

北京国际数学研究中心 BEIJING INTERNATIONAL CENTER FOR MATHEMATICAL RESEARCH

BRIDGING DEEP NEURAL NETWORKS AND DIFFERENTIAL EQUATIONS FOR IMAGE ANALYSIS AND BEYOND

Bin Dong (董彬)

- Beijing International Center for Mathematical Research, Peking
 University
- Laboratory for Biomedical Image Analysis & Laboratory of Deep Learning Research, Beijing Institute of Big Data Research

OUTLINE

- Deep "revolution" in imaging science
- Bridging Deep Neural Networks (DNNs) and
 - **Differential Equations**
 - Dynamics perspective on deep learning for image

classification

- PDE-Net: learning PDEs from data
- Moving endpoint control for blind image recovery

"DEEP REVOLUTION" IN IMAGING SCIENCE

Push learning to the extreme

30 YEARS OF IMAGE RESTORATION

- > Image restoration: $f = Au + \eta$
- Variational and Optimization Models

 $\min_{u} \lambda R(u) + \|Au - f\|^2$

- Total variation (TV) and generalizations: $R(u) = \|\nabla u\|_1$ or $\|Du\|_1$
- Wavelet frame based: $R(u) = ||Wu||_1$ or $||Wu||_0$
- Others: total generalized variation, low rank, NLM, BM3D, K-SVD, data-driven tight frame, etc.
- > PDEs and Iterative Algorithms
 - Perona-Malik equation, shock-filtering (Rudin & Osher), etc

$$u_t = \sum_{\ell=1}^{L} \frac{\partial^{\boldsymbol{\alpha}_{\ell}}}{\partial x^{\boldsymbol{\alpha}_{\ell}}} \Phi_{\ell}(\boldsymbol{D}\boldsymbol{u},\boldsymbol{u}) - A^*(A\boldsymbol{u} - f), \quad \text{with } \boldsymbol{D} = \left(\frac{\partial^{\boldsymbol{\beta}_1}}{\partial x^{\boldsymbol{\beta}_1}}, \dots, \frac{\partial^{\boldsymbol{\beta}_L}}{\partial x^{\boldsymbol{\beta}_L}}\right)$$

Iterative shrinkage algorithm

$$\boldsymbol{u}^{k} = \widetilde{\boldsymbol{W}}^{\top} \boldsymbol{S}_{\boldsymbol{\alpha}^{k-1}} (\boldsymbol{W} \boldsymbol{u}^{k-1}) - \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{u}^{k-1} - \boldsymbol{f}), \quad k = 1, 2, \cdots$$

"DEEP REVOLUTION" IN IMAGING SCIENCE

• Development:

- Handcraft modeling (1990-)
 - Variational and PDE Models: total variation, Perona-Malik, shock-filters, nonlocal, etc.
 - Applied harmonic analysis: wavelets, wavelet frames, etc.
- Handcraft + data driven modeling (1999-):
 - Linear representation learning: MOD, K-SVD, data-driven tight frame, Ada-frame, low rank, etc.
 Statistical models
- Deep learning (2012-): CNNs/RNNs

More data and better processors

DEEP LEARNING

• What are still challenging

- Learning from limited or/and weakly labelled data
- Learning from data of different types
- <u>Theoretical guidance, transparency</u>
- How to provide guidance and transparency to deep learning?

Find "frameworks" and "links" with mathematics.

BRIDGING DIFFERENTIAL EQUATIONS WITH DEEP NETWORKS

DNNs and numerical ODEs

Yiping Lu, Aoxiao Zhong, Quanzheng Li and Bin Dong, Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations, ICML 2018.
(arXiv:1710.10121)

DEEP NEURAL NETWORKS

AlexNet: [Krizhevsky et al. 2012]

Deep Neural Network $f_1(f_2(f_3 \cdots (x)))$

A Dynamic System?

• Residual networks as discretizations of dynamic systems

Discrete: $u_{n+1} = u_n + \Delta t \cdot f(u_n, t_n)$

Continuum: $u_t = f(u, t)$

ResNet:
□ K. He et al., Deep residual learning for image recognition. CVPR 2015.
□ K. He et al., Identity mappings in deep residual networks. CVPR 2016.

• Residual networks as discretizations of dynamic systems

Related work: ResNet and dynamic system

- W. E. Communications in Mathematics and Statistics, 5(1):1–11, 2017.
- S. Sonoda and N. Murata. ICML Workshop 2017
- Z. Li and Z. Shi. arXiv preprint arXiv:1708.05115, 2017.
- B. Chang, et al. arXiv preprint arXiv:1709.03698, 2017.

• Remaining questions:

- Can we relate more networks with dynamic systems?
- What can we do with such observation?

ResNet:

□ K. He et al., Deep residual learning for image recognition. CVPR 2015.

□ K. He et al., Identity mappings in deep residual networks. CVPR 2016.

• Residual networks as discretizations of dynamic systems

$$x_{n+1} = x_n + F(x_n) + F(F(x_n))$$

PolyNet

Backward Euler Scheme: $x_{n+1} = x_n + F(x_{n+1}) \Rightarrow x_{n+1} = (I - F)^{-1}x_n$

Approximate the operator $(I - F)^{-1}$ by $I + F + F^2 + \cdots$

Zhang X, et al. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks, CVPR 2017.

• Residual networks as discretizations of dynamic systems

 $x_{n+1} = k_1 x_n + k_2 (k_3 x_n + f_1(x_n)) + f_2 (k_3 x_n + f_1(x_n))$

Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks without Residuals, ICLR 2017.

• Residual networks as discretizations of dynamic systems Popular deep residual networks

• Numerical differential equation inspired networks

• Linear multi-step structure (LM-structure)

• Can be applied to any ResNet-like networks. Examples: *LM-ResNet* and *LM-ResNeXt*

14

ResNeXt: Xie et al. Aggregated residual transformations for deep neural networks. CVPR 2017.

• Results: CIFAR10 (50k train, 10k test, 10 classes)

Model	Layer	Error	Params	
ResNet (He et al. $(2015h)$)	20	8 75	0.27M	
ResNet (He et al. (2015b))	32	7.51	0.27M 0.46M	
ResNet (He et al. (2015b))	44	7.17	0.66M	
ResNet (He et al. (2015b))	56	6.97	0.85M	
ResNet (He et al. (2016))	110, pre-act	6.37	1.7M	
LM-ResNet (Ours)	20, pre-act	8.33	0.27M	
LM-ResNet (Ours)	32, pre-act	7.18	0.46M	
LM-ResNet (Ours)	44, pre-act	6.66	0.66M	
LM-ResNet (Ours)	56, pre-act	6.31	0.85M	

Modified equation perspective:

ResNet:

$$\dot{u}_n + \frac{\Delta t}{2}\ddot{u}_n = f(u_n)$$

LM-ResNet:

$$(1+k_n)\dot{u}_n + (1-k_n)\frac{\Delta t}{2}\ddot{u}_n = f(u_n)$$

Speeds up and stable in (-1, 0)

• Results: CIFAR10 (50k train, 10k test, 10 classes)

Model	Layer	Error	Params	
ResNet (He et al. (2015b))	20	8.75	0.27M	
ResNet (He et al. $(2015b)$)	32	7.51	0.46M	
ResNet (He et al. (2015b))	44	7.17	0.66M	
ResNet (He et al. (2015b))	56	6.97	0.85M	
ResNet (He et al. (2016))	110, pre-act	6.37	1.7M	
LM-ResNet (Ours)	20, pre-act	8.33	0.27M	
LM-ResNet (Ours)	32, pre-act	7.18	0.46M	
LM-ResNet (Ours)	44, pre-act	6.66	0.66M	
LM-ResNet (Ours)	56, pre-act	6.31	0.85M	

• Results: CIFAR10 (50k train, 10k test, 10 classes)

Model	Layer	Error	Params	
ResNet (He et al. (2015b))	20	8.75	0.27M	
ResNet (He et al. (2015b))	32	7.51	0.46M	
ResNet (He et al. (2015b))	44	7.17	0.66M	
ResNet (He et al. (2015b))	56	6.97	0.85M	
ResNet (He et al. (2016))	110, pre-act	6.37	1.7M	
LM-ResNet (Ours)	20, pre-act	8.33	0.27M	
LM-ResNet (Ours)	32, pre-act	7.18	0.46M	
LM-ResNet (Ours)	44, pre-act	6.66	0.66M	
LM-ResNet (Ours)	56, pre-act	6.31	0.85M	

• Original motivation:

- Nesterov ODE "Su, Boyd and Candes, NIPS 2014";
 "Wibisono, Wilson and Jordan, PNAS 2016"
- Nesterov PDE "Dong, Jiang and Shen, MMS, 2017 (UCLA CAM Report, Dec. 2013)"

• Results: CIFAR100 (50k train, 10k test, 100 classes)

ResNet (He et al. (2015b))

LM-ResNet (Ours)

LM-ResNet (Ours)

	ResNet (Huang et al. (2016b))	110, pre-act	27.76	1.7M	CIFAR100
	ResNet (He et al. (2016))	164, pre-act	24.33	2.55M	CIFAR100
	ResNet (He et al. (2016))	1001, pre-act	22.71	18.88M	CIFAR100
	FractaiNet (Larsson et al. (2016))	20	23.30	38.6M	CIFAR100
	FractalNet (Larsson et al. (2016))	40	22.49	22.9M	CIFAR100
	DenseNet (Huang et al., 2016a)	100	19.25	27.2M	CIFAR100
	DenseNet-BC (Huang et al., 2016a)	190	17.18	25.6M	CIFAR100
	ResNeXt (Xie et al. (2017))	29(8×64d)	17.77	34.4M	CIFAR100
	ResNeXt (Xie et al. (2017))	29(16×64d)	17.31	68.1M	CIFAR100
	ResNeXt (Our Implement)	29(16×64d), pre-act	17.65	68.1M	CIFAR100
	LM-ResNet (Ours)	110, pre-act	25.87	1.7M	CIFAR100
	LM-ResNet (Ours)	164, pre-act	22.90	2.55M	CIFAR100
	LM-ResNeXt (Ours)	29(8×64d), pre-act	17.49	34.4M	CIFAR100
	LM-ResNeXt (Ours)	29(16×64d), pre-act	16.79	68.1M	CIFAR100
0	Results: ImageNet (1.28m	train, 50k tes	st, 100	0 class	ses)
	Model	Lovor	ton 1	ton 5	,
	Iviouei	Layer	top-1	top-5	
	ResNet (He et al. (201	5b)) 50	24.7	7.8	
	ResNet (He et al. (201	5b)) 101	23.6	7.1	

152

50, pre-act

101, pre-act

23.0

23.8

22.6

6.7

7.0

6.4

• Stochastic training strategy

• Stochastic training strategy as stochastic control

 $\min \mathbb{E}_{X(0)\sim data} \left(\mathbb{E}(L(X(T)) + \int_0^T R(\theta)) \right)$ s.t. $dX = f(X, \theta) dt + q(X, \theta) dB_t$

 $\int (\mathbf{x}, \mathbf{v}) d\mathbf{v} + g(\mathbf{x}, \mathbf{v}) d\mathbf{D}_t$

• Examples (through weak convergence):

• shake-shake regularization (Gastaldi, ICLR Workshop 2017)

• stochastic depth (Huang et al. ECCV 2016)

• LM-structure + stochastic training

 $X_{n+1} = (2+g_n)X_n - (1+g_n)X_{n-1} + \eta_n f(X_n)$

- Distribution of η_n
 - Gaussian
 - Bernoulli

• Results: $\eta_n \sim \text{Bernoulli}$

Model	Layer	Training Strategy	Error
ResNet(He et al. (2015b))	110	Original	6.61
ResNet(He et al. (2016))	110,pre-act	Orignial	6.37
ResNet(Huang et al. (2016b))	56	Stochastic depth	5.66
ResNet(Our Implement)	56,pre-act	Stochastic depth	5.55
ResNet(Huang et al. (2016b))	110	Stochastic depth	5.25
ResNet(Huang et al. (2016b))	1202	Stochastic depth	4.91
LM-ResNet(Ours)	56,pre-act	Stochastic depth	5.14
LM-ResNet(Ours)	110,pre-act	Stochastic depth	4.80

• Summary:

- Bridge numerical differential equations with deep neural networks
- Bridge numerical stochastic differential equations with stochastic training strategies
- This new perspective inspired new network design (LM-architecture) that can reduce 40%~90% of the parameters of some deep networks with comparable accuracy
- Such performance boost can be explained using modified equations

OTHER RELATED WORKS

• Architecture design

- Haber E, Ruthotto L. Stable architectures for deep neural networks. Inverse Problems, 2017, 34(1): 014004.
- Chang B, Meng L, Haber E, et al. Reversible architectures for arbitrarily deep residual neural networks. AAAI 2018.
- Chang B, Meng L, Haber E, et al. Multi-level residual networks from dynamical systems view. ICLR 2018.
- Wang B, Yuan B, Shi Z, et al. EnResNet: ResNet Ensemble via the Feynman-Kac Formalism. arXiv:1811.10745, 2018.
- Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling. NeurIPS 2018.
- Zhu M, Chang B, Fu C. Convolutional Neural Networks combined with Runge-Kutta Methods. arXiv:1802.08831, 2018.
- Zhang L, Schaeffer H. Forward Stability of ResNet and Its Variants. arXiv:1811.09885, 2018.
- Sun Q, Tao Y, Du Q. Stochastic Training of Residual Networks: a Differential Equation Viewpoint. arXiv:1812.00174, 2018.
- He J, Xu J. MgNet: A Unified Framework of Multigrid and Convolutional Neural Network. arXiv:1901.10415, 2019.
- Zhang J, Han B, Wynter L, et al. Towards Robust ResNet: A Small Step but A Giant Leap. arXiv:1902.10887, 2019.

OTHER RELATED WORKS

o Optimization

- Li Q, Chen L, Tai C, E W. Maximum principle based algorithms for deep learning. The Journal of Machine Learning Research, 2017, 18(1): 5998-6026.
- Li Q, Hao S. An optimal control approach to deep learning and applications to discrete-weight neural networks. ICML 2018.
- Chen T Q, Rubanova Y, Bettencourt J, et al. Neural ordinary differential equations. NeurIPS 2018. (Best paper)
- Parpas P, Muir C. Predict Globally, Correct Locally: Parallel-in-Time Optimal Control of Neural Networks. arXiv:1902.02542.

• Theory

- E W., Han J, Li Q. A mean-field optimal control formulation of deep learning. Research in the Mathematical Sciences, vol. 6, no. 10, pp. 1–41, 2019.
- Thorpe M, van Gennip Y. Deep Limits of Residual Neural Networks. arXiv:1810.11741, 2018.

BRIDGING DIFFERENTIAL EQUATIONS WITH DEEP NETWORKS

DNNs and numerical PDEs

- Zichao Long, Yiping Lu, Xianzhong Ma and Bin Dong, *PDE-Net:* Learning PDEs from Data, ICML 2018. (arXiv:1710.09668)
- Zichao Long, Yiping Lu and Bin Dong, *PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network*, arXiv:1812.04426, 2018.

• As data getting easier and easier to collect, with more and more computing power available, can we learn principles (e.g. PDEs) from data?

Dynamics of actin in Immunocytoskeleton

Dynamics of Mitochondria

• As data getting easier and easier to collect, with more and more computing power available, can we learn principles (e.g. PDEs) from data?

S. Sato et al., Siggraph 2018

Meteorology

Computer Graphics

• Earlier work

- Dictionary based sparse regression
 - Construct dictionary

 $\Theta(U) = \begin{bmatrix} 1 & U & U^2 & \cdots & U_x & UU_x & \cdots & U_x^2 \end{bmatrix}$

• Fit variable ξ

 $U_t = \Theta(U)\xi$

• Sparse regression

$$\min_{\xi} ||\Theta\xi - U_t||_2^2 + \lambda ||\xi||_0$$

- S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016
- Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017.
- Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017.

• Earlier work

• Dictionary based sparse regression

- S. Brunton, J. L. Proctor and J. N. Kutz Proceedings of the National Academy of Sciences, 2016
- Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Science Advances, 3(4), 2017.
- Hayden Schaeffer. Proc. R. Soc. A, volume 473, The Royal Society, 2017.

• Earlier work

- Coefficients regression
 - Consider

 $u_t + N(u; \lambda) = 0, x \in \Omega, t \in [0, T]$

• For example, Burgers equation: $N(u; \lambda) = \lambda_1 u u_x - \lambda_2 u_{xx}$

• Approximate *u* by deep neural network(continuous time model)

 $u := Net(t, x), x \in \Omega, t \in [0, T]$ $f \coloneqq u_t + N(u; \lambda)$

• Loss function: $MSE = MSE_u + MSE_f$, where

$$MSE_u = \frac{1}{N} \sum_{i=1}^{N} |u(t_u^i, x_u^i) - u^i|^2, \qquad MSE_f = \frac{1}{N} \sum_{i=1}^{N} |f(t_u^i, x_u^i)|^2.$$

• M. Raissi, P. Perdikaris and G. E. Karniadakis, arXiv preprint arXiv:1711.10566, 2017

• Earlier work

• Coefficients regression

Correct PDE	$u_t + uu_x - 0.0031831u_{xx} = 0$
Identified PDE (clean data)	$u_t + 0.99915uu_x - 0.0031794u_{xx} = 0$
Identified PDE (1% noise)	$u_t + 1.00042uu_x - 0.0032098u_{xx} = 0$

• M. Raissi, P. Perdikaris and G. E. Karniadakis, arXiv preprint arXiv:1703.10230, 2017

- Remaining challenge
 - Can we go beyond sparse coding framework (linear dictionary)?
 - —— Bigger model class with less prior knowledge
 - Can we learn discrete forms of differential operators and does it help?

——More accurate estimation of the PDE and prediction

• As data getting easier and easier to collect, with more and more computing power available, can we learn principles (e.g. PDEs) from data?

• Preliminary attempt:

- S. Sato et al., Siggraph 2018
- Combining deep learning and numerical PDEs
- Objectives:
 - Predictive and expressive power (deep learning)
 - Transparency: to reveal hidden physics (numerical PDEs)

• PDE-Net: a flexible and transparent deep network

Assuming:
$$\frac{\partial u}{\partial t} = F(x, u, \nabla u, \nabla^2 u, ...)$$

Prior knowledge on F:
Type of the PDE
Maximum order

34

• PDE-Net: multi-layer δt -blocks

• PDE-Net: a flexible and transparent deep network

• Constraints on kernels (granting transparency)

• Wavelet transform and differential operators

Proposition: Let q be a filter with sum rules of order $\alpha \in \mathbb{Z}_+^2$. Then for a smooth function F(x) on \mathbb{R}^2 , we have

$$\frac{1}{\varepsilon^{|\alpha|}}\sum_{k\in\mathbb{Z}^2}q[k]F(x+\varepsilon k)=C_\alpha\frac{\partial^\alpha}{\partial x^\alpha}F(x)+O(\varepsilon), as\ \varepsilon\to 0.$$

If, in addition, q has total sum rules of order $K \setminus \{|\alpha| + 1\}$ for some $K > |\alpha|$, then

$$\frac{1}{\varepsilon^{|\alpha|}} \sum_{k \in \mathbb{Z}^2} q[k] F(x + \varepsilon k) = C_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}} F(x) + O(\varepsilon^{K - |\alpha|}), \text{ as } \varepsilon \to 0.$$

$$\begin{split} &\sum_{k_1,k_2=-\frac{N-1}{2}}^{\frac{N-1}{2}} q[k_1,k_2] f(x+k_1\delta x,y+k_2\delta y) \\ &= \sum_{k_1,k_2=-\frac{N-1}{2}}^{\frac{N-1}{2}} q[k_1,k_2] \sum_{i,j=0}^{N-1} \frac{\partial^{i+j}f}{\partial^i x \partial^j y} \bigg|_{(x,y)} \frac{k_1^i k_2^j}{i!j!} \delta x^i \delta y^j + o(|\delta x|^{N-1} + |\delta y|^{N-1}) \\ &= \sum_{i,j=0}^{N-1} m_{i,j} \delta x^i \delta y^j \cdot \frac{\partial^{i+j}f}{\partial^i x \partial^j y} \bigg|_{(x,y)} + o(|\delta x|^{N-1} + |\delta y|^{N-1}). \end{split}$$

- J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012.
- B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

- Constraints on kernels (granting transparency)
 - Moment matrix

$$M(q) = (m_{i,j})_{N \times N}$$
, where $m_{i,j} = \frac{1}{(i-1)!(j-1)!} \sum_{k \in \mathbb{Z}^2} k_1^{i-1} k_2^{j-1} q[k_1, k_2]$

- We can approximate any differential operator at any prescribed order by constraining M(q)
- For example: approximation of $\frac{\partial f}{\partial x}$ with a 3 × 3 kernel

$\left(\begin{array}{ccc} 0 & 0 & \star \\ 1 & \star & \star \\ \star & \star & \star \end{array}\right)$	$\left(\begin{array}{rrrr} 0 & 0 & 0 \\ 1 & 0 & \star \\ 0 & \star & \star \end{array}\right)$	$\left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$
1 st order learnable	$2^{ m st}$ order learnable	1 st order frozen

• J.F. Cai, B. Dong, S. Osher and Z. Shen, Journal of the American Mathematical Society, 2012.

37

B. Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

- Numerical experiments: results
 - Prediction $b(x,y) = 2(\cos(y) + \sin(x)) + 0.8.$

 $\frac{\partial u}{\partial t}$

 $u|_{t=0}$

 $= u_0(x, y),$

 $= a(x, y)u_x + b(x, y)u_y + 0.2u_{xx} + 0.3u_{yy},$

 $a(x, y) = 0.5(\cos(y) + x(2\pi - x)\sin(x)) + 0.6,$

Model estimation

• Symbolic network (granting transparency)

suming:
$$\frac{\partial u}{\partial t} = F(u, \nabla u, \nabla^2 u, ...), \quad u \in \mathbb{R}^d$$

As

Prior knowledge on *F*:

- Addition and multiplication of the terms;
- Maximum order.

• Symbolic network (granting transparency)

Similar to *EQL/EQL*[÷]: Sahoo, Lampert, and Martius, ICML 2018.

- Efficiency of the symbolic network
- **Proposition:** Let $P \in P^k[x_1, ..., x_m]$ and suppose *P* have monomials of degree $\leq l$.
 - The memory load of $SymNet_m^k$ that approximates P is O(m + k). The number of flops for evaluating it is O(k(m + k)).
 - Constructing a dictionary with all possible polynomials of degree l requires $O\left(\binom{m+l}{l}\right)$.

• Fully unknown *F*

• Example: Burger's equation

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \, \boldsymbol{u} = \nu \nabla^2 \boldsymbol{u}$$

 $\nu = 0.05$

Correct PDE	$u_t = -uu_x - vu_y + 0.05(u_{xx} + u_{yy})$ $v_t = -uv_x - vv_y + 0.05(v_{xx} + v_{yy})$
Frozen-PDE-Net 2.0	$u_t = -0.906uu_x - 0.901vu_y + 0.033u_{xx} + 0.037u_{yy}$ $v_t = -0.907vv_y - 0.902uv_x + 0.039v_{xx} + 0.032v_{yy}$
PDE-Net 2.0	$u_t = -0.986uu_x - 0.972u_yv + 0.054u_{xx} + 0.052u_{yy}$ $v_t = -0.984uv_x - 0.982vv_y + 0.055v_{xx} + 0.050v_{yy}$

Model recovery

Remainer weights of u, v

RECENT DEVELOPMENTS

• IPAM knows better!

Machine Learning for Physics and the Physics of Learning. September 4-December 8, 2019.

- Tutorials: September 5-10, 2019.
- Workshop I: From Passive to Active: Generative and Reinforcement Learning with Physics. September 23-27, 2019.
- Workshop II: Interpretable Learning in Physical Sciences. October 14-18, 2019.
- Workshop III: Validation and Guarantees in Learning Physical Models: from Patterns to Governing Equations to Laws of Nature. October 28-November 1, 2019.
- Workshop IV: Using Physical Insights for Machine Learning. November 18-22, 2019.

BRIDGING DIFFERENTIAL EQUATIONS WITH DEEP NETWORKS

An application in image restoration

Xiaoshuai Zhang, Yiping Lu, Jiaying Liu and Bin Dong,
 Dynamically Unfolding Recurrent Restorer: A Moving Endpoint
 Control Method for Image Restoration, ICLR 2019.
 (arXiv:1805.07709)

MOTIVATION: DENOISING WITH UNKNOWN NOISE LEVEL

MOTIVATION: DENOISING WITH UNKNOWN NOISE LEVEL

MOVING ENDPOINT CONTROL APPROACH

$$\min_{w,\tau} L(X(\tau), y) + \int_0^\tau R(w(t), t) dt$$

s.t. $\dot{X} = f(X(t), w(t)), t \in (0, \tau)$
 $X(0) = x_0.$

Dynamically Unfolding Recurrent Restorer (DURR)

Denoising with Unknown σ

BSD68 Image Denoising Data Set

	BM3D	WNNM	DnCNN-B	UNLNet ₅	DURR
$\sigma = 25$	28.55	28.73	29.16	28.96	29.16
$\sigma = 35$	27.07	27.28	27.66	27.50	27.72
$\sigma = 45$	25.99	26.26	26.62	26.48	26.71
$\sigma = 55$	25.26	25.49	25.80	25.64	25.91
$\sigma = 65$	24.69	24.51	23.40*	-	25.26*
$\sigma=75$	22.63	22.71	18.73*	-	24.71*

Generalization beyond training noise level!

DnCNN, 21.86dB

DURR, 22.84dB

DnCNN-B: K. Zhang et al. TIP 2017; UNLNet: S Lefkimmiatis, CVPR 2018

JPEG DEBLOCKING WITH UNKNOWN QFS

QF JPEC	G SA-DCT	AR-CNN	AR-CNN-B	DnCNN-3	DURR
10 27.7 20 30.0 30 31.4 40 32.4	7 28.65	28.98	28.53	29.40	29.23*
	7 30.81	31.29	30.88	31.59	31.68
	1 32.08	32.69	32.31	32.98	33.05
	5 32.99	33.63	33.39	33.96	34.01*

Ground Truth

JPEG

(a) AR-CNN

(b) DnCNN

(c) DURR

SA-DCT: A. Foi et al., TIP 2007; AR-CNN: C. Dong et al., CVPR 2015; DnCNN-3: K. Zhang et al., TIP 2017.

Some Related Works

• Jin M, Roth S, Favaro P. *Noise-blind image deblurring*. CVPR 2017.

Figure 2. The GradNet architecture.

• Y. Nan, Y. Quan, H. Ji, Learning for Non-blind Deconvolution: The Devil Is STILL in Details, preprint 2019.

CONCLUSIONS

- We suggested a (heuristic) bridge between numerical differential equations and deep neural architectures, and proposed some new architectures for different tasks.
- Future directions:
 - Theoretical analysis of architectures: optimization, generalization, recovery guarantees, etc.
 - Robustness and compactness of DNNs.
 - Learning "principles" from data (beyond PoC).

Jointly with

Quanzheng Li @ Harvard MGH

Jiaying Liu @ PKU ICST

Zichao Long

@ PKU SMS

@ PKU SMS

@ PKU SMS

@ PKU ICST

Aoxiao Zhong @ Harvard SEAS

THANKS FOR YOUR ATTENTION!

My Webpage: