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Domain Adaptation

• P: Datasets often comprise multiple domains: 
• Sessions
• Subjects
• Batches

• Q: How to adapt a given model that is well 
performing on a particular domain to a different 
yet related domain?

• Q: How to train a classifier based on data from 
one domain and apply it to data 
from another domain?



Domain Adaptation

• Highly researched subject

• Many previous studies, e.g.:
• [Ben-David et al, 07]
• [Raina et al, 07]
• [Dai et al, 09]
• [Pan et al, 10]
• …



Data Analysis in High Dimension

• P: The data do not live in a Euclidean space
• Multiple modalities
• Dependence between coordinates

• Q: What is the proper 
non-Euclidean metric?

• Q: How to find an embedding
into a Euclidean space?

• P: Unsupervised



Illustrative Application

• Brain Computer Interface (BCI) [Barachant et al, 13]

• Data: [recent BCI competition]

• EEG from 9 subjects

• 22 electrodes

• 2 days of experiments

• 288 trials per subject

• In each trial, imagine performing 1 of 4 motor tasks:

• Left hand

• Right hand

• Both feet

• Tongue



Illustrative Application

• Consider two datasets from two subjects:

• Each set contains       matrices of observations

• - dimension (# of EEG electrodes)

• - observation length

• - hidden label (imagined motor task)

• Let                   be the (sample) covariance of 
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Illustrative Application

Low dimensional representation of the covariance matrices from two subjects



Illustrative Application

! Training a classifier from one subject
and testing on another subject

! Unsupervised

Identify the imagined motor activity per trial

from multiple subjects



Our Solution

Benefits
• Known non-Euclidean space 

facilitating comparisons, additions, subtractions
• Joint representation from multiple domains
• Following recent work:
• Theory [Pennec et al, 06], [Sra & Hosseini, 15]
• Applications in BCI [Barachant et al, 13]
• Applications in computer vision [Tuzel el al, 08], 

[Freifeld et al, 14], [Bergman et al, 17]

Riemannian Geometry of SPD matrices



Preliminaries on Riemannian Geometry

• Let              be two points on a Riemannian 
manifold

• Let          be the tangent plane at the point

• Define the following operations:

x, y 2 M

TxM x

argmin
P

d2R(P,X) + d2R(P, Y )



The SPD Cone

• The SPD matrices constitute a convex half-cone in the 
space of real symmetric matrices

• This cone forms a differentiable Riemannian manifold       
equipped with the inner product 

• is the tangent plane at                          

•
• is the standard Euclidean inner product

• The symmetric matrices                  live in a linear space 

• We can view them as vectors
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The SPD Cone – Properties

• There exists a unique geodesic curve between any two 
SPD matrices                   : 

• Define a Riemannian distance on the manifold as the 
arc-length of the geodesic curve:

• is the i-th eigenvalue of P

• Scale-invariant
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The SPD Cone – Properties
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The SPD Cone – Properties

• Logarithm map:

• Exponential map:

• Relation to the (unique) geodesic curve        from     to      
is given by the initial velocity
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Domain Adaptation

• Consider two subsets        (target) and        (source) 
of SPD matrices from two different domains

• and       - Riemannian means

• - the unique geodesic from        to

• - the symmetric matrix (or vector) in
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Domain Adaptation

• Goal:
Derive a new representation             :

so that           and                live in the same 
linear space

• Benefit:
Relate samples from the two subsets

• Compute quantities such as
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Domain Adaptation

• Constraints:
• Zero mean:

• Inner product preservation:

• Geodesic velocity preservation:
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Domain Adaptation

• Constraints:
• Zero mean:

• Inner product preservation:
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Imply that the map preserves inter-sample relations



Domain Adaptation

• Constraints:
• Zero mean:

• Inner product preservation:
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Domain Adaptation

• Constraints:
• Zero mean:

• Inner product preservation:
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Simple implementation by mean subtraction



Domain Adaptation

• Constraints:
• Geodesic velocity preservation:

� ('0 (0)) = '0 (1)

Formulation

Use the unique geodesic to resolve the arbitrary degree of 
freedom

The two intrinsic symmetric matrices (vectors)
and                        are used to fix the rotation'0(0)2T
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Domain Adaptation

• Constraints:
• Geodesic velocity preservation:

� ('0 (0)) = '0 (1)

Formulation

Unsupervised – no labels are used

Present a closed-form expression (no optimization)



Parallel Transport

Lemma (Parallel Transport)
Let A,B2M.
The PT from B to A of any S2TBM is:
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Parallel Transport



Domain Adaptation with PT

Algorithm:

1. Project the SPD matrix P (2)
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Domain Adaptation with PT

Define the map                      that adapts the 
domain of        to the domain of 
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Implementation

• can be efficiently implemented 
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Implementation

• Important consequence:

• The covariance adaptation:

where

• Can be applied directly to data by:
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Toy Problem

• Consider the set of hidden multi-dimensional 
times series                  :

where            ,             , and

• Short segments of two oscillatory signals

• Governed by a 1-dimensional hidden variable     
(the initial phase of the oscillations)
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Toy Problem

• The population covariance of         is

which depends only on

• Note: 
when presenting the population covariances as 
vectors in      , two coordinates are fixed and 
only one varies

si[n]

1

2


1 � sin (�i)

� sin (�i) 1

�

�i

R3



Toy Problem

• We generate two observable subsets 

such that:

where 

• is randomly chosen

•
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Toy Problem

After PT*

* PT of the source and target sets to the mid-point



Brain Computer Interface

• Data: [BCI competition]

• 22 EEG electrodes

• 9 subjects

• 2 days of experiments

• 288 trials per subject

• In each trial the subject is asked to imagine 
performing 1 out of 4 motor tasks:
left hand, right hand, both feet, tongue



Brain Computer Interface

One subject
Two sessions

After PT

tSNE [v. d. Maaen & Hinton, 08] representation of Covariance matrices



Brain Computer Interface

Two subjects

After PT

Mean subtraction
[Barachant et al, 13]



Intrinsicness

• Using affine transformation [Zanini et al, 18]:

• Equivalent to parallel transport to the identity:

• When there are two sets, it is equivalent to 

• Coincides with our work when 

• and         commute and have the same eigenvectors (PC)

• Q: what is special about the proposed transport?
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Intrinsicness
Definition (Equivalent Pairs)
Two pairs (A1,B1) and (A2,B2), such that A1,B1,A2,B22M,
are equivalent if there exists an invertible matrix E such that

A2 = �(A1) = EA1E
T

B2 = �(B1) = EB1E
T

We denote this relation by

(A1,B1) ⇠ (A2,B2)

A1

A2

B2

B1
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Intrinsicness
Definition (Equivalent Pairs)
Two pairs (A1,B1) and (A2,B2), such that A1,B1,A2,B22M,
are equivalent if there exists an invertible matrix E such that

A2 = �(A1) = EA1E
T

B2 = �(B1) = EB1E
T

We denote this relation by

(A1,B1) ⇠ (A2,B2)

Lemma.
The relation ⇠ is an equivalence relation,
satisfying reflexivity, symmetry, and transitivity.



Intrinsicness

• Interpretation:

• Equivalent pairs are matrices with equivalent intra-
relations

• E.g. if                              then

but with a different global position on the manifold

(A1, B1)⇠(A2, B2)

dR(A1, B1)=dR(A2, B2)



Intrinsicness
Proposition.
Let (A1, B1) be a pair of SPD matrices A1, B12M,
and let
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Intrinsicness

• Direct consequence:

• Domain adaptation via     is invariant to the relative 
position of       and       on the manifold

• It is constructed equivalently for every pair in the 
equivalence class

• Guarantees consistence 

• For example, two subjects in two sessions in the BCI 
problem
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Extension to Multiple Subsets

Algorithm.
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Brain Computer Interface

Five
subjects

After PT



Brain Computer Interface

• Objective evaluation via classification
• Leave-one-subject-out
• Linear SVM
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Sleep Stage Identification

• Six different sleep stages: 
awake, REM, and sleep stages 1-4

• Recordings [PhysioNet.org]:
• Two EEG channels
• One electrooculography (EOG) channel

• Data from three subjects



Sleep Stage Identification

PCA of the 
covariance matrices1

Mean subtraction

Parallel transport

1Since the covariance matrices are 3x3, dimension reduction using PCA was sufficient



Sleep Stage Identification
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Mental Arithmetic Identification

• Recordings [Shin et al, 17]:
• EEG from 29 subjects
• 30 electrodes at 1000Hz
• 3 sessions per subject
• 20 repetitions/trials per session

• Two mental states:
• Performing repeated simple arithmetic calculations
• Baseline resting state



Mental Arithmetic Identification
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Mental Arithmetic Identification

• Average classification results over all 29 subjects

• Leave-one-session-out cross-validation

• Linear SVM

Baseline Mean Subtraction Parallel Transport
74% 73% 78%



Extensions and Outlook

• To facilitate the internal structure of each subset:
• Rotation following the PT
• Unsupervised moments alignment 

Mean Subtraction

Parallel Transport

Parallel Transport & Moments Alignment

Baseline



Extensions and Outlook

• Take home message
• High-dimensional data live in a non-Euclidean space
• Covariance matrices are informative features
• They live in a non-Euclidean space with operations 

given in closed-form
• Covariance matrices might be insufficient features
• Instead, we could use:
• Correlation and Partial Correlation matrices
• Positive Kernels 
• Graph Laplacians
• Transition probability matrices of random walks on 

graphs



Thank you
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