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Geometry of Big Data



What is topological structure of data ?

Challenges :
→ no direct access to topological/geometric information : need of intermediate

constructions (simplicial complexes) ;
→ distinguish topological “signal” from noise ;
→ topological information may be multiscale ;
→ statistical analysis of topological information.
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Topological Data Analysis (TDA)
Persistent homology !
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The classical TDA pipeline
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structure

Topol.
information

1. Build a multiscale topol. structure on top
of data : filtrations.

2. Compute multiscale topol. signatures :
persistent homology

3. Take advantage of the signature for fur-
ther Machine Learning and AI tasks : Re-
presentations of persistence

Representations of
persistence

Machine
Learning / AI



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.



Filtrations of simplicial complexes

• A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(Sa | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. Sa ⊆ Sb for any a ≤ b.

• More generaly, filtration = nested family of spaces.

Example : Let (X, dX) be a metric space.
• The Vietoris-Rips filtration is the filtered simplicial complexe defined by : for
a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j.

Rips



Persistent homology for point clouds (in a nutshell)

X : metric data set

• Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

• Persistent homology : encode the evolution of
the topology across the scales → multi-scale
topological signatures.

• Persistence diagrams are stable (w.r.t. Haus-
dorff metric).
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Persistent homology for point clouds (in a nutshell)

Persistence barcode

X : metric data set

Filt(X) : filtered simplicial complex

Persistence diagram

• Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

• Persistent homology : encode the evolution of
the topology across the scales → multi-scale
topological signatures.

• Persistence diagrams are stable (w.r.t. Haus-
dorff metric).



Persistent homology of filtered simplicial complexes

Let S = (Sa | a ∈ R) be a finite filtered simplicial complex with N simplices and
let Sa1 ⊂ Sa2 ⊂ · · · ⊂ SaN be the discrete filtration induced by the entering times
of the simplices : Sai \ Sai−1 = σai .
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Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration :

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1 : adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1
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⇒ the birth of a k-dim feature is registered.
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Persistent homology of filtered simplicial complexes
Process the simplices according to their order of entrance in the filtration :

Let k = dimσai (ie. σai = [v0, · · · , vk])

Case 1 : adding σai to Sai−1 creates a
new k-dimensional topological feature
in Sai (new homology class in Hk).

Sai−1

σai

⇒ the birth of a k-dim feature is registered.

Case 2 : adding σai to Sai−1 kills a
(k− 1)-dimensional topological feature
in Sai (homology class in Hk−1).

Sai−1

σai

⇒ persistence algo. pairs the simplex σai
to the simplex σaj that gave birth to the
killed feature.

(σaj , σai) : persistence pair

(aj , ai) ∈ R2 : point in the
persistence diagram

→
→

Important to remember : the
persistence pairs are determined by the

order on the simplices ; the corresponding
points in the diagrams are determined by

the filtration indices.
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Statistical setting

∞

0
0

X K(X)

D[K(X)]

X is a random point
coud (in some metric
space)

K is a deterministic
filtration (e.g. Rips)

D[K(X)] becomes
random

What can be said about the distribution of diagrams D[K(X)] ?

Understand the structure of E[D[K(X)]] in the non asymptotic setting ( |X| =
n is fixed, or bounded)

What does this mean ?



Persistence diagrams as discrete measures

D D :=
∑
r∈D

δr

• The space of measures is much nicer that the space of P. D. !
• In the “standard” algebraic persistence theory, persistence diagrams

naturally appear as discrete measures in the plane (over rectangles).

• Many persistence representations can be expressed as

D(φ) =
∑
r∈D

φ(r) =

∫
φ(r)dD(r)

for well-chosen functions φ.

Motivations :

[Chazal, de Silva, Glisse, Oudot 16]



Representation of Persistence diagrams

A representation is called linear if there exists φ : R2
> → H such that

Φ(D) =
∑
r∈D

φ(r) := D(φ) =

∫
φ(r) dD(r)

Persistent silhouette Persistent surface
[Chazal & al, 2013] [Adams & al, 2016]

Distrib. of life span, total
persistence,...

In ML settings, well-suited linear representations of PD can be learnt.
[Hofer et al., NeurIPS 2017, Carrière et al, 2019]



Representation of Persistence diagrams

— D is a random persistence diagram
— E[D] is a deterministic measure on R2

> defined by

∀A ⊂ R2
>, E[D](A) = E[D(A)].

— D1, . . . , DN i.i.d.

Φ =
Φ(D1) + · · ·+ Φ(DN)

N
= µ(φ)

≈ E[D](φ)

E[D](φ) =

∫
R2
>

φ(r)p(r)d r ?

Does E[D] has a density w.r.t. Lebesgue measure in R2 ?

Estimation of p ?



The density of expected persistence diagrams

Theorem : Fix n ≥ 1. Assume that :

• M is a real analytic compact d-dimensional connected riemannian ma-
nifold possibly with boundary,

• X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn,

• K is the Vietoris-Rips filtration.

Then, for s ≥ 1, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on R2

>. Moreover, E[D0[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} × [0,∞).



The density of expected persistence diagrams

Theorem : Fix n ≥ 1. Assume that :

• M is a real analytic compact d-dimensional connected riemannian ma-
nifold possibly with boundary,

• X is a random variable on Mn having a density with respect to the
Haussdorf measure Hdn,

• K is the Vietoris-Rips filtration.

Then, for s ≥ 1, E[Ds[K(X)]] has a density with respect to the Lebesgue
measure on R2

>. Moreover, E[D0[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} × [0,∞).

Theorem [smoothness] : Under the assumption of previous theorem, if mo-
reover X ∈ Mn has a density of class Ck with respect to Hnd. Then, for
s ≥ 0, the density of E[Ds[K(X)]] is of class Ck.

Remark : This is a particular case of a much more general result.



The density of expected persistence diagrams

Idea of the proof :

• Standard arguments from real analytic geometry :
up to a set of measure 0, Mn can be decomposed into a finite set of
open sets Vi on which the order on the simplices induced by the Rip
filtration is constant.

• Classical argument from geometric measure theory (co-area formula) :
the map from Vi to the space of PD has maximal rank and the image
of the random variable X has density with respect to Lebesgue measure
on R2.



Filtrations revisited

Let n > 0 be an integer,
Fn : the collection of non-empty subsets of {1, . . . , n},
M : a real analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :

ϕ = (ϕ[J ])J∈Fn
: Mn → R|Fn|

satisfiying the following conditions :

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

Given x = (x1, · · · , xn), ϕ(x) induces an order on the faces of the simplex
with n vertices that is a filtration K(x) :

∀J ∈ Fn, J ∈ K(x, r)⇐⇒ ϕ[J ](x) ≤ r.



The case of the Vietoris-Rips filtration

ϕ[J ](x) = max
i,j∈J

d(xi, xj)

(K1) Absence of interaction : For J ∈ Fn, ϕ[J ](x) only depends on x(J).

(K2) Invariance by permutation : For J ∈ Fn and for (x1, . . . , xn) ∈ Mn,
if τ is a permutation of the entries having support included in J , then
ϕ[J ](xτ(1), . . . , xτ(n)) = ϕ[J ](x1, . . . , xn).

(K3) Monotony : For J ⊂ J ′ ∈ Fn, ϕ[J ] ≤ ϕ[J ′].

(K4) Compatibility : For a simplex J ∈ Fn and for j ∈ J , if ϕ[J ](x1, . . . , xn)
is not a function of xj on some open set U of Mn, then ϕ[J ] ≡
ϕ[J\{j}] on U .

(K5’) Smoothness : The function ϕ is subanalytic and the gradient of each of
its entries J of size larger than 1 is non vanishing a.e. and for J = {j},
ϕ[{j}] ≡ 0.



Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of
measure 0 in Mn by open sets V1, · · · , VR such that :

• the order of the simplices of K(x) is constant on each Vr,
• for any r = 1, · · · , R, and any x ∈ Vr,

Ds[K(x)] =

Nr∑
i=1

δri

with ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x)) where Nr, Ji1 , Ji2 only depends on
Vr.

• Ji1 , Ji2 can be chosen so that the differential of

Φir : x ∈ Vr → ri = (ϕ[Ji1 ](x), ϕ[Ji2 ](x))

has maximal rank 2.



Sketch of proof

2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]
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2.The expected diagram can be written as

E[Ds[K(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[K(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]

3. Use the co-area formula :

µir(B) = P (Φir(X) ∈ B,X ∈ Vr)

=

∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=

∫
u∈B

∫
x∈Φ−1

ir (u)

(JΦir(x))−1κ(x)dHnd−2(x)du.

µir

Density of X

Density of µir



The Hausdorff measure and the co-area formula

Definition : Let k be a non-negative number. For A ⊂ RD, and δ > 0,
consider

Hδk(A) := inf

{∑
i

diam(Ui)
k, A ⊂

⋃
i

Ui and diam(Ui) < δ

}
.

The k-dimensional Haussdorf measure on RD of A is defined by Hk(A) :=
limδ→0Hδk(A).

Theorem [Co-area formula] : Let M (resp. N) be a smooth Riemannian
manifold of dimension m (resp n). Assume that m ≥ n and let Φ : M → N
be a differentiable map. Denote by DΦ the differential of Φ. The Jacobian
of Φ is defined by JΦ =

√
det((DΦ)× (DΦ)t). For f : M → N a positive

measurable function, the following equality holds :∫
M

f(x)JΦ(x)dHm(x) =

∫
N

(∫
x∈Φ−1({y})

f(x)dHm−n(x)

)
dHn(y).



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel based estimators of E[Ds[K(X)]].



Persistence images

The realization of 3
different processes

The overlay of 40
different persistence

diagrams

The persistence images
with weight function
w(r) = (r2 − r1)3 and

bandwith selected using
cross-validation.



Thank you for your attention

Software :
• GUDHI library C++ / Python : http ://gudhi.gforge.inria.fr/
• R package TDA : Statistical Tools for Topological Data Analysis
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