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What is topological structure of data?
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Challenges

— no direct access to topological/geometric information : need of intermediate
constructions (simplicial complexes) ;
distinguish topological “signal” from noise;

topological information may be multiscale; . _—&
statistical analysis of topological information.
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Challenges
— no direct access to topological/geometric information : need of intermediate
constructions (simplicial complexes) ;

— distinguish topological “signal” from noise;
— topological information may be multiscale; \_/*
— statistical analysis of topological information.
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Topological Data Analysis (TDA)
Persistent homology !




The classical TDA pipeline
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Machine
Learning / Al

1. Build a multiscale topol. structure on top
of data : filtrations.

2. Compute multiscale topol. signatures :
persistent homology

3. Take advantage of the signature for fur-
ther Machine Learning and Al tasks : Re-
presentations of persistence

Representations of
persistence
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Filtrations of simplicial complexes
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o A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(So | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ € S for any a < b.

e More generaly, filtration = nested family of spaces.



Filtrations of simplicial complexes

Rips

o A filtered simplicial complex (or a filtration) S built on top of a set X is a family
(So | @ € R) of subcomplexes of some fixed simplicial complex S with vertex set X
s. t. 5S¢ € S for any a < b.

e More generaly, filtration = nested family of spaces.

Example : Let (X, dx) be a metric space.
e The Vietoris-Rips filtration is the filtered simplicial complexe defined by : for

a € R,

(xo,x1, -+ ,xk] € Rips(X,a) < dx(zi,x;) < a, forallt,j.



Persistent homology for point clouds (in a nutshell)
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X : metric data set

e Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

e Persistent homology : encode the evolution of
the topology across the scales — multi-scale
topological signatures.

e Persistence diagrams are stable (w.r.t. Haus-
dorff metric).



Persistent homology for point clouds (in a nutshell)

s

k» Filt(X) : filtered simplicial complex

e Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

e Persistent homology : encode the evolution of
the topology across the scales — multi-scale
topological signatures.

e Persistence diagrams are stable (w.r.t. Haus-
dorff metric).



Persistent homology for point clouds (in a nutshell)

............

i

X : metric daté""set".

k» Filt(X) : filtered simplicial complex

e Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

e Persistent homology : encode the evolution of
the topology across the scales — multi-scale
topological signatures.

e Persistence diagrams are stable (w.r.t. Haus-
dorff metric).



Persistent homology for point clouds (in a nutshell)
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X : metric da;c”a...s.et-*""'

k» Filt(X) : filtered simplicial complex

e Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

e Persistent homology : encode the evolution of
the topology across the scales — multi-scale
topological signatures.

e Persistence diagrams are stable (w.r.t. Haus-
dorff metric).



Persistent homology for point clouds (in a nutshell)
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Persistence barcode

i

X : metric"’a*a;ta..se*v‘c‘ﬁ

............ A

e Filtrations allow to construct “shapes” repre-
senting the data in a multiscale way.

e Persistent homology : encode the evolution of
the topology across the scales — multi-scale
topological signatures.

e Persistence diagrams are stable (w.r.t. Haus-
dorff metric).

Persistence diagram
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Persistent homology of filtered simplicial complexes

Let S = (S, | @ € R) be a finite filtered simplicial complex with N simplices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times
of the simplices : Su, \ Sa, ;| = 04,



Persistent homology of filtered simplicial complexes

Let S = (S, | @ € R) be a finite filtered simplicial complex with N simplices and
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Let k = dim o,



Persistent homology of filtered simplicial complexes

Let S = (S, | @ € R) be a finite filtered simplicial complex with N simplices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times

of the simplices : Sy, \ S, _;, = 04,.

Process the simplices according to their order of entrance in the filtration :

Let k = dim o,

L

Case 1 : adding o4, to S,, _, creates a
new k-dimensional topological feature
in S,, (new homology class in Hy,).

Sa; 4
= the birth of a k-dim feature is registered.



Persistent homology of filtered simplicial complexes

Let S = (S, | @ € R) be a finite filtered simplicial complex with N simplices and
let Sq; C S, C -+ C Sqa, be the discrete filtration induced by the entering times
of the simplices : Su, \ Sa, ;| = 04,

Process the simplices according to their order of entrance in the filtration :

Let k = dim o,

/ T

Case 1 : adding o4, to S,, _, creates a Case 2 : adding o4, to S, , kills a
new k-dimensional topological feature (k — 1)-dimensional topological feature
in S,, (new homology class in Hy,). in S, (homology class in Hi_1).

Sq = persistence algo. pairs the simplex o,
1—1

_ _ _ _ to the simplex o, that gave birth to the
= the birth of a k-dim feature is registered. | :/|.4 feature



Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration :

Let k = dimo,, (ie. g4, = [vo, -+ ,Vk])
Case 1 : adding 0,, to S,,_, creates a Case 2 : adding o4, to S, _, kills a
new k-dimensional topological feature (k — 1)-dimensional topological feature
in S,, (new homology class in Hy). in S,, (homology class in Hi_1).

Sq = persistence algo. pairs the simplex o,
,i/_]. n [}
to the simplex o, that gave birth to the

= the birth of a k-dim feature is registered. killed feature.

0a,) . persistence pair

—  (aj,a;) € R? : point in the
persistence diagram



Persistent homology of filtered simplicial complexes

Process the simplices according to their order of entrance in the filtration :

Let k = dimo,, (ie. g4, = [vo, -+ ,Vk])
Case 1 : adding 0,, to S,,_, creates a Case 2 : adding o4, to S, _, kills a
new k-dimensional topological feature (k — 1)-dimensional topological feature
in S,, (new homology class in Hy). in S,, (homology class in Hi_1).

S, = persistence algo. pairs the simplex o,
1—1 . .
to the simplex o, that gave birth to the

= the birth of a k-dim feature is registered. killed feature.

Important to remember : the
persistence pairs are determined by the
order on the simplices; the corresponding — (a;,a;) € R” : point in the
points in the diagrams are determined by persistence diagram
the filtration indices.

0a,) . persistence pair



Statistical setting

X'is a random point K is a deterministic D[K(X)] becomes
coud (in some metric filtration (e.g. Rips) random
space) >




Statistical setting

X'is a random point K is a deterministic D[K(X)] becomes
coud (in some metric filtration (e.g. Rips) random
space) >

What can be said about the distribution of diagrams D |[C(X)]?

Understand the structure of E|D[K(X)]] in the non asymptotic setting ( |X| =
n is fixed, or bounded)

What does this mean?



Persistence diagrams as discrete measures

D D := Z5r
° /\/> reD

Motivations :

e [he space of measures is much nicer that the space of P. D. |
e In the “standard” algebraic persistence theory, persistence diagrams
naturally appear as discrete measures in the plane (over rectangles).

e Many persistence representations can be expressed as

D) =S o(r) = / o(r)dD(r)

rcD

for well-chosen functions ¢.



Representation of Persistence diagrams

A representation is called linear if there exists ¢ : R2 — H such that

3(D) =3 6(r) = D(¢) = / o(r) dD(r)

recD
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Birth time

Distrib. of life span, total Persistent silhouette Persistent surface

persistence,...

In ML settings, well-suited linear representations of PD can be learnt.



Representation of Persistence diagrams

— D is a random persistence diagram
— E[D] is a deterministic measure on R2 defined by

VA C R2, E[D](A) = E[D(A)].

— Dy,..., Dy iid.

)
E[D|(¢) = / SOprdr 7

Does E[D] has a density w.r.t. Lebesgue measure in R ?
Estimation of p?



The density of expected persistence diagrams

Theorem : Fix n > 1. Assume that :

e M is a real analytic compact d-dimensional connected riemannian ma-
nifold possibly with boundary,

e X Is a random variable on M™ having a density with respect to the
Haussdorf measure H 4,,,

e /C is the Vietoris-Rips filtration.

Then, for s > 1, E|D4|K(X)]] has a density with respect to the Lebesgue
measure on RZ. Moreover, E[Dy[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} x [0, 00).



The density of expected persistence diagrams

Theorem : Fix n > 1. Assume that :

e M is a real analytic compact d-dimensional connected riemannian ma-
nifold possibly with boundary,

e X Is a random variable on M™ having a density with respect to the
Haussdorf measure H 4,,,

e /C is the Vietoris-Rips filtration.

Then, for s > 1, E|D4|K(X)]] has a density with respect to the Lebesgue
measure on RZ. Moreover, E[Dy[K(X)]] has a density with respect to the
Lebesgue measure on the vertical line {0} x [0, 00).

Theorem [smoothness] : Under the assumption of previous theorem, if mo-
reover X € M™ has a density of class C* with respect to H.,,4. Then, for
s > 0, the density of E[D,[K(X)]] is of class C*.

Remark : This is a particular case of a much more general result.



The density of expected persistence diagrams

Idea of the proof :

e Standard arguments from real analytic geometry :

up to a set of measure 0, M" can be decomposed into a finite set of

open sets V; on which the order on the simplices induced by the Rip

filtration is constant.

e Classical argument from geometric measure theory (co-area formula) :
the map from V; to the space of PD has maximal rank and the image
of the random variable X has density with respect to Lebesgue measure

on R?.




Filtrations revisited

Let n > 0 be an integer,
F. : the collection of non-empty subsets of {1,...,n},
M : areal analytic compact d-dim. connected manifold (poss. with boundary).

Filtering function :
o= (¢lJ])ser, : M™ — R

satisfiying the following conditions :

(K2) Invariance by permutation : For J € F,, and for (x1,...,x,) € M™,
if 7 is a permutation of the entries having support included in J, then

gO[J](mT(l),...,IT(n)) — go[J](ajl,...,mn).
(K3) Monotony : For J C J' € F,, p|J]| < p|J'].

Given x = (x1, -+ ,Z,), @(x) induces an order on the faces of the simplex
with n vertices that is a filtration C(x)

VJ e Fn, J e K(x,r) <= ¢|J](z) <



The case of the Vietoris-Rips filtration

plJ](x) = e d(w;, xj)

(K1) Absence of interaction : For J € F,, p|J](x) only depends on x(J).

(K2) Invariance by permutation : For J € F,, and for (z1,...,x,) € M",
if 7 is a permutation of the entries having support included in J, then

QO[J](xT(l), ‘o ,:UT(n)) — QO[J](xl, “ e ,ZCn).
(K3) Monotony : For J C J' € F,,, p|J]| < p|J'].
(K4) Compatibility : For a simplex J € F,, and for j € J, if o|J|(x1,...,2Zx

is not a function of x; on some open set U of M™", then ¢[J] =

p[J\1j3] on U.

(K5') Smoothness : The function ¢ is subanalytic and the gradient of each of
its entries J of size larger than 1 is non vanishing a.e. and for J = {j},

e[1ji] =0,



Sketch of proof

1. There exists a partition of the complement of a (subanalytic) set of
measure 0 in M"™ by open sets V7,---, Vg such that :

e the order of the simplices of XC(x) is constant on each V,,
e foranyr=1,--- R, and any x € V.,

with r; = (o|J;, [(x), |J;,](x)) where N,., J;,,J;, only depends on
V.

e J, ,J;, can be chosen so that the differential of

Cir € Vi = 1= (0[] (2), [ 3] (2))

has maximal rank 2.



Sketch of proof

2.The expected diagram can be written as

NE

E[D,K(X)]] = E[{X e VIDJEX)) =Y E |1{X e V) Z 5.

S
> 1
Z
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— E|1{X € V,.}é,]
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1
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Sketch of proof

2.The expected diagram can be written as

R R i N,
BIDKX)] = Y EM{XeVIDKX)] =) F|I1{XeV.}) o,
R N, _ = _
- 3 St
r=1 i=1 Hoir

3. Use the co-area formula:/

CV,L%r(B) — P((I)ir(x) c B,X c VT)/—* Density of X

_ /u - / g, ) L) d Mg o (x)du

Density of




The Hausdorff measure and the co-area formula

Definition : Let k£ be a non-negative number. For A ¢ R”, and § > 0,
consider

\

Hy(A) == inf ¢ > diam(U;)*, A C | JU; and diam(U;) <6 ¢ .

/

The k-dimensional Haussdorf measure on R” of A is defined by Hy(A) :=
Theorem [Co-area formula] : Let M (resp. N) be a smooth Riemannian

manifold of dimension m (resp n). Assume that m > n and let ®: M — N
be a differentiable map. Denote by D® the differential of ®. The Jacobian

of @ is defined by J® = \/det((D®) x (D®)!). For f : M — N a positive
measurable function, the following equality holds :

/M f(x)J@(x)dHm (z) = /N </e<1>1({ | f(ﬁ)dﬂmn(z)) dHn(y)-




Persistence images

Persistence diagram
10 1 .
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04 1
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~or K : R?> — R a kernel and H a bandwidth matrix (e.g. a symmetric
hositive definite matrix), pose for u € R?, Ky (2) = |H|7Y2K(H~Y2 . )

For D =Y. 4, a diagram, K : R — R a kernel, H a bandwidth matrix and

w : R? — R, a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

Vz € R?, p(D)(u) = Zw(ri)KH(u —t;) = D(wKg(u—-))



Persistence images

Persistence diagram
10 1 . .

g ®

06 1

04 1

02 1

0.0 0.2 0.4 06 08 10

1] 20 40 FH] 8O

~or K : R?> — R a kernel and H a bandwidth matrix (e.g. a symmetric
hositive definite matrix), pose for u € R?, Ky (2) = |H|7Y2K(H~Y2 . )

For D =Y. 4, a diagram, K : R — R a kernel, H a bandwidth matrix and

w : R? — R, a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

Vz € R?, p(D)(u) = Zw(ri)KH(u —t;) = D(wKg(u—-))

= persistence surfaces can be seen as kernel based estimators of F| D |K(X)]].



The realization of 3
different processes

The overlay of 40
different persistence
diagrams

The persistence images
with weight function
w(r) = (r2 —r1)° and
bandwith selected using
cross-validation.

Persistence

Persistence images
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Thank you for your attention

References :
e F. Chazal, V. Divol, The density of expected persistence diagrams and its kernel
based estimation, SoCG 2018.

Software :
e GUDHI library C++4 / Python : http ://gudhi.gforge.inria.fr/
e R package TDA : Statistical Tools for Topological Data Analysis
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