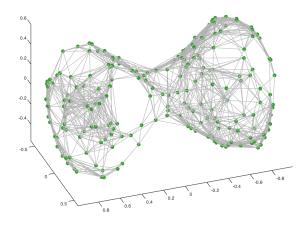
Geometry of Big Data IPAM April 29, 2019.

Semi-supervised learning



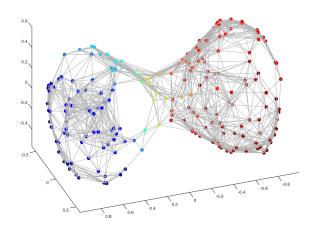
- Colors denote real-valued labels
- Task: Assign real-valued labels to all of the data points

Semi-supervised learning



• Graph is used to represent the geometry of the data set

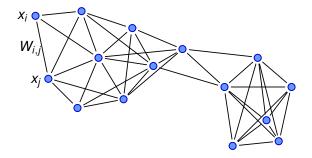
Semi-supervised learning



 Consider graph-based objective functions which reward the regularity of the estimator and impose agreement with preassigned labels

From point clouds to graphs

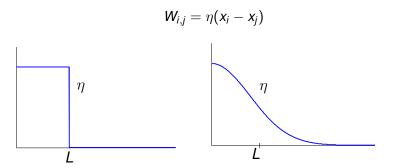
• Let $V = \{x_1, \dots, x_n\}$ be a point cloud in \mathbb{R}^d :



• Connect nearby vertices: Edge weights $W_{i,j}$.

Graph Constructions

proximity based graphs



• kNN graphs: Connect each vertex with its *k* nearest neighbors

p-Dirichelt energy

• $V_n = \{x_1, \dots, x_n\}$, weight matrix W:

$$W_{ij} := \eta \left(|x_i - x_j| \right).$$

• p-Dirichlet energy of $f_n: V_n \to \mathbb{R}$ is

$$E(f_n) = \frac{1}{2} \sum_{i,j} W_{ij} |f_n(x_i) - f_n(x_j)|^p.$$

ullet For p=2 associated operator is the (unnormalized) graph laplacian

$$L = D - W$$
,

where $D = \operatorname{diag}(d_1, \ldots, d_n)$ and $d_i = \sum_j W_{i,j}$.

7

Assume we are given *k* labeled points

$$(x_1,y_1),\ldots,(x_k,y_k)$$

and unlabeled points x_{k+1}, \ldots, x_n .

Question. How to label the rest of the points?

p-Laplacian SSL

$$E(f_n) = \frac{1}{2} \sum_{i,j} W_{ij} |f_n(x_i) - f_n(x_j)|^p$$

subject to constraint

$$f(x_i) = y_i$$
 for $i = 1, \ldots, k$.

Zhu, Ghahramani, and Lafferty '03 introduced the approach with p=2. Zhou and Schölkopf '05 consider general p.

p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

Minimize
$$E(f_n) = \frac{1}{2} \sum_{i,j} W_{ij} |f_n(x_i) - f_n(x_j)|^p$$
 subject to constraint
$$f(x_i) = y_i \quad \text{for } i = 1, \dots, k.$$

Questions.

- What happens as $n \to \infty$?
- Do minimizers f_n converge to a solution of a limiting problem?
- In what topology should the question be considered?

Remark.

• We would like to localize η as $n \to \infty$.

9

p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

subject to constraint

Minimize
$$E_n(f_n) = \frac{1}{\varepsilon^2 n^2} \sum_{i,j} \eta_{\varepsilon}(x_i - x_j) |f_n(x_i) - f_n(x_j)|^p$$

where

$$\eta_{\varepsilon}(\,\cdot\,) = \frac{1}{\varepsilon^{d}} \eta\left(\frac{\cdot}{\varepsilon}\right).$$

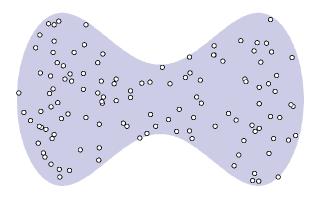
 $f_n(x_i) = y_i$ for $i = 1, \ldots, k$.

Questions.

- Do minimizers f_n converge to a solution of the limiting problem?
- In what topology should the question be considered?
- How shall the bandwidth ε_n scale with n for the convergence to hold?

Ground Truth Assumption

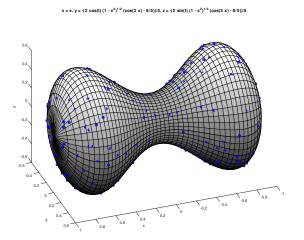
We assume points x_1, x_2, \ldots , are drawn i.i.d out of measure $d\nu = \rho dx$



We also assume ρ is supported on a Lipschitz domain Ω and is bounded above and below by positive constants.

Ground Truth Assumption: Manifold version

Assume points x_1, x_2, \ldots , are drawn i.i.d out of measure $d\nu = \rho d \operatorname{Vol}_{\mathcal{M}}$, where \mathcal{M} is a compact manifold without boundary, and $0 < \rho < C$ is continuous.



Harmonic semi-supervised learning

Nadler, Srebro, and Zhou '09 observed that for p=2 the minimizers are spiky as $n \to \infty$. [Also see Wahba '90.]

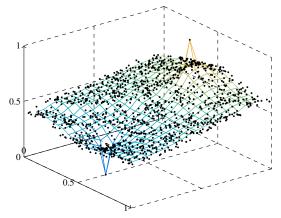


Figure: Graph of the minimizer for p = 2, n = 1280, i.i.d. data on square; training points (0.5, 0.2) with label 0 and (0.5, 0.8) with label 1.

El Alaoui, Cheng, Ramdas, Wainwright, and Jordan '16, show that spikes can occur for all $p \le d$ and propose using p > d.

Heuristics.

$$E_n^{(p)}(f) = \frac{1}{\varepsilon^p n^2} \sum_{i,j=1}^n \eta_{\varepsilon}(x_i - x_j) |f(x_i) - f(x_j)|^p$$

$$\stackrel{n \to \infty}{\approx} \iint \eta_{\varepsilon}(x_i - x_j) \left(\frac{|f(x) - f(y)|}{\varepsilon} \right)^p \rho(x) \rho(y) dx dy$$

$$\stackrel{\varepsilon \to 0}{\approx} \sigma_{\eta} \int |\nabla f(x)|^p \rho(x)^2 dx$$

Sobolev space $W^{1,p}(\Omega)$ embeds into continuous functions iff p > d.

Continuum p-Laplacian semi-supervised learning

 μ - measure with density ρ , positive on Ω .

Continuum p-Laplacian SSL

Minimize

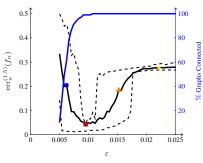
$$E_{\infty}(f) = \int_{\Omega} |\nabla f(x)|^{p} \rho(x)^{2} dx$$

subject to constraints that

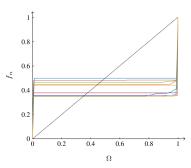
$$f(x_i) = y_i$$
 for all $i = 1, ..., k$.

- The functional is convex
- The problem has a unique minimizer iff p > d. The minimizer lies in $W^{1,p}(\Omega)$

Here: d=1 and p=1.5. For $\varepsilon>0.02$ the minimizers lack the expected regularity.



(a) error for p = 1.5 and d = 1



(b) minimizers for $\varepsilon = 0.023$, n = 1280, ten realizations. Labeled points are (0,0) and (1,1).

Theorem (Thorpe and S. '17)

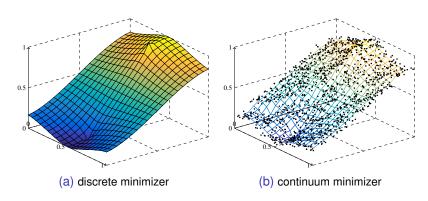
Let p > 1. Let f_n be a sequence of minimizers of $E_n^{(p)}$ satisfying constraints. Let f be a minimizer of $E_{\infty}^{(p)}$ satisfying constraints.

(i) If $d \geq 3$ and $n^{-\frac{1}{p}} \gg \varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{d}}$ then p > d, f is continuous and f_n converges locally uniformly to f, meaning that for any $\Omega' \subset\subset \Omega$

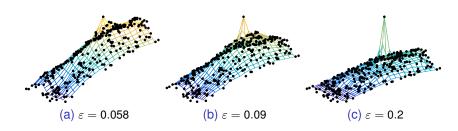
$$\lim_{n\to\infty}\max_{\{k\leq n:\,x_k\in\Omega'\}}|f(x_k)-f_n(x_k)|=0.$$

(ii) If $1 \gg \varepsilon_n \gg n^{-\frac{1}{p}}$ then there exists a sequence of real numbers c_n such that $f_n - c_n$ converges to zero locally uniformly.

Note that in case (ii) all information about labels is lost in the limit. The discrete minimizers exhibit spikes.



Minimizer for p=4, n=1280, $\varepsilon=0.058$ i.i.d. data on square, with training points (0.2,0.5) and (0.8,0.5) and labels 0 and 1 respectively.



p=4 which in 2D is in the well-posed regime

Improved p-Laplacian semi-supervised learning

p > d. Labeled points $\{(x_i, y_i) : i = 1, ..., k\}$.

p-Laplacian SSL

Minimize

$$E_n(f_n) = \frac{1}{\varepsilon^2 n^2} \sum_{i,j} \eta_{\varepsilon}(x_i - x_j) |f_n(x_i) - f_n(x_j)|^p$$

subject to constraint

$$f_n(x_m) = y_i$$
 whenever $|x_m - x_i| < (1 + \delta)\varepsilon$, for all $i = 1, ..., k$.

where

$$\eta_{\varepsilon}(\,\cdot\,) = \frac{1}{\varepsilon^{d}} \eta\left(\frac{\cdot}{\varepsilon}\right).$$

Asymptotics of improved p-Laplacian SSL

Theorem (Thorpe and S. '17)

Let p > d.

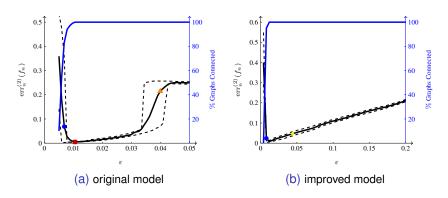
- f_n be a sequence of minimizers of improved p-Laplacian SSL on n-point sample.
- f minimizer of $E_{\infty}^{(p)}$ satisfying constraints. Since p > d we know f is continuous.

If $d \geq 3$ and $1 \gg \varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{d}}$ then f_n converges locally uniformly to f, meaning that for any $\Omega' \subset\subset \Omega$

$$\lim_{n\to\infty}\max_{\{k\leq n:\,x_k\in\Omega'\}}|f(x_k)-f_n(x_k)|=0.$$

Comparing the original and improved model

Here: d = 1, p = 2, and n = 1280. Labeled points are (0,0) and (1,1).



Note that the axes on the error plots for the models are not the same

Techniques

general approach developed with Garcia-Trillos (ARMA '16)

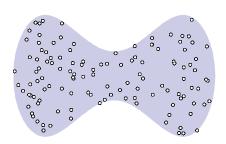
- Γ-convergence. Notion and set of techniques of calculus of variations to consider asymptotics of functionals (here random discrete to continuum)
- TL^p space. Notion of topology based on optimal transportation which allows to compare functions defined on different spaces (here $f_n \in L^p(\mu_n)$ and $f \in L^p(\mu)$)

We also need

- Nonlocal operators and their asymptotics
- In SSL, for constraint to be satisfied we need uniform convergence.
 This also requires discrete regularity and finer compactness results.

Topology

Consider domain *D* and $V_n = \{x_1, \dots, x_n\}$ random i.i.d points.

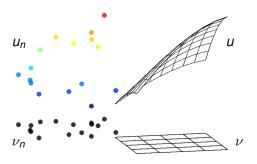


• How to compare $f_n: V_n \to \mathbb{R}$ and $u: D \to \mathbb{R}$ in a way consistent with L^1 topology?

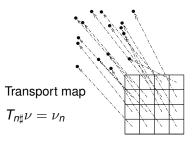
Note that $u \in L^1(\nu)$ and $f_n \in L^1(\nu_n)$, where $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$.

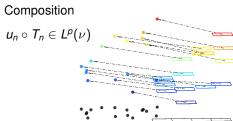
Topology

Consider domain *D* and $V_n = \{X_1, \dots, X_n\}$ random i.i.d points.



• How to compare $u_n \in L^1(\nu_n)$ and $u \in L^1(D)$ in a way consistent with L^1 topology?





$$d_{TL^{p}}^{p}((\nu, u), (\nu_{n}, u_{n})) = \inf_{T_{n} \neq \nu = \nu_{n}} \int_{D} |u_{n}(T_{n}(x)) - u(x)|^{p} + |T_{n}(x) - x|^{p} \rho(x) dx$$

TL^p Space

Definition

$$TL^p = \{(\nu, f) : \nu \in \mathcal{P}(D), f \in L^p(\nu)\}$$
 $d^p_{TL^p}((\nu, f), (\sigma, g)) = \inf_{\pi \in \Pi(\nu, \sigma)} \int_{D \times D} |y - x|^p + |g(y) - f(x))|^p d\pi(x, y).$

where

$$\Pi(\nu,\sigma) = \{ \pi \in \mathcal{P}(D \times D) : \pi(A \times D) = \nu(A), \ \pi(D \times A) = \sigma(A) \}.$$

Lemma

 (TL^p, d_{TL^p}) is a metric space.

TL^p convergence

- The topology of TL^p agrees with the L^p convergence in the sense that $(\nu, f_n) \xrightarrow{TL^p} (\nu, f)$ iff $f_n \xrightarrow{L^p(\nu)} f$
- $(\nu_n, f_n) \xrightarrow{TL^p} (\nu, f)$ iff the measures $(I \times f_n)_{\sharp} \nu_n$ weakly converge to $(I \times f)_{\sharp} \nu$. That is if graphs, considered as measures converge weakly.
- The space TL^p is not complete. Its completion are the probability measures on the product space $D \times \mathbb{R}$.

If $(\nu_n, f_n) \xrightarrow{TL^p} (\nu, f)$ then there exists a sequence of transportation plans ν_n such that

(1)
$$\int_{D\times D} |x-y|^p d\pi_n(x,y) \longrightarrow 0 \text{ as } n\to\infty.$$

We call a sequence of transportation plans $\pi_n \in \Pi(\nu_n, \nu)$ stagnating if it satisfies (1).

Stagnating sequence: $\int_{D\times D} |x-y|^p d\pi_n(x,y) \longrightarrow 0$

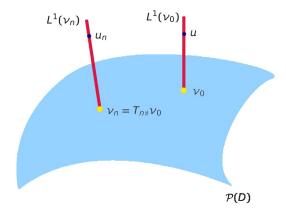
TFAE:

- ② $\nu_n \rightharpoonup \nu$ and **there exists** a stagnating sequence of transportation plans $\{\pi_n\}_{n\in\mathbb{N}}$ for which

(2)
$$\iint_{D\times D} |f(x)-f_n(y)|^p d\pi_n(x,y) \to 0, \text{ as } n\to\infty.$$

1 $\nu_n \rightharpoonup \nu$ and **for every** stagnating sequence of transportation plans π_n , (2) holds.

Formally $TL^p(D)$ is a fiber bundle over $\mathcal{P}(D)$.



Γ convergence for p-Laplacian

Theorem. Energy

$$E_n(f_n) = \frac{1}{\varepsilon^2 n^2} \sum_{i,j} \eta_{\varepsilon}(x_i - x_j) |f_n(x_i) - f_n(x_j)|^p$$

 Γ -converges in TL^p space to

$$\sigma E_{\infty}(f) = \sigma \int_{\Omega} |\nabla f(x)|^p \rho(x)^2 dx$$

as $n \to \infty$ provided that

$$1 \gg \varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{d}}$$

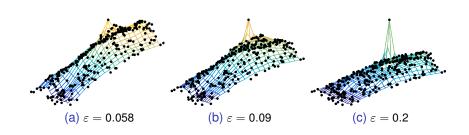
Associated compactness property also holds.

Uniform convergence for *p*-Laplacian SSL

Recall: Energy

$$E_n(f_n) = \frac{1}{\varepsilon^2 n^2} \sum_{i,j} \eta_{\varepsilon}(x_i - x_j) |f_n(x_i) - f_n(x_j)|^p$$

can be low even if the solutions are not regular:



Role of nonlocal operators

Heuristics.

$$E_n^{(p)}(f) = \frac{1}{\varepsilon^p n^2} \sum_{i,j=1}^n \eta_{\varepsilon}(x_i - x_j) |f(x_i) - f(x_j)|^p$$

$$\stackrel{n \to \infty}{\approx} \iint \eta_{\varepsilon}(x_i - x_j) \left(\frac{|f(x) - f(y)|}{\varepsilon} \right)^p \rho(x) \rho(y) dx dy$$

$$\stackrel{\varepsilon \to 0}{\approx} \sigma_{\eta} \int |\nabla f(x)|^p \rho(x)^2 dx$$

- Discrete problem on graph is closer to a nonlocal functional (with scale ε) than to limiting differential one
- Nonlocal energy does not have the smoothing properties of the differential one.

Lack of regularity for graph p-Dirichlet energy

$$E_n^{(p)}(f) = \frac{1}{\varepsilon^p n^2} \sum_{i,j=1}^n \eta_{\varepsilon}(x_i - x_j) |f(x_i) - f(x_j)|^p.$$

Consider

$$f(x_j) = \begin{cases} 1 & \text{if } j = 1 \\ 0 & \text{else.} \end{cases}$$

Then

$$E_n^{(p)}(f) = \frac{2}{\varepsilon_n^p n^2} \sum_{j=2}^n \frac{1}{\varepsilon_n^d} \eta\left(\frac{|x_1 - x_j|}{\varepsilon_n}\right) \sim \frac{1}{\varepsilon_n^p n^2} n \varepsilon_n^d = \frac{1}{\varepsilon_n^p n} \to 0$$

as $n \to \infty$, when $\varepsilon_n^p n \to \infty$.

Regularity for graph p-Dirichlet energy

$$E_n^{(p)}(f) = \frac{1}{\varepsilon^p n^2} \iint \eta_\varepsilon(x-y) |f(x)-f(y)|^p d\mu_n(x).d\mu_n(y).$$

Step 1. For $\alpha > 0$ fixed

$$\max_{x_k} \max_{z \in B(x_k, \alpha \varepsilon)} |f_n(z) - f_n(x_k)| \lesssim n \varepsilon_n^{\rho} \mathcal{E}_n^{(\rho)}(f_n),$$

Step 2. Provided that $\varepsilon_n \gg ||T_n - I||_{L^{\infty}}$

$$\mathcal{E}_{\tilde{\varepsilon}_n}^{(NL,p)}(f_n\circ T_n;\tilde{\eta})\leq C\mathcal{E}_n^{(p)}(f_n;\eta)$$

Step 3.

$$\mathcal{E}_{\infty}^{(p)}(J_{\varepsilon}*f;\Omega')\leq C\mathcal{E}_{\varepsilon}^{(NL,p)}(f;\Omega).$$

PDE based p-Laplacian semi-supervised learning

Manfredi, Oberman, Sviridov, 2012, Calder 2017

The infinity laplacian is defined by

$$L_n^{\infty} f(x_i) = \max_j w_{ij} (f(x_j) - f(x_i)) + \min_j w_{ij} (f(x_j) - f(x_i))$$

and the p-laplacian is defined by

$$L_n^p f = \frac{1}{d} L_n^2 f + \lambda (p-2) L^{\infty} f.$$

PDE based p-Laplacian semi-supervised learning

$$L_n^p f = \frac{1}{d} L_n^2 f + \lambda (p-2) L^{\infty} f.$$

SSL problem

$$L_n^p f = 0$$
 on $\Omega \setminus \Omega_L$
 $f(x_i) = y_i$ for all $i = 1, ..., k$.

Theorem (Calder '17)

Assume p > d. If $d \ge 3$ and $\varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{3d/2}}$. Then f_n converges uniformly to f, the solution of the limiting problem.

Note that there is no upper bound on ε_n needed.

Weighted Laplacian semi-supervised learning

Labeled points: $(x_1, y_1), \dots (x_k, y_k)$. Let $\Gamma = \{x_1, \dots, x_k\}$. Unlabeled points: $x_{k+1}, \dots x_n$.

weighted Laplacian SSL

Minimize
$$E_n(u_n) = \frac{1}{2\varepsilon^2 n^2} \sum_{i,j} \gamma(x) W_{ij} |u_n(x_i) - u_n(x_j)|^2$$
 subject to constraint
$$u_n(x_i) = y_i \quad \text{for } i = 1, \dots, k.$$
 where
$$\gamma(x) = 1 + \left(\frac{r_0}{\operatorname{dist}(x, \Gamma)}\right)^{\alpha} \text{ near } \Gamma.$$

where W_{ii} are as before,

$$W_{ij} = \eta_{\varepsilon(n)}(|x_i - x_j|).$$

Shi, Osher, Zhu, JSC '17: Consider $\gamma \sim n$ on Γ and $\gamma = 1$ otherwise.

Continuum Weighted Laplacian semi-supervised learning

Let $\Gamma = \{x_1, \dots, x_k\}$ be the set of labeled points: $(x_1, y_1), \dots (x_k, y_k)$.

Continuum weighted Laplacian SSL

$$E(u) = \frac{1}{2} \int_{\Omega} \gamma(x) |\nabla u|^2 \rho^2 \, dx$$
 subject to constraint
$$f(x_i) = y_i \quad \text{for } i = 1, \dots, k,$$

where $\gamma(x) = 1 + \left(\frac{r_0}{\operatorname{dist}(x,\Gamma)}\right)^{\alpha}$ near Γ .

Weighted Sobolev space

Continuum weighted Laplacian:

$$E(u) = \frac{1}{2} \int_{\Omega} \gamma(x) |\nabla u|^2 \rho^2 dx$$
$$\gamma(x) = 1 + \left(\frac{r_0}{\operatorname{dist}(x, \Gamma)}\right)^{\alpha} \operatorname{near} \Gamma.$$

where

Weighted Sobolev Space

$$H^1_{\gamma}(\Omega) = \{u \in H^1(\Omega) : E(u) < \infty\}.$$

Trace theorem

[Calder and S. '18] There exists Tr : $H^1_\gamma(\Omega) \to L^2(\Gamma)$ such that when $\|u-v\|_{L^2(\Omega)} \lesssim 1$

$$|\operatorname{Tr}[u] - \operatorname{Tr}[v]| \le C(1 + E(u) + E(v)) ||u - v||_{L^2(\Omega)}^{1 - d/(\alpha + 2)}.$$

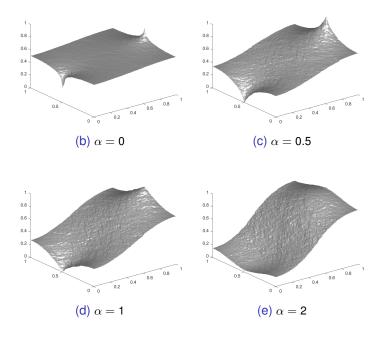
Properly-weighted Laplacian semi-supervised learning

Theorem (Calder and S. '18)

Let u_n be a sequence of minimizers of E_n satisfying constraints. Consider

$$\gamma(x) = 1 + \left(\frac{r_0}{\operatorname{dist}(x,\Gamma)}\right)^{\alpha} near \Gamma.$$

- (i) If $\alpha > d-2 \ge 0$ and $\varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{d}}$ then
 - $u_n \to u$ in TL^2 , where u minimizes E and $u(x_i) = y_i$ for i = 1, ..., k.
- (ii) If $\alpha \leq d-2$ then there exists a sequence of real numbers c_n such that $u_n c_n$ converges to zero.



Synthetic classification example

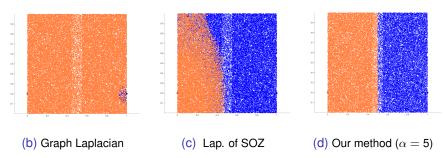


Figure: Comparison of results for a synthetic classification problem for (a) the standard graph Laplacian, (b) the nonlocal graph Laplacian [SOZ], and (C) our properly weighted graph Laplacian. The domain is $[0,1]^3$ and the density is 1 except for the strip $[0.45,0.55] \times [0,1] \times [0,1]$ where it is 0.6. The given labeled points are g(0,0.2,0.2)=0 and g(1,0.2,0.2)=1. There are n=50,000 points in the domain. Connectivity distance for the graph construction is $3/n^{\frac{1}{3}}$ and for our method $\alpha=5$.

Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin '11.

Random sample $x_1, \dots x_n$. Labels are known if $x_i \in \Omega_L$, open

Using graph laplacian L_n we define

$$A_n = (L_n + \tau^2 I)^{\alpha}.$$

Power of a symmetric matrix is defined by $M^{\alpha} = PD^{\alpha}P^{-1}$ for $M = PDP^{-1}$.

Higher order SSL

Minimize
$$E(f) = \frac{1}{2} \langle f_n, A_n f_n \rangle_{\mu_n}$$
 subject to constraint
$$f_n(x_i) = y_i \quad \text{whenever } x_i \in \Omega_L.$$

Higher order regularizations in SSL

$$A_n=(L_n+\tau^2I)^{\alpha}.$$

Higher order SSL

Minimize

$$E(f) = \frac{1}{2} \langle f_n, A_n f_n \rangle_{\mu_n}$$

subject to constraint

$$f_n(x_i) = y_i$$
 whenever $x_i \in \Omega_L$.

Theorem (Dunlop, Stuart, S. Thorpe)

For $\alpha > \frac{d}{2}$, under usual assumptions, minimizers f_n converge in TL^2 to the

minimizer of

$$E(f) = \sigma \int_{\Omega} u(x)(Au)(x)\rho(x)dx$$

subject to constraint

$$u(x_i) = y_i$$
 whenever $x_i \in \Omega_L$.

where $A = (\sigma L_c + \tau I)^{\alpha}$ and $L_c u = -\frac{1}{\rho} \operatorname{div}(\rho^2 \nabla u)$.

Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin '11.

k labeled points, $(x_1, y_1), \ldots (x_k, y_k)$, and a random sample $x_{k+1}, \ldots x_n$.

Using graph laplacian L_n we define

$$A_n=(L_n+\tau^2I)^{\alpha}.$$

Higher order SSL

Minimize $E(f) = \frac{1}{2} \langle f_n, A_n f_n \rangle_{\mu_n}$

subject to constraint $f_n(x_i) = y_i$ for i = 1, ..., k.

Higher order regularizations

$$A_n=(L_n+\tau^2I)^{\alpha}.$$

Higher order SSL

Minimize $E(f) = \frac{1}{2} \langle f_n, A_n f_n \rangle_{\mu_n}$ subject to constraint $f_n(x_i) = y_i$ for $i = 1, \dots, k$.

Lemma (Dunlop, Stuart, S., Thorpe)

If $1 \gg \varepsilon_n \gg n^{-\frac{1}{2\alpha}}$ then minimizers f_n converge in TL^2 along a subsequence to a constant. That is spikes occur.

Kriging

The extrapolation of a sparsely defined function on a graph using the kriging model, for various choices of parameter α .

