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Classic supervised learning

given {(x].) yl)a s (J?n, yn)} find f(xnew) ~ Ynew

Regression Binary classification

Y ;{x)= °

+1




Structured learning

"A domain of machine learning, in which the prediction must satisfy the additional constraints
found in structured data, poses one of machine learning’s greatest challenges: learning
functional dependencies between arbitrary input and output domains.”

Baklr et al., Predicting structured data. MIT press, 2007. [1]
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Structured learning applications

Image segmentation [2],
captioning [3],

speech recognition [4, 5],
protein folding [6],
ordinal regression [7],

ranking [8].



Examples of “structured” outputs

> Finite discrete alphabets (binary/multi-category classification, multilabel),
» strings,

» ordered lists,

» sequences.

Classically only discrete possibly output spaces.




Classical approaches

Likelihood estimation models
» General approaches (Struct-SVM [9], Conditional Random Fields [10]),

» but limited guarantees (generalization bounds).
Surrogate approaches

> Strong theoretical guarantees,

> but ad hoc, e.g. classification [11], multiclass [12], ranking [8]. ..

We will try to take the best of both!
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Statistical learning

> (X x Y, p) probability space, such that p(x,y) = px(z)p(y|x).
> A:Yx)Y—[0,00)



Statistical learning

> (X x ), p) probability space, such that p(z,y) = px(z)p(y|z).
> A:YxY—1[0,00)

Problem Solve

min /dp(x,y)A(f(x)aw

feyx

given (z;,y;), i.i.d. samples of p.



Empirical risk minimization (ERM)

n

?g{l n ; A(f (i), 1)

> Statistically sound

1
sup Z Flai), vi) /dpfcy (2),y)

fer

» Impractical: how to pick F c Y% if Y is not linear?




Inner risk

Lemma (Ciliberto, Rudi, R. '17)

Let

f« = argmin / dp(z,y)A(f(z),y
feyx

then

= argmm/dp ylz) Ay, y').
yey



Structured Encoding Loss Function (SELF)

Definition (SELF)

The loss function A : Y x Y — [0, 00) is such that there exists
> a real separable Hilbert space (#,(-,-)) and
» maps U, o : )Y —» H

such that Vy,y' € ¥
Aly,y') = (¥(y), 2(y))



Examples of SELF

» In any finite output spaces |Y| =T

Aly,y) = e, Ve, VeR™
» Symmetric positive definite loss functions, Kernel Dependency Estimator [16].
» Smooth loss functions with Y = [0, 1]¢.

» Restriction of SELF are SELF, and SELF can be composed.



Structured statistical learning

(Y, 4)

» The output space might not be a linear space and can be continuous.

» Structure encoded by the loss function.

Beyond finite, discrete spaces to include continuous output spaces, e.g.
» Manifold regression [14],
> prediction of probability distributions [15].



Inner SELF (risk)



Inner SELF (risk)

Lemma (Ciliberto, Rudi, R. '17)

fi(z) = argmin (g.(z), ®(y))
yey

g = / dp(y]) ¥ (y) = argmin / dp(a, 1) lg(x) — V()|

geEHX



Inner risk minimization (IRM)

f(z) = argmin (§(z), 2(y))
yeY

. 1 2
§ = argmin — E llg(z:) — ¥ (ys)]]
gEGCTHX n i=1



IRM: a general surrogate approach

» encode ¥ :Y —H
» learn (z;, ¥(y;))iey — g
» decode U*: H — Y

U*(h) = argmin (h, ®(y)), heH.
yeY

X 2=
NI
H



Some questions

» A minimization over ) instead of Y*: what we gained?

» Does a SELF exist?



Outline

Algorithms



Solving IRM with linear estimators

o R 1
f(z) = argmin (9(2),@(y)), §= argmin = ;ng) — U (y:)|*



Solving IRM with linear estimators

f(z) = argmin (§(2), 2(y)), G = argmin - leg i) = W)
yey €9 i—1

Lemma (Ciliberto, Rudi, R. '17)
If g(z) = Wa, then

W=X"X)"'XTY, XeR%W, YeH"

and

g(z) = Z‘“( 2)U(y;), a(z) = (XXT)"1Xz e R



Implicit IRM for linear estimators

f(z)= argmin (9(z), @(y)), 9= argmin = leg ;)

Lemma (Ciliberto, Rudi, R. '17)
If

then

(wa)I*-



Other linear estimators

g(x) = Z o ()W (yi),
i=1

» Kernel methods g(x) = W+(z), where v : X — (Hr, (-, -)p)-
» Local kernel estimators.
» Spectral filters.

» Sketching/random features/Nystrom.



Computations: no free lunch

Training
§= rgngnanHg ;) = U (y)|*.
i=1

Computing (cv;(z)); depends only on the inputs and is efficient.

Prediction

f(x) = argmin Z o (2)A(yi,y

vey o

Requires problem specific decoding and can be hard.
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Consistency and excess risk bounds

Problem Solve

min R(f),  R(f) =/d,o(:c7y)A(f(m),y)

feyx

given (z;,y;), i.i.d. samples of p.

Excess risk Convergence and rates on

R(f) - R(f.)



A relaxation error analysis

Let

L(g) = / dple, ) l9(x) — T (y)|?

Theorem (Ciliberto, Rudi, R. '17)

The following hold:

» Fisher consistency
fe(@) =¥ gu(x). a.s.
» Comparison inequality, for all g and f(z) = ¥*g(z) a.s.

R(f) - R(f*) <cavy L(g) — L(g.)

where

ca = sup|[¥(y)||
yey



Consistency and rates for IRM-KRR

Let ga(z) = Wyy(x) with

Wy = argmin ZHW% — U (y) | + AW 3.
WeLx(Hr H) T

Theorem (Ciliberto, Rudi, R. '17)

Let ky = sup,cx||v(2)||. Assume IW, € Lo(Hr,H) such that g, (x) = W.x. If
An = O(1/+/n), then with probability at least 1 — 8¢~7

L)~ Lg) < 24wy (1+[[W]2) 7207/,
and for f(z) = Wg,(z) a

R(f) = R(f.) < 24 Ky ea(1+||W]2) 720714,



Remarks

> This is the first result establishing consistency and rates for structured prediction, see [13]
for similar efforts.

» The bound on L(§) — L(g.) extend results in [17] under weaker assumptions.

» The constant ca is problem dependent. Finding a general estimate is an open problem
[18].
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Ranking

Rank Loss

Linear [8]  0.430 £ 0.004
Hinge [19]  0.432 4 0.008
Logistic [20]  0.432 4+ 0.012
SVM Struct [9]  0.451 + 0.008
IRM-KRR  0.396 + 0.003

Ranking movies in the Movielens dataset [21] (ratings (from 1 to 5) of 1682 movies by 943
users). The goal is predict preferences of a given user, i.e. an ordering of the 1682 movies,
according to the user's partial ratings. We the loss [8]

M
1 , ,
Arank(ya y/) = 5 E FY(y )ij (1 - Slgn(yi - yj));

ij=1



Fingerprints reconstruction

A Deg.
KRLS 26.9+5.4
MR[14] 22+ 6

SP (ours) 18.8+3.9

Average absolute error (in degrees) for the manifold structured estimator (SP), the manifold
regression (MR) approach in [14] and the KRLS baseline. (Right) Fingerprint reconstruction of
a single image where the structured predictor achieves 15.7 of average error while KRLS 25.3.
The loss is the geodesic on S

As(z.y) = arccos ((2,9))°



Summing up

> First consistent algorithmic framework for StructML.
> A general surrogate approach.
» TBD: decoding computations+ beyond linear estimators.

Openings

érc Multiple openings for post-docs/PhD positions! g
X Qlrntzrsc
— Launching: Machine Learning Genova Center!

European Research Council
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