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Semi-supervised learning

Colors denote real-valued labels
Task: Assign real-valued labels to all of the data points

.
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Semi-supervised learning

Graph is used to represent the geometry of the data set

.
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Semi-supervised learning

Consider graph-based objective functions which reward the regularity
of the estimator and impose agreement with preassigned labels
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From point clouds to graphs

Let V = {x1, . . . , xn} be a point cloud in Rd :

xi

xj

Wi,j

Connect nearby vertices: Edge weights Wi,j .

.
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Graph Constructions

proximity based graphs

Wi,j = η(xi − xj)

η

L

η

L

kNN graphs: Connect each vertex with its k nearest neighbors

.
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p-Dirichelt energy

Vn = {x1, . . . , xn}, weight matrix W :

Wij := η (|xi − xj |) .

p-Dirichlet energy of fn : Vn → R is

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|p.

For p = 2 associated operator is the (unnormalized) graph laplacian

L = D −W ,

where D = diag(d1, . . . , dn) and di =
∑

j Wi,j .

.
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p-Laplacian semi-supervised learning

Assume we are given k labeled points

(x1, y1), . . . , (xk , yk )

and unlabeled points xk+1, . . . , xn.

Question. How to label the rest of the points?

p-Laplacian SSL

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|pMinimize

f (xi) = yi for i = 1, . . . , k .subject to constraint

Zhu, Ghahramani, and Lafferty ’03 introduced the approach with p = 2.
Zhou and Schölkopf ’05 consider general p.

.
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p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

E(fn) =
1
2

∑
i,j

Wij |fn(xi)− fn(xj)|pMinimize

f (xi) = yi for i = 1, . . . , k .subject to constraint

Questions.

What happens as n→∞?

Do minimizers fn converge to a solution of a limiting problem?

In what topology should the question be considered?

Remark.

We would like to localize η as n→∞.

.
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p-Laplacian semi-supervised learning: Asymptotics

p-Laplacian SSL

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|pMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint

where
ηε( · ) =

1
εd η

( ·
ε

)
.

Questions.

Do minimizers fn converge to a solution of the limiting problem?

In what topology should the question be considered?

How shall the bandwidth εn scale with n for the convergence to hold?

.
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Ground Truth Assumption

We assume points x1, x2, . . . , are drawn i.i.d out of measure dν = ρdx

We also assume ρ is supported on a Lipschitz domain Ω and is bounded
above and below by positive constants.

.
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Ground Truth Assumption: Manifold version

Assume points x1, x2, . . . , are drawn i.i.d out of measure dν = ρd VolM,
whereM is a compact manifold without boundary, and 0 < ρ < C is
continuous.
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Harmonic semi-supervised learning

Nadler, Srebro, and Zhou ’09 observed that for p = 2 the minimizers are
spiky as n→∞. [Also see Wahba ’90.]
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Figure: Graph of the minimizer for p = 2, n = 1280, i.i.d. data on square; training
points (0.5, 0.2) with label 0 and (0.5, 0.8) with label 1.
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p-Laplacian semi-supervised learning

El Alaoui, Cheng, Ramdas, Wainwright, and Jordan ’16, show that spikes
can occur for all p ≤ d and propose using p > d .

Heuristics.

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p

n→∞
≈

∫∫
ηε(xi − xj)

(
|f (x)− f (y |

ε

)p

ρ(x)ρ(y)dxdy

ε→0
≈ ση

∫
|∇f (x)|pρ(x)2dx

Sobolev space W 1,p(Ω) embeds into continuous functions iff p > d .

.
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Continuum p-Laplacian semi-supervised learning

µ- measure with density ρ, positive on Ω.

Continuum p-Laplacian SSL

Minimize
E∞(f ) =

∫
Ω
|∇f (x)|pρ(x)2dx

subject to constraints that

f (xi) = yi for all i = 1, . . . , k .

The functional is convex

The problem has a unique minimizer iff p > d . The minimizer lies in
W 1,p(Ω)

.
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p-Laplacian semi-supervised learning

Here: d = 1 and p = 1.5. For ε > 0.02 the minimizers lack the expected
regularity.
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(a) error for p = 1.5 and d = 1 (b) minimizers for ε = 0.023, n = 1280,
ten realizations. Labeled points are
(0, 0) and (1, 1).
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p-Laplacian semi-supervised learning

Theorem (Thorpe and S. ’17)

Let p > 1. Let fn be a sequence of minimizers of E(p)
n satisfying

constraints. Let f be a minimizer of E(p)
∞ satisfying constraints.

(i) If d ≥ 3 and n−
1
p � εn �

(
log n

n

) 1
d

then p > d, f is continuous and

fn converges locally uniformly to f , meaning that for any Ω′ ⊂⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f (xk )− fn(xk )| = 0.

(ii) If 1� εn � n−
1
p then there exists a sequence of real numbers cn

such that fn − cn converges to zero locally uniformly.

Note that in case (ii) all information about labels is lost in the limit.
The discrete minimizers exhibit spikes.

.
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p-Laplacian semi-supervised learning
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(a) discrete minimizer
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(b) continuum minimizer

Minimizer for p = 4, n = 1280, ε = 0.058 i.i.d. data on square, with
training points (0.2, 0.5) and (0.8, 0.5) and labels 0 and 1 respectively.
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p-Laplacian semi-supervised learning

(a) ε = 0.058 (b) ε = 0.09 (c) ε = 0.2

p = 4 which in 2D is in the well-posed regime

.
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Improved p-Laplacian semi-supervised learning

p > d . Labeled points {(xi , yi) : i = 1, . . . , k}.

p-Laplacian SSL

Minimize

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|p

subject to constraint

fn(xm) = yi whenever |xm − xi | < (1 + δ)ε, for all i = 1, . . . , k .

where
ηε( · ) =

1
εd η

( ·
ε

)
.

.
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Asymptotics of improved p-Laplacian SSL

Theorem (Thorpe and S. ’17)

Let p > d.

fn be a sequence of minimizers of improved p-Laplacian SSL on
n-point sample.

f minimizer of E(p)
∞ satisfying constraints. Since p > d we know f is

continuous.

If d ≥ 3 and 1� εn �
(

log n
n

) 1
d

then fn converges locally uniformly to f ,

meaning that for any Ω′ ⊂⊂ Ω

lim
n→∞

max
{k≤n : xk∈Ω′}

|f (xk )− fn(xk )| = 0.

.
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Comparing the original and improved model

Here: d = 1, p = 2, and n = 1280. Labeled points are (0, 0) and (1, 1).
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(b) improved model

Note that the axes on the error plots for the models are not the same
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Techniques

general approach developed with Garcia–Trillos (ARMA ’16)

Γ-convergence. Notion and set of techniques of calculus of variations
to consider asymptotics of functionals (here random discrete to
continuum)

TLp space. Notion of topology based on optimal transportation which
allows to compare functions defined on different spaces (here
fn ∈ Lp(µn) and f ∈ Lp(µ))

We also need

Nonlocal operators and their asymptotics

In SSL, for constraint to be satisfied we need uniform convergence.
This also requires discrete regularity and finer compactness results.

.
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Topology

Consider domain D and Vn = {x1, . . . , xn} random i.i.d points.

How to compare fn : Vn → R and u : D → R in a way consistent with
L1 topology?

Note that u ∈ L1(ν) and fn ∈ L1(νn), where νn =
1
n

n∑
i=1

δxi .

.
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Topology

Consider domain D and Vn = {X1, . . . ,Xn} random i.i.d points.

un

νn

u

ν

How to compare un ∈ L1(νn) and u ∈ L1(D) in a way consistent with
L1 topology?

.
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Transport map

Tn]ν = νn

Composition

un ◦ Tn ∈ Lp(ν)

dp
TLp ((ν, u), (νn, un)) = inf

Tn ]ν=νn

∫
D
|un(Tn(x))− u(x)|p + |Tn(x)− x |pρ(x)dx

.
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TLp Space

Definition

TLp = {(ν, f ) : ν ∈ P(D), f ∈ Lp(ν)}

dp
TLp ((ν, f ), (σ, g)) = inf

π∈Π(ν,σ)

∫
D×D
|y − x |p + |g(y)− f (x))|pdπ(x , y).

where

Π(ν, σ) = {π ∈ P(D × D) : π(A× D) = ν(A), π(D × A) = σ(A)}.

Lemma

(TLp, dTLp ) is a metric space.

.
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TLp convergence

The topology of TLp agrees with the Lp convergence in the sense that

(ν, fn)
TLp

−→ (ν, f ) iff fn
Lp(ν)−→ f

(νn, fn)
TLp

−→ (ν, f ) iff the measures (I × fn)]νn weakly converge to
(I × f )]ν. That is if graphs, considered as measures converge weakly.

The space TLp is not complete. Its completion are the probability
measures on the product space D × R.

If (νn, fn)
TLp

−→ (ν, f ) then there exists a sequence of transportation plans νn

such that

(1)
∫

D×D
|x − y |pdπn(x , y) −→ 0 as n→∞.

We call a sequence of transportation plans πn ∈ Π(νn, ν) stagnating if it
satisfies (1).

.
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Stagnating sequence:
∫

D×D |x − y |pdπn(x , y) −→ 0

TFAE:
1 (νn, fn)

TLp

−→ (ν, f ) as n→∞.
2 νn ⇀ ν and there exists a stagnating sequence of transportation

plans {πn}n∈N for which

(2)
∫∫

D×D
|f (x)− fn(y)|p dπn(x , y)→ 0, as n→∞.

3 νn ⇀ ν and for every stagnating sequence of transportation plans
πn, (2) holds.

.
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Formally TLp(D) is a fiber bundle over P(D).

.
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Γ convergence for p-Laplacian

Theorem. Energy

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|p

Γ-converges in TLp space to

σE∞(f ) = σ

∫
Ω
|∇f (x)|pρ(x)2dx

as n→∞ provided that

1� εn �
(

log n
n

) 1
d

Associated compactness property also holds.

.
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Uniform convergence for p-Laplacian SSL

Recall: Energy

En(fn) =
1

ε2n2

∑
i,j

ηε(xi − xj)|fn(xi)− fn(xj)|p

can be low even if the solutions are not regular:

(a) ε = 0.058 (b) ε = 0.09 (c) ε = 0.2

.
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Role of nonlocal operators

Heuristics.

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p

n→∞
≈

∫∫
ηε(xi − xj)

(
|f (x)− f (y |

ε

)p

ρ(x)ρ(y)dxdy

ε→0
≈ ση

∫
|∇f (x)|pρ(x)2dx

Discrete problem on graph is closer to a nonlocal functional (with
scale ε) than to limiting differential one

Nonlocal energy does not have the smoothing properties of the
differential one.

.
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Lack of regularity for graph p-Dirichlet energy

E(p)
n (f ) =

1
εpn2

n∑
i,j=1

ηε(xi − xj)|f (xi)− f (xj)|p.

Consider

f (xj) =

{
1 if j = 1

0 else.

Then

E(p)
n (f ) =

2
εp

nn2

n∑
j=2

1
εd

n
η

(
|x1 − xj |
εn

)
∼ 1
εp

nn2
nεd

n =
1
εp

nn
→ 0

as n→∞, when εp
nn→∞.

.
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Regularity for graph p-Dirichlet energy

E(p)
n (f ) =

1
εpn2

∫∫
ηε(x − y)|f (x)− f (y)|pdµn(x).dµn(y).

Step 1. For α > 0 fixed

max
xk

max
z∈B(xk ,αε)

|fn(z)− fn(xk )| . nεp
n E

(p)
n (fn),

Step 2. Provided that εn � ‖Tn − I‖L∞

E(NL,p)
ε̃n

(fn ◦ Tn; η̃) ≤ CE(p)
n (fn; η)

Step 3.
E(p)
∞ (Jε ∗ f ; Ω′) ≤ CE(NL,p)

ε (f ; Ω).

.
35



PDE based p-Laplacian semi-supervised learning

Manfredi, Oberman, Sviridov, 2012, Calder 2017

The infinity laplacian is defined by

L∞n f (xi) = max
j

wij(f (xj)− f (xi)) + min
j

wij(f (xj)− f (xi))

and the p-laplacian is defined by

Lp
nf =

1
d

L2
nf + λ(p − 2)L∞f .

.
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PDE based p-Laplacian semi-supervised learning

Lp
nf =

1
d

L2
nf + λ(p − 2)L∞f .

SSL problem

Lp
nf = 0 on Ω \ ΩL

f (xi) = yi for all i = 1, . . . , k .

Theorem (Calder ’17)

Assume p > d. If d ≥ 3 and εn �
(

log n
n

) 1
3d/2

. Then fn converges

uniformly to f , the solution of the limiting problem.

Note that there is no upper bound on εn needed.

.
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Weighted Laplacian semi-supervised learning

Labeled points: (x1, y1), . . . (xk , yk ). Let Γ = {x1, . . . , xk}.
Unlabeled points: xk+1, . . . xn.

weighted Laplacian SSL

En(un) =
1

2ε2n2

∑
i,j

γ(x)Wij |un(xi)− un(xj)|2Minimize

un(xi) = yi for i = 1, . . . , k .subject to constraint

γ(x) = 1 +

(
r0

dist(x , Γ)

)α
near Γ.where

where Wij are as before,

Wij = ηε(n) (|xi − xj |) .

Shi, Osher, Zhu, JSC ’ 17: Consider γ ∼ n on Γ and γ = 1 otherwise.
.
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Continuum Weighted Laplacian semi-supervised learning

Let Γ = {x1, . . . , xk} be the set of labeled points: (x1, y1), . . . (xk , yk ).

Continuum weighted Laplacian SSL

E(u) =
1
2

∫
Ω
γ(x)|∇u|2ρ2 dx

f (xi) = yi for i = 1, . . . , k ,subject to constraint

γ(x) = 1 +

(
r0

dist(x , Γ)

)α
near Γ.where

.
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Weighted Sobolev space

Continuum weighted Laplacian:

E(u) =
1
2

∫
Ω
γ(x)|∇u|2ρ2 dx

γ(x) = 1 +

(
r0

dist(x , Γ)

)α
near Γ.where

Weighted Sobolev Space

H1
γ(Ω) = {u ∈ H1(Ω) : E(u) <∞}.

Trace theorem

[Calder and S. ’18] There exists Tr : H1
γ(Ω)→ L2(Γ) such that when

‖u − v‖L2(Ω) . 1

|Tr[u]− Tr[v ]| ≤ C(1 + E(u) + E(v))‖u − v‖1−d/(α+2)
L2(Ω)

.

.
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Properly-weighted Laplacian semi-supervised learning

Theorem (Calder and S. ’18)

Let un be a sequence of minimizers of En satisfying constraints. Consider

γ(x) = 1 +

(
r0

dist(x , Γ)

)α
near Γ.

(i) If α > d − 2 ≥ 0 and εn �
(

log n
n

) 1
d

then

un → u in TL2, where u minimizes E and u(xi) = yi for i = 1, . . . , k .

(ii) If α ≤ d − 2 then there exists a sequence of real numbers cn such
that un − cn converges to zero.

.
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(b) α = 0 (c) α = 0.5

(d) α = 1 (e) α = 2

.
42



Synthetic classification example

(b) Graph Laplacian (c) Lap. of SOZ (d) Our method (α = 5)

Figure: Comparison of results for a synthetic classification problem for (a) the
standard graph Laplacian, (b) the nonlocal graph Laplacian [SOZ], and (C) our
properly weighted graph Laplacian. The domain is [0, 1]3 and the density is 1
except for the strip [0.45, 0.55]× [0, 1]× [0, 1] where it is 0.6. The given labeled
points are g(0, 0.2, 0.2) = 0 and g(1, 0.2, 0.2) = 1. There are n = 50, 000 points
in the domain. Connectivity distance for the graph construction is 3/n

1
3 and for

our method α = 5.

.
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin ’11.

Random sample x1, . . . xn. Labels are known if xi ∈ ΩL, open

Using graph laplacian Ln we define

An = (Ln + τ2I)α.

Power of a symmetric matrix is defined by Mα = PDαP−1 for M = PDP−1.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi whenever xi ∈ ΩL.subject to constraint

.
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Higher order regularizations in SSL

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi whenever xi ∈ ΩL.subject to constraint

Theorem (Dunlop, Stuart, S. Thorpe)

For α > d
2 , under usual assumptions, minimizers fn converge in TL2 to the

E(f ) = σ

∫
Ω

u(x)(Au)(x)ρ(x)dxminimizer of

u(xi) = yi whenever xi ∈ ΩL.subject to constraint

where A = (σLc + τ I)α and Lcu = −1
ρ div(ρ2∇u).

.
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Higher order regularizations in SSL

with Dunlop, Stuart, and Thorpe, model by Zhou, Belkin ’11.

k labeled points, (x1, y1), . . . (xk , yk ), and a random sample xk+1, . . . xn.

Using graph laplacian Ln we define

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint

.
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Higher order regularizations

An = (Ln + τ2I)α.

Higher order SSL

E(f ) =
1
2
〈fn,Anfn〉µnMinimize

fn(xi) = yi for i = 1, . . . , k .subject to constraint

Lemma (Dunlop, Stuart, S., Thorpe)

If 1� εn � n−
1

2α then minimizers fn converge in TL2 along a
subsequence to a constant. That is spikes occur.

.
47



Kriging

The extrapolation of a sparsely defined function on a graph using the
kriging model, for various choices of parameter α.

.
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