Data Analysis with the Riemannian Geometry of SPD Matrices

Ronen Talmon
Technion - IIT
*Joint work with Or Yair and Mirela Ben-Chen

IPAM Workshop III: Geometry of Big Data
April 2019

Domain Adaptation

- P: Datasets often comprise multiple domains:
- Sessions
- Subjects
- Batches
- Q: How to adapt a given model that is well performing on a particular domain to a different yet related domain?
- Q: How to train a classifier based on data from one domain and apply it to data from another domain?

Domain Adaptation

- Highly researched subject
- Many previous studies, e.g.:
- [Ben-David et al, 07]
- [Raina et al, 07]
- [Dai et al, 09]
- [Pan et al, 10]

Data Analysis in High Dimension

- P: The data do not live in a Euclidean space
- Multiple modalities
- Dependence between coordinates
- Q: What is the proper non-Euclidean metric?
- Q: How to find an embedding into a Euclidean space?
- P: Unsupervised

Illustrative Application

- Brain Computer Interface (BCl) [Barachant et al, 13]
- Data: [recent BCI competition]
- EEG from 9 subjects
- 22 electrodes
- 2 days of experiments
- 288 trials per subject
- In each trial, imagine performing 1 of 4 motor tasks:
- Left hand
- Right hand
- Both feet
- Tongue

Illustrative Application

- Consider two datasets from two subjects:

$$
\left\{\begin{array}{c}
\boldsymbol{X}_{i}^{(1)}, y_{i}^{(1)} \\
\text { (target) }
\end{array}\right\}_{i=1}^{N_{1}} \quad\left\{\boldsymbol{X}_{i}^{(2)}, y_{i}^{(2)}\right\}_{\text {(source) }}^{N_{2}}
$$

- Each set contains N_{k} matrices of observations

$$
\boldsymbol{X}_{i}^{(k)} \in \mathbb{R}^{d \times T_{i}^{(k)}}
$$

- d - dimension (\# of EEG electrodes)
- $T_{i}^{(k)}$ - observation length
- $y_{i}^{(k)}$ - hidden label (imagined motor task)

- Let $\boldsymbol{P}_{i}^{(k)} \in \mathbb{R}^{d \times d}$ be the (sample) covariance of $\boldsymbol{X}_{i}^{(k)}$

Illustrative Application

22 EEG electrodes locations

Subject \#8 EEG - single trial

Low dimensional representation of the covariance matrices from two subjects

Illustrative Application

Identify the imagined motor activity per trial

from multiple subjects

\rightarrow Training a classifier from one subject and testing on another subject
\rightarrow Unsupervised

Our Solution

Riemannian Geometry of SPD matrices

Benefits

- Known non-Euclidean space facilitating comparisons, additions, subtractions
- Joint representation from multiple domains
- Following recent work:
- Theory [Pennec et al, 06], [Sra \& Hosseini, 15]
- Applications in BCl [Barachant et al, 13]
- Applications in computer vision [Tuzel el al, 08], [Freifeld et al, 14], [Bergman et al, 17]

Preliminaries on Riemannian Geometry

- Let $x, y \in \mathcal{M}$ be two points on a Riemannian manifold
- Let $\mathcal{T}_{x} \mathcal{M}$ be the tangent plane at the point x
- Define the following operations:

	Vector Space	Riemannian Manifold		
Subtraction	$\overrightarrow{\boldsymbol{x} \boldsymbol{y}}=\boldsymbol{y}-\boldsymbol{x}$	$\overrightarrow{\boldsymbol{x} \boldsymbol{y}}=\log _{\boldsymbol{x}}(\boldsymbol{y})$		
Addition	$\boldsymbol{y}=\boldsymbol{x}+\overrightarrow{\boldsymbol{x}}$	$\boldsymbol{y}=\operatorname{Exp}_{\boldsymbol{x}}(\overrightarrow{\boldsymbol{x} \boldsymbol{y}})$		
Mean	$\arg \min _{\boldsymbol{x}} \sum_{i}\left\\|\boldsymbol{x}-\boldsymbol{x}_{i}\right\\|_{i}^{2}$	$\arg \min _{\boldsymbol{x}} \sum_{i} d_{R}^{2}\left(\boldsymbol{x}, \boldsymbol{x}_{i}\right)$		

The SPD Cone

- The SPD matrices constitute a convex half-cone in the space of real symmetric matrices
- This cone forms a differentiable Riemannian manifold \mathcal{M} equipped with the inner product

$$
\left\langle S_{1}, S_{2}\right\rangle_{\mathcal{T}_{P} \mathcal{M}}=\left\langle P^{-\frac{1}{2}} S_{1} P^{-\frac{1}{2}}, P^{-\frac{1}{2}} S_{2} P^{-\frac{1}{2}}\right\rangle
$$

- $\mathcal{T}_{P} \mathcal{M}$ is the tangent plane at $P \in \mathcal{M}$
- $S_{1}, S_{2} \in \mathcal{T}_{P} \mathcal{M}$
- $\langle\cdot, \cdot\rangle$ is the standard Euclidean inner product
- The symmetric matrices $S \in \mathcal{T}_{P} \mathcal{M}$ live in a linear space
- We can view them as vectors

With $\sqrt{2}$ scaling on the off-diagonal elements

The SPD Cone - Properties

- There exists a unique geodesic curve between any two SPD matrices $P_{1}, P_{2} \in \mathcal{M}$:

$$
\varphi(t)=P_{1}^{\frac{1}{2}}\left(P_{1}^{-\frac{1}{2}} P_{2} P_{1}^{-\frac{1}{2}}\right)^{t} P_{1}^{\frac{1}{2}}, \quad 0 \leq t \leq 1
$$

- Define a Riemannian distance on the manifold as the arc-length of the geodesic curve:

$$
\begin{aligned}
d_{R}^{2}\left(P_{1}, P_{2}\right) & =\left\|\log \left(P_{2}^{-\frac{1}{2}} P_{1} P_{2}^{-\frac{1}{2}}\right)\right\|_{F}^{2} \\
& =\sum_{i=1}^{n} \log ^{2}\left(\lambda_{i}\left(P_{2}^{-\frac{1}{2}} P_{1} P_{2}^{-\frac{1}{2}}\right)\right)
\end{aligned}
$$

- $\lambda_{i}(P)$ is the i -th eigenvalue of P
- Scale-invariant

The SPD Cone - Properties

$$
\begin{aligned}
& M=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \\
& \Rightarrow\left\{\begin{array} { l }
{ \operatorname { T r } (M) = x + z > 0 } \\
{ | (M) | = x z - y ^ { 2 } > 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x>0 \\
z>0
\end{array} \Rightarrow|y|<\sqrt{x z}\right.\right.
\end{aligned}
$$

The SPD Cone - Properties

- Logarithm map:

$$
S_{1}=\log _{P}\left(P_{1}\right)=P^{\frac{1}{2}} \log \left(P^{-\frac{1}{2}} P_{1} P^{-\frac{1}{2}}\right) P^{\frac{1}{2}} \in \mathcal{T}_{P} \mathcal{M}
$$

- Exponential map:

$$
P_{1}=\operatorname{Exp}_{P}\left(S_{1}\right)=P^{\frac{1}{2}} \exp \left(P^{-\frac{1}{2}} S_{1} P^{-\frac{1}{2}}\right) P^{\frac{1}{2}} \in \mathcal{M}
$$

- Relation to the (unique) geodesic curve $\varphi(t)$ from P_{1} to P_{2} is given by the initial velocity

$$
\varphi^{\prime}(0)=\log _{P_{1}}\left(P_{2}\right) \in \mathcal{T}_{P_{1}} \mathcal{M}
$$

Domain Adaptation

Formulation

- Consider two subsets $\mathcal{P}^{(1)}$ (target) and $\mathcal{P}^{(2)}$ (source) of SPD matrices from two different domains
- $\bar{P}^{(1)}$ and $\bar{P}^{(2)}$ - Riemannian means
- $\varphi(t)$ - the unique geodesic from $\bar{P}^{(2)}$ to $\bar{P}^{(1)}$
- $S_{i}^{(k)}$ - the symmetric matrix (or vector) in $\mathcal{T}_{\bar{P}^{(k)}} \mathcal{M}$

$$
S_{i}^{(k)}=\log _{\bar{P}^{(k)}}\left(P_{i}^{(k)}\right)
$$

Domain Adaptation

Formulation

- Goal:

Derive a new representation $\Gamma\left(S_{i}^{(2)}\right)$:

$$
\Gamma: \mathcal{T}_{\bar{P}^{(2)}} \mathcal{M} \rightarrow \mathcal{T}_{\bar{P}^{(1)}} \mathcal{M}
$$

so that $\left\{S_{i}^{(1)}\right\}$ and $\left\{\Gamma\left(S_{i}^{(2)}\right)\right\}$ live in the same linear space

- Benefit:

Relate samples from the two subsets

- Compute quantities such as $\left\langle S_{i}^{(1)}, \Gamma\left(S_{j}^{(2)}\right)\right\rangle_{\bar{P}^{(1)}}$

Domain Adaptation

Formulation

- Constraints:
- Zero mean:

$$
\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \Gamma\left(S_{i}^{(2)}\right)=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} S_{i}^{(1)}=0
$$

- Inner product preservation:

$$
\left\langle\Gamma\left(S_{i}^{(2)}\right), \Gamma\left(S_{j}^{(2)}\right)\right\rangle_{\bar{P}^{(1)}}=\left\langle S_{i}^{(2)}, S_{j}^{(2)}\right\rangle_{\bar{P}^{(2)}}
$$

- Geodesic velocity preservation:

$$
\Gamma\left(\varphi^{\prime}(0)\right)=\varphi^{\prime}(1)
$$

Domain Adaptation

Formulation

- Constraints:
- Zero mean:

$$
\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \Gamma\left(S_{i}^{(2)}\right)=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} S_{i}^{(1)}=0
$$

- Inner product preservation:

$$
\left\langle\Gamma\left(S_{i}^{(2)}\right), \Gamma\left(S_{j}^{(2)}\right)\right\rangle_{\bar{P}^{(1)}}=\left\langle S_{i}^{(2)}, S_{j}^{(2)}\right\rangle_{\bar{P}^{(2)}}
$$

Imply that the map preserves inter-sample relations

Domain Adaptation

Formulation

- Constraints:
- Zero mean:

$$
\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \Gamma\left(S_{i}^{(2)}\right)=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} S_{i}^{(1)}=0
$$

- Inner product preservation:

$$
\left\langle\Gamma\left(S_{i}^{(2)}\right), \Gamma\left(S_{j}^{(2)}\right)\right\rangle_{\bar{P}^{(1)}}=\left\langle S_{i}^{(2)}, S_{j}^{(2)}\right\rangle_{\bar{P}^{(2)}}
$$

Not unique:
If Γ admits to these properties, then also $R \circ \Gamma$ where R is an arbitrary rotation

Domain Adaptation

Formulation

- Constraints:
- Zero mean:

$$
\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \Gamma\left(S_{i}^{(2)}\right)=\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} S_{i}^{(1)}=0
$$

- Inner product preservation:

$$
\left\langle\Gamma\left(S_{i}^{(2)}\right), \Gamma\left(S_{j}^{(2)}\right)\right\rangle_{\bar{P}^{(1)}}=\left\langle S_{i}^{(2)}, S_{j}^{(2)}\right\rangle_{\bar{P}^{(2)}}
$$

Simple implementation by mean subtraction

Domain Adaptation

Formulation

- Constraints:
- Geodesic velocity preservation:

$$
\Gamma\left(\varphi^{\prime}(0)\right)=\varphi^{\prime}(1)
$$

Use the unique geodesic to resolve the arbitrary degree of freedom

The two intrinsic symmetric matrices (vectors)
$\varphi^{\prime}(0) \in \mathcal{T}_{\bar{P}^{(2)}} \mathcal{M}$ and $\varphi^{\prime}(1) \in \mathcal{T}_{\bar{P}^{(1)}} \mathcal{M}$ are used to fix the rotation

Domain Adaptation

Formulation

- Constraints:
- Geodesic velocity preservation:

$$
\Gamma\left(\varphi^{\prime}(0)\right)=\varphi^{\prime}(1)
$$

Unsupervised - no labels are used
Present a closed-form expression (no optimization)

Parallel Transport

Lemma (Parallel Transport)
Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}$.
The PT from \boldsymbol{B} to \boldsymbol{A} of any $\boldsymbol{S} \in \mathcal{T}_{\boldsymbol{B}} \mathcal{M}$ is:

$$
\Gamma_{\boldsymbol{B} \rightarrow \boldsymbol{A}}(\boldsymbol{S}) \triangleq \boldsymbol{E} \boldsymbol{S} \boldsymbol{E}^{T}
$$

where $\boldsymbol{E}=\left(\boldsymbol{A} \boldsymbol{B}^{-1}\right)^{\frac{1}{2}}$.

Theorem.

The representation $\Gamma_{\overline{\boldsymbol{P}}^{(2)} \rightarrow \overline{\boldsymbol{P}}^{(1)}}\left(\boldsymbol{S}_{i}^{(2)}\right)$, i.e., the unique PT of $\boldsymbol{S}_{i}^{(2)}$ from $\overline{\boldsymbol{P}}^{(2)}$ to $\overline{\boldsymbol{P}}^{(1)}$, is well defined and satisfies properties (1) - (3).

Parallel Transport

Domain Adaptation with PT

Algorithm:

1. Project the SPD matrix $\boldsymbol{P}_{i}^{(2)}$ to the tangent plane $\mathcal{T}_{\overline{\boldsymbol{P}}^{(2)}} \mathcal{M}$

$$
\boldsymbol{S}_{i}^{(2)}=\log _{\overline{\boldsymbol{P}}^{(2)}}\left(\boldsymbol{P}_{i}^{(2)}\right)
$$

2. Parallel transport $\boldsymbol{S}_{i}^{(2)}$ from $\overline{\boldsymbol{P}}^{(2)}$ to $\overline{\boldsymbol{P}}^{(1)}$ by computing

$$
\boldsymbol{S}_{i}^{(2) \rightarrow(1)}=\Gamma_{\overline{\boldsymbol{P}}^{(2)} \rightarrow \overline{\boldsymbol{P}}^{(1)}}\left(\boldsymbol{S}_{i}^{(2)}\right)
$$

3. Project the symmetric matrix $\boldsymbol{S}_{i}^{(2) \rightarrow(1)} \in \mathcal{T}_{\overline{\boldsymbol{P}}^{(1)}} \mathcal{M}$ back to the manifold using $\operatorname{Exp}_{\overline{\boldsymbol{P}}^{(1)}}\left(\boldsymbol{S}_{i}^{(2) \rightarrow(1)}\right)$.

Domain Adaptation with PT

Define the map $\Psi: \mathcal{M} \rightarrow \mathcal{M}$ that adapts the domain of $\mathcal{P}^{(2)}$ to the domain of $\mathcal{P}^{(1)}$

$$
\begin{aligned}
& \Psi\left(P_{i}^{(2)}\right)=\operatorname{Exp}_{\bar{P}^{(1)}}\left(\Gamma_{\bar{P}^{(2)} \rightarrow \bar{P}^{(1)}}\left(\log _{\bar{P}^{(2)}}\left(P_{i}^{(2)}\right)\right)\right) \\
& \quad \text { for any } P_{i}^{(2)} \in \mathcal{P}^{(2)}
\end{aligned}
$$

Implementation

Theorem.

Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{P} \in \mathcal{M}$ and let $\boldsymbol{S}=\log _{\boldsymbol{B}}(\boldsymbol{P}) \in \mathcal{T}_{\boldsymbol{B}} \mathcal{M}$.
Then,

$$
\operatorname{Exp}_{\boldsymbol{A}}\left(\Gamma_{\boldsymbol{B} \rightarrow \boldsymbol{A}}(\boldsymbol{S})\right)=\boldsymbol{E} \boldsymbol{P} \boldsymbol{E}^{T}
$$

where $\boldsymbol{E}=\left(\boldsymbol{A} \boldsymbol{B}^{-1}\right)^{\frac{1}{2}}$.

- Ψ can be efficiently implemented

$$
\begin{gathered}
\Psi\left(P_{i}^{(2)}\right)= \\
E \Gamma_{\bar{P}^{(2)} \rightarrow \bar{P}^{(1)}}\left(P_{i}^{(2)}\right)=E P_{i}^{(2)} E^{T} \\
E \triangleq\left(\bar{P}^{(1)}\left(\bar{P}^{(2)}\right)^{-1}\right)^{\frac{1}{2}}
\end{gathered}
$$

Implementation

- Important consequence:
- The covariance adaptation:

$$
E P_{i}^{(2)} E^{T}
$$

where

$$
E \triangleq\left(\bar{P}^{(1)}\left(\bar{P}^{(2)}\right)^{-1}\right)^{\frac{1}{2}}
$$

- Can be applied directly to data by:

$$
E X_{i}^{(2)}
$$

Toy Problem

- Consider the set of hidden multi-dimensional times series $\left\{s_{i}[n]\right\}_{i=1}^{100}$:
$s_{i}[n]=\left[\begin{array}{c}\sin \left(2 \pi f_{0} n / T\right) \\ \cos \left(2 \pi f_{0} n / T+\phi_{i}\right)\end{array}\right], n=0, \ldots, T-1$
where $f_{0}=10, T=500$, and $\phi_{i} \sim U[-\pi / 2,0]$
- Short segments of two oscillatory signals
- Governed by a 1-dimensional hidden variable ϕ_{i} (the initial phase of the oscillations)

Toy Problem

- The population covariance of $s_{i}[n]$ is

$$
\frac{1}{2}\left[\begin{array}{cc}
1 & -\sin \left(\phi_{i}\right) \\
-\sin \left(\phi_{i}\right) & 1
\end{array}\right]
$$

which depends only on ϕ_{i}

- Note:
when presenting the population covariances as vectors in \mathbb{R}^{3}, two coordinates are fixed and only one varies

Toy Problem

- We generate two observable subsets

$$
\mathcal{X}^{(1)}=\left\{\boldsymbol{x}_{i}^{(1)}[n]\right\}_{i=1}^{100}, \mathcal{X}^{(2)}=\left\{\boldsymbol{x}_{i}^{(2)}[n]\right\}_{i=1}^{100}
$$

such that:

$$
x_{i}^{(k)}[n]=M^{(k)} s_{i}[n]
$$

where

- $M^{(1)}$ is randomly chosen
- $M^{(2)}=1.5\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) M^{(1)}$

Toy Problem

* PT of the source and target sets to the mid-point

Brain Computer Interface

- Data: [BCI competition]
- 22 EEG electrodes
- 9 subjects
- 2 days of experiments
- 288 trials per subject
- In each trial the subject is asked to imagine performing 1 out of 4 motor tasks: left hand, right hand, both feet, tongue

Brain Computer Interface

tSNE [v. d. Maaen \& Hinton, 08] representation of Covariance matrices

One subject Two sessions

Brain Computer Interface

Two subjects

After PT

Intrinsicness

- Using affine transformation [Zanini et al, 18]:

$$
\left(\bar{P}^{(k)}\right)^{-\frac{1}{2}} P_{i}^{(k)}\left(\left(\bar{P}^{(k)}\right)^{-\frac{1}{2}}\right)^{T}
$$

- Equivalent to parallel transport to the identity:

$$
\begin{aligned}
& \Psi\left(P_{i}^{(k)}\right)=\Gamma_{\bar{P}^{(k)} \rightarrow I}\left(P_{i}^{(k)}\right)=E P_{i}^{(k)} E^{T} \\
& E \triangleq\left(I\left(\bar{P}^{(k)}\right)^{-1}\right)^{\frac{1}{2}}
\end{aligned}
$$

- When there are two sets, it is equivalent to

$$
\Gamma_{I \rightarrow \bar{P}^{(1)}} \circ \Gamma_{\bar{P}^{(2)} \rightarrow I}
$$

- Coincides with our work when

$$
\Gamma_{\bar{P}^{(2)} \rightarrow \bar{P}^{(1)}}=\Gamma_{I \rightarrow \bar{P}^{(1)}} \circ \Gamma_{\bar{P}^{(2)} \rightarrow I}
$$

- $\bar{P}^{(1)}$ and $\bar{P}^{(2)}$ commute and have the same eigenvectors (PC)
- Q: what is special about the proposed transport?

Intrinsicness

Definition (Equivalent Pairs)

Two pairs $\left(\boldsymbol{A}_{1}, \boldsymbol{B}_{1}\right)$ and $\left(\boldsymbol{A}_{2}, \boldsymbol{B}_{2}\right)$, such that $\boldsymbol{A}_{1}, \boldsymbol{B}_{1}, \boldsymbol{A}_{2}, \boldsymbol{B}_{2} \in \mathcal{M}$, are equivalent if there exists an invertible matrix \boldsymbol{E} such that

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\Gamma\left(\boldsymbol{A}_{1}\right)=\boldsymbol{E} \boldsymbol{A}_{1} \boldsymbol{E}^{T} \\
& \boldsymbol{B}_{2}=\Gamma\left(\boldsymbol{B}_{1}\right)=\boldsymbol{E} \boldsymbol{B}_{1} \boldsymbol{E}^{T}
\end{aligned}
$$

We denote this relation by

$$
\left(\boldsymbol{A}_{1}, \boldsymbol{B}_{1}\right) \sim\left(\boldsymbol{A}_{2}, \boldsymbol{B}_{2}\right)
$$

Intrinsicness

Definition (Equivalent Pairs)
Two pairs $\left(\boldsymbol{A}_{1}, \boldsymbol{B}_{1}\right)$ and $\left(\boldsymbol{A}_{2}, \boldsymbol{B}_{2}\right)$, such that $\boldsymbol{A}_{1}, \boldsymbol{B}_{1}, \boldsymbol{A}_{2}, \boldsymbol{B}_{2} \in \mathcal{M}$, are equivalent if there exists an invertible matrix \boldsymbol{E} such that

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\Gamma\left(\boldsymbol{A}_{1}\right)=\boldsymbol{E} \boldsymbol{A}_{1} \boldsymbol{E}^{T} \\
& \boldsymbol{B}_{2}=\Gamma\left(\boldsymbol{B}_{1}\right)=\boldsymbol{E} \boldsymbol{B}_{1} \boldsymbol{E}^{T}
\end{aligned}
$$

We denote this relation by

$$
\left(\boldsymbol{A}_{1}, \boldsymbol{B}_{1}\right) \sim\left(\boldsymbol{A}_{2}, \boldsymbol{B}_{2}\right)
$$

Lemma.

The relation \sim is an equivalence relation, satisfying reflexivity, symmetry, and transitivity.

Intrinsicness

- Interpretation:
- Equivalent pairs are matrices with equivalent intrarelations
- E.g. if $\left(A_{1}, B_{1}\right) \sim\left(A_{2}, B_{2}\right)$ then

$$
d_{R}\left(A_{1}, B_{1}\right)=d_{R}\left(A_{2}, B_{2}\right)
$$

but with a different global position on the manifold

Intrinsicness

Proposition.

Let $\left(A_{1}, B_{1}\right)$ be a pair of SPD matrices $A_{1}, B_{1} \in \mathcal{M}$, and let $\left[\left(A_{1}, B_{1}\right)\right]$ denote the equivalence class

$$
\left[\left(A_{1}, B_{1}\right)\right]=\left\{\left(A_{2}, B_{2}\right) \in \mathcal{M} \times \mathcal{M} \mid\left(A_{2}, B_{2}\right) \sim\left(A_{1}, B_{1}\right)\right\}
$$

of all matrix pairs that are equivalent to $\left(A_{1}, B_{1}\right)$.
Then, for any $\left(A_{2}, B_{2}\right) \in\left[\left(A_{1}, B_{1}\right)\right]$:

$$
\Gamma \circ \Gamma_{B_{1} \rightarrow A_{1}}=\Gamma_{B_{2} \rightarrow A_{2}} \circ \Gamma,
$$

where $\Gamma(P)=E P E^{T}$ and E satisfies the equivalence relation.

Intrinsicness

- Direct consequence:
- Domain adaptation via Ψ is invariant to the relative position of $\bar{P} \overline{(1)}^{(1)}$ and $\bar{P}^{(2)}$ on the manifold
- It is constructed equivalently for every pair in the equivalence class

$$
\left[\left(\bar{P}^{(1)}, \bar{P}^{(2)}\right)\right]
$$

- Guarantees consistence
- For example, two subjects in two sessions in the BCl problem

Extension to Multiple Subsets

Algorithm.

Input: $\left\{\boldsymbol{P}_{i}^{(1)}\right\}_{i=1}^{N_{1}},\left\{\boldsymbol{P}_{i}^{(2)}\right\}_{i=1}^{N_{2}}, \ldots,\left\{\boldsymbol{P}_{i}^{(K)}\right\}_{i=1}^{N_{K}}$
Output: $\left\{\tilde{\boldsymbol{S}}_{i}^{(1)}\right\}_{i=1}^{N_{1}},\left\{\tilde{\boldsymbol{S}}_{i}^{(2)}\right\}_{i=1}^{N_{2}}, \ldots,\left\{\tilde{\boldsymbol{S}}_{i}^{(K)}\right\}_{i=1}^{N_{K}}$

1. For each $k \in\{1,2, \ldots, K\}$, compute $\overline{\boldsymbol{P}}^{(k)}$ the Riemannian mean of the subset $\left\{\boldsymbol{P}_{i}^{(k)}\right\}$.
2. Compute $\hat{\boldsymbol{P}}$, the Riemannian mean of $\left\{\overline{\boldsymbol{P}}^{(k)}\right\}_{k=1}^{K}$.
3. For all k and all i, apply Parallel Transport using:

$$
\boldsymbol{\Gamma}_{i}^{(k)}=\Gamma_{\overline{\boldsymbol{P}}^{(k)} \rightarrow \hat{\boldsymbol{P}}}\left(\boldsymbol{P}_{i}^{(k)}\right) .
$$

4. For all k and all i, project the transported matrix to the tangent space via:

$$
\tilde{\boldsymbol{S}}_{i}^{(k)}=\log \left(\hat{\boldsymbol{P}}^{-\frac{1}{2}} \boldsymbol{\Gamma}_{i}^{(k)} \hat{\boldsymbol{P}}^{-\frac{1}{2}}\right) .
$$

Brain Computer Interface

Five
subjects

Brain Computer Interface

- Objective evaluation via classification
- Leave-one-subject-out
- Linear SVM

Sleep Stage Identification

- Six different sleep stages: awake, REM, and sleep stages 1-4
- Recordings [PhysioNet.org]:
- Two EEG channels
- One electrooculography (EOG) channel
- Data from three subjects

Sleep Stage Identification

PCA of the covariance matrices ${ }^{1}$

Mean subtraction

${ }^{1}$ Since the covariance matrices are 3×3, dimension reduction using PCA was sufficient

Sleep Stage Identification

Baseline

Mean Subtraction

True Class

Parallel Transport

Mental Arithmetic Identification

- Recordings [Shin et al, 17]:
- EEG from 29 subjects
- 30 electrodes at 1000 Hz
- 3 sessions per subject
- 20 repetitions/trials per session
- Two mental states:
- Performing repeated simple arithmetic calculations
- Baseline resting state

Mental Arithmetic Identification

tSNE representation of trials from subject \#1

Mental Arithmetic Identification

- Average classification results over all 29 subjects
- Leave-one-session-out cross-validation
- Linear SVM

Baseline	Mean Subtraction	Parallel Transport
74%	73%	78%

Extensions and Outlook

- To facilitate the internal structure of each subset:
- Rotation following the PT
- Unsupervised moments alignment

Baseline

Mean Subtraction

Parallel Transport

Parallel Transport \& Moments Alignment

Extensions and Outlook

- Take home message
- High-dimensional data live in a non-Euclidean space
- Covariance matrices are informative features
- They live in a non-Euclidean space with operations given in closed-form
- Covariance matrices might be insufficient features
- Instead, we could use:
- Correlation and Partial Correlation matrices
- Positive Kernels
- Graph Laplacians
- Transition probability matrices of random walks on graphs

Thank you

O. Yair, M. Ben-Chen and R. Talmon
"Parallel Transport on the Cone Manifold of SPD Matrices for Domain Adaptation" IEEE Transactions on Signal Processing, 2019

We acknowledge funding from the European Union's Horizon 2020 research grant agreement 802735

