
Robust Estimation 
and 

Generative Adversarial Nets

Chao Gao 
University of Chicago

@IPAM, May 2019



Huber’s Model

[Huber 1964]

Chao Gao, Department of Statistics, Yale University c� July 28, 2016 1

X1, ..., Xn ⇠ (1� ✏)P✓ + ✏Q

M(✏) = inf
✓̂
sup
✓2⇥

sup
Q

E(✓,✏,Q)L(✓̂, ✓)

M(✏) ⇣ M(0) _ !(✏,⇥)

dmin = ⌦(1)

n(p� q)4

k9p3d2max
! 1

p

q

exp(�I)

I ! 1

I > log n

When di = 1, exp(�I) = exp
⇣
�n

k
(
p
p �p

q )2
⌘

1 Introduction
⇣
P

(n)
f , f 2 E↵(Q)

⌘

X
n|f ⇠ P

(n)
f

f ⇠ ⇧



Huber’s Model

parameter of interest

[Huber 1964]
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Huber’s Model

contamination proportion

parameter of interest

[Huber 1964]
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:
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min
||u||=1
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I{uTXi > uT ⌘}.
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Tukey’s depth is not a special 
case of regression depth.
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4 Applications of Multi-task Regression Depth

4.1 Multiple Linear Regression

Consider the model Y = BTX + �Z, where B 2 Rp⇥m. The estimator is defined as
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B2Rp⇥m

D(B, {Xi, Yi}ni=1).
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with probability at least 1� 2�, where C > 0 is some absolute constant.

Define

 = inf
v 6=0

k⌃1/2vk
kvk .

Theorem 4.1. Assume that ✏ < 1/4 and pm
n is su�ciently small. Then, we have

Tr(( bB �B)T⌃( bB �B))  C�2
⇣pm

n
_ ✏2

⌘
,

k bB �Bk2F  C
�2

2

⇣pm
n

_ ✏2
⌘
,
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Multi-task Regression DepthDU (�,P) = inf
U2U

P
�
uTX(y � �TX) � 0

 

(X,Y ) ⇠ PB : X ⇠ N(0,⌃), Y |X ⇠ N(BTX,�2Im)

(X1, Y1), ..., (Xn, Yn) ⇠ (1� ✏)PB + ✏Q

2 Multi-task Regression Depth

For any probability distribution P of X 2 Rp and Y 2 Rm, the multi-task regression depth

of B 2 Rp⇥m is define as

DU (B,P) = inf
U2U

P
�⌦

UTX,Y �BTX
↵
� 0

 
,

where U ⇢ Rp⇥m.

3 Applications of Regression Depth

3.1 Nonparametric Regression

Consider the model y = f(x)+�z. (random uniform design and Fourier basis.) The regression

function admits the expansion f(x) =
P1

j=1 �j�j(x). We assume the true function f⇤ belongs

to the following Sobolev ball:

S↵(M) =

8
<

:f =
1X

j=1

�j�j :
1X

j=1

j2↵�2
j  M2

9
=

; .

Define the vector of infinite size Xi = {�j(xi)}j2[1] 2 R1. Then, the model becomes

y = �TX + �z. Define

Uk = {u 2 R1 : uj = 0 for all j > k} .

The regression coe�cient is estimated by

�̂ = argmax
�2Uk

DU2k(�, {(Xi, yi)}ni=1).

Proposition 3.1. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
�2Uk

|DU2k(�,Pn)�DU2k(�,P)|  C

r
k

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.
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with high probability uniformly over        .
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY

i=1

dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that

sup
P2H0

P�+ sup
P2H1

P (1� �)  2 exp

✓
�
1

2
n (H(P1, P2)� 2�)2

◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P1 + ✏Q : Q} ⇢

n
P : H(P, P1) 

p

2✏
o
.

Proposition 4.1. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
B2Rp⇥m

|D(B,Pn)�D(B,P)|  C

r
pm

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.

Define

 = inf
v 6=0

k⌃1/2vk
kvk .

Theorem 4.1. Assume that ✏ < 1/4 and pm
n is su�ciently small. Then, we have

Tr(( bB �B)T⌃( bB �B))  C�2
⇣pm

n
_ ✏2

⌘
,

k bB �Bk2F  C
�2

2

⇣pm
n

_ ✏2
⌘
,

with P(✏,B,Q)-probability at least 1 � exp
�
�C 0 �pm+ n✏2

��
uniformly over all Q and B 2

Rp⇥m, where C,C 0 are some absolute constants.

4.2 Linear Regression with Group Sparsity

Consider the model Y = BTX + �Z. The matrix B is in the following space

⌅s =

8
<

:B 2 Rp⇥m :
pX

j=1

I{Bj⇤ 6= 0}  s

9
=

; .

Define the estimator by
bB = argmax

B2⌅s

D⌅2s(B, {(Xi, Yi)}ni=1).

Proposition 4.2. For any probability measure P and its associated empirical measure Pn,

we have for any � > 0,

sup
B2⌅s

|D⌅2s(B,Pn)�D⌅2s(B,P)|  C

s
ms+ s log

� ep
s

�

n
+

r
log(1/�)

2n
,

with probability at least 1� 2�, where C > 0 is some absolute constant.

Define

 = inf
|supp(v)|=2s

k⌃1/2vk
kvk .

Theorem 4.2. Assume that ✏ < 1/4 and
ms+s log( ep

s )
n is su�ciently small. Then, we have

Tr(( bB �B)T⌃( bB �B))  C�2

 
ms+ s log

� ep
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n
_ ✏2

!
,
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X1, ..., Xn ⇠ (1� ✏)N(✓, Ip) + ✏Q.

How to estimate ✓?

Estimator 1:

✓̂ = (✓̂j), where ✓̂j = Median({Xij}ni=1);

Estimator 2:

✓̂ = argmax
⌘2Rp

min
||u||=1

1

n

nX

i=1

I{uTXi > uT ⌘}.

1

2

1

3

p

n
_ ✏2 p

✓
1

n
_ ✏2

◆

Theorem 1. Write P(✏,✓,Q) = (1� ✏)N(✓, Ip) + ✏Q. There are constants C, c > 0 such that

inf

✓̂
sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� C

⇣ p

n
_ ✏2

⌘�
� c,

for any ✏ 2 [0, 1]. For the coordinate median ✓̂, there are constants C, c > 0 such that

sup

✓,Q
P(✏,✓,Q)

⇢���✓̂ � ✓
���
2
� Cp

✓
1

n
_ ✏2

◆�
� c,

for any ✏ 2 [0, 1].

X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?
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D(�, {Xi}ni=1) = min
kuk=1

min

(
1

n

nX

i=1

I{|uTXi|2 � uT�u}, 1
n

nX

i=1

I{|uTXi|2 < uT�u}
)

(✏,�)

⌃

✏

n� 2�
2�+1 _ ✏

2�
�+1

✓
n

log n

◆� 2�
2�+1

_ ✏
2�
�+1

Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

s2 log(ep/s)

n
_ s✏2

s log(ep/s)

n�2
_ ✏2

�2

k · k2

k·k2F

k · k2op

k · k2
`1

M(✏) ⇣ min
�>0

⇢
logN (�,⇥,TV(·, ·))

n
+ �2

�
_ ✏2.



Covariance Matrix

Given i.i.d. observations {Xi}ni=1 from P, the matrix depth of � with respect to {Xi}ni=1

is defined as

DU (�, {Xi}ni=1) = min
u2U

min

(
1

n

nX

i=1

I{|uTXi|2  uT�u}, 1
n

nX

i=1

I{|uTXi|2 � uT�u}
)
. (4)

A general estimator for �⌃ is given by

�̂ = argmax
�2F

DU (�, {Xi}ni=1), (5)

where F is some matrix class to be specified later. The estimator of ⌃ is

⌃̂ = �̂/�, (6)

where � is defined through (3).

3.2 General Covariance Matrix

Consider the following covariance matrix class with bounded spectra

F(M) =
�
⌃ = ⌃T 2 Rp⇥p : ⌃ ⌫ 0, smax(⌃)  M

 
,

where ⌃ ⌫ 0 means ⌃ is positive semi-definite and M > 0 is some absolute constant that

does not scale with p or n.

To define an estimator, we need to specify a subset U ⇢ Sp�1 in the depth function. Let

Up be a (1/4)-net of the unit sphere Sp�1 in the Euclidean space in Rp. This means for any

u 2 Sp�1, there exists a u0 2 Up such that ku� u0k  1/4. According to [45], such Up can be

picked with cardinality bounded by 9p. Define

�̂ = argmax
�⌫0

DUp(�, {Xi}ni=1). (7)

When (7) has multiple maxima, �̂ is understood as any positive semi-definite matrix that

attains the deepest level. A final estimator of ⌃ is defined by ⌃̂ = �̂/� as in (6). The

statistical property of ⌃̂ is stated in the following theorem.

Theorem 3.1. Assume that ✏ < 1/4 and p/n < c for some su�ciently small constant c.
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�
uniformly over all Q and ⌃ 2 F(M),

where C,C 0 > 0 are some absolute constants.

Remark 3.1. Due to the computational consideration, we chose a (1/4)-net Up of Sp�1
and

defined our estimator via the matrix depth relative to Up. In fact, it can be shown that the

result in Theorem 3.1 also holds if we define �̂ = argmax�⌫0D(�, {Xi}ni=1) relative to Sp�1
.
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Covariance Matrix
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Theorem [CGR15]. For some 

with high probability uniformly over         .
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.

How to estimate ⌃?

Q: What would Harry do?

A: Harry would start with p = 1.

Corollary. Define � through the equation

�(
p
� ) = 3/4,

where � is the CDF of N(0, 1). Then for any U ⇢ Sp�1, we have DU (�⌃, P⌃) =
1

2
.

DU

⇣
�⌃, N(0,⌃)

⌘
=

1

2

U = Sp�1 = {u 2 Rp : kuk = 1}.

Us =

(
u 2 Sp�1 :

)

2s

C > 0,

When ✏ = 0, the likelihood ratio test

� = I
(

nY

i=1

dP2

dP1
(Xi) > C

)

is optimal.

When ✏ > 0, the test is not robust to outliers.

Consider

H0 : P 2 {P : H(P, P1)  �} , H1 : P 2 {P : H(P, P2)  �}.

There exists a testing function � such that

sup
P2H0

P�+ sup
P2H1

P (1� �)  2 exp

✓
�
1

2
n (H(P1, P2)� 2�)2

◆
.

However, by convexity of H2(·, ·),

{(1� ✏)P1 + ✏Q : Q} ⇢

n
P : H(P, P1) 

p

2✏
o
.
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Summary
mean

reduced rank 
regression

Gaussian graphical 
model

covariance matrix

sparse PCA
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Advantages of Tukey Median

• A well-defined objective function

• Does not need to know 

• Does not need to know 

• Optimal for any elliptical distribution
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2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
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p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f⇤

(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup

T
[EX⇠PT (X)� EX⇠Qf

⇤
(T (X))] .

The optimal T is achieved by

T (x) = f 0
✓
p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f⇤
(t) = � log(1� et).

Therefore, with this particular f , we get

Df (PkQ) = sup

T

h
EX⇠PT (X) + EX⇠Q log(1� eT (X)

)

i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes

min
Q2Q

max
Q̃2Q

1

n

nX

i=1

log
q̃(Xi)

q(Xi)
= 2 min

Q2Q
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log
1

q(Xi)
,

which is the MLE.

f-divergence
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes
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,

which is the MLE.

[Nguyen, Wainwright, Jordan]
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which is the general density estimation procedure of f-GAN.
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Therefore, with this particular f , we get
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With the transformation T (x) = logD(x), we recover the original definition of GAN.
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and
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Then, it is easy to see that
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which is the total variation distance. The derivative and conjugate functions are
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(x) = I{x � 1},

and
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When
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With the transformation T (x) = logD(x), we recover the original definition of GAN.

Similar to GAN, we can consider a symmetric class of T . This leads to the estimation

procedure

min
Q2Q

max
Q̃2Q

(
1

n

nX

i=1

f 0
✓
q̃(Xi)

q(Xi)

◆
�
Z

f⇤
✓
f 0

✓
q̃

q

◆◆
dQ

)
,
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we get the Hellinger divergence

Df (PkQ) =

Z
(
p
p �p

q )2.

The conjugate function and derivative of f are

f⇤
(t) = �1

t
� 2, for t < 0,

and

f 0
(x) = � 1p

x
.

This leads to the estimation procedure
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5 A Related Divergence Function

For any convex f such that f(1) = 0, and any � > 0, define

K(Q1kQ2) = �
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[Goodfellow et al., Baraud and Birge]



f-Learning

Jensen-Shannon GAN

Kullback-Leibler MLE

Hellinger Squared (related to) rho

Total Variation depth

Liu & Gao, Department of Statistics, University of Chicago c� April 3, 2018 2

2 f-GAN

An f-divergence is defined as

Df (PkQ) =

Z
f

✓
p

q

◆
dQ.

Since

f(u) = sup
t
(tu� f⇤

(t)),

it is not hard to derive the following variational form of f-divergence,

Df (PkQ) = sup

T
[EX⇠PT (X)� EX⇠Qf

⇤
(T (X))] .

The optimal T is achieved by

T (x) = f 0
✓
p(x)

q(x)

◆
.

GAN is a special case of f-GAN by taking

f(x) = x log x� (x+ 1) log(x+ 1).

Its conjugate function is

f⇤
(t) = � log(1� et).

Therefore, with this particular f , we get

Df (PkQ) = sup

T

h
EX⇠PT (X) + EX⇠Q log(1� eT (X)

)

i
.

With the transformation T (x) = logD(x), we recover the original definition of GAN.
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which is the general density estimation procedure of f-GAN.

A special choice of f is f(x) = x log x, which leads to the KL-divergence Df (PkQ) =

D(PkQ). For this f , its derivative and conjugate functions are

f 0
(x) = 1 + log x,

and

f⇤
(t) = exp(t� 1).

Then, the procedure becomes

min
Q2Q

max
Q̃2Q

1

n

nX

i=1

log
q̃(Xi)

q(Xi)
= 2 min

Q2Q

1

n

nX

i=1

log
1

q(Xi)
,

which is the MLE.

Liu & Gao, Department of Statistics, University of Chicago c� April 3, 2018 3

3 Total Variation
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This means that TV-GAN with a logistic regression (or a zero hidden-layer neural net)

classifier gives a sharper variational lower bound than TV-Learning. Moreover, we know

that when P = P✓, TV-Learning is a sharp variational lower bound, which immediately

implies that the logistic regression TV-GAN is also sharp.

We know that sample versions of TV-Learning and Tukey depth gives a robust
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This means that TV-GAN with a logistic regression (or a zero hidden-layer neural net)

classifier gives a sharper variational lower bound than TV-Learning. Moreover, we know
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X1, ..., Xn ⇠ (1� ✏)N(0,⌃) + ✏Q.
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
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�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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Hölder(�)

�2

2
r(p+m)

n
_ �2

2
✏2

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
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ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).
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very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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Theorem [GLYZ18]. For a neural network 
class     with at least one hidden layer and 
appropriate regularization, we have 
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n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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with one or two hidden layers work very well in our experiments under
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model? How to characterize the class of network structures that lead to
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.
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To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
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ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
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The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various
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is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
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leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations

11

`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.
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model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.
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tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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model? How to characterize the class of network structures that lead to
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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`2 loss is
p p

n _ ✏ (Theorem 3.2). Since the main difficulty of the problem is to achieve a linear dependence on
✏, our numerical experiments consider settings with p = 100 and very large n so that

�p p
n _ ✏

�
= ✏. Figure

7 indeed shows a roughly linear dependence on ✏ with various values of contamination factors. According
to [21], the worst-case contamination distribution is not a distribution far away from N(✓, Ip), but instead
very close to N(✓, Ip). This is confirmed in Figure 7 that the green line (CF= 1.2) gives the largest error. The
results also inlcude the behavior of error against dimension. When ✏ is the dominating term between

p p
n

and ✏, we expect to see error curves that do not grow with the dimension, which is indeed the case.

Figure 8: Network structures
(with ReLU nonlinearity) that
are compatible with variational
robust estimation.

2. The Neural Network Architecture Matters. It turns out the structure of
T directly determines whether the procedure works or fails. A prelimi-
nary conclusion is summarized in Figure 8 after extensive numerical ex-
periments. Interestingly, for location estimation, variational optimization
with a network structure without hidden layers (equivalent to logistic re-
gression) converges to the empirical mean, which is not robust. Networks
with one or two hidden layers work very well in our experiments under
Huber’s contamination model. On the other hand, for covariance ma-
trix estimation, a two-hidden-layer structure seems to be necessary. An
important theoretical question in this project is that given a robust estima-
tion task, how to specify an appropriate neural network architecture that
leads to rate-optimal robust procedures under Huber’s ✏-contamination
model? How to characterize the class of network structures that lead to
good approximations of the depth-based estimators?

Figure 9: Computational time
against p using four GTX 1080 Ti
GPUs.

3. Computational Complexity against Dimension. As we have just men-
tioned, even an approximate algorithm for optimizing Tukey’s depth
takes O(eCp) in time [21, 64, 65]. However, this is not the case when we
adopt the f-Learning/GAN framework. As is demonstrated in Figure 9,
the computational time for doing one JS-GAN or TV-GAN is roughly lin-
ear with respect to the dimension. In contrast, the approximate search al-
gorithm in [21] cannot even produce a result when the dimension exceeds
ten. The only explanation is that the optimization conducted through the
variational f-Learning framework quickly finds a local optimum of the
objective function. Surprisingly, it turns out the local optimum is very
good and has a performance comparable to the theoretical minimax rate
(Figure 7).

Each of the above points will lead to a nontrivial research problem in computational robust statistics.

3.4 Project 2(c): Understanding Robust Properties of f-GAN
The link between robust statistics and deep learning through f-GAN (Figure 4) provides us with an interest-
ing angle to study the robustness of various f-GAN procedures. Our research question is:

“What choices of f lead to robust learning procedures?”
To this question, we have already known that f = (x�1)+ is robust, because this corresponds to various

depth-based estimators (Figure 6). The key property that leads to the robustness of total variation learning
is

{(1� ✏)P + ✏Q : Q} ⇢ {Q : TV(P,Q)  ✏} . (17)
That is, Huber’s ✏-contamination neighborhood is a subset of a total variation ball with radius ✏. This means
that an ✏-fraction of contaminated data points at most results in an extra ✏ loss in terms of total variation.
Moreover, we also know that Kullback-Leilber learning (MLE) is not robust, because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : D(PkQ)  �} , (18)
where the smallest � to make (18) holds is � = 1, a consequence of the fact that Kullback-Leilber diver-
gence is not bounded. The original proposal of GAN [25] corresponds to the Janson-Shannon learning.
Remarkably, it is robust because

{(1� ✏)P + ✏Q : Q} ⇢ {Q : DJS(PkQ)  (log 2) · ✏} . (19)
The relation (19) can be derived from basic f-divergence inequalities [74]. These preliminary observations
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