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The original problem

Let X1, . . . , Xn be a random sample from a density f0 on Rd.

How should we estimate f0?

Two main alternatives:

• Parametric models: use e.g. MLE. Assumptions o�en too restrictive.

• Nonparametric models: use e.g. kernel density estimate. Choice of
bandwidth di�icult, particularly for d > 1.
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Shape-constrained estimation

Nonparametric shape constraints are becoming increasingly popular (Groeneboom et al.

2001, Walther 2002, Pal et al. 2007, Dümbgen and Rufibach 2009, Schuhmacher et al. 2011, Koenker and Mizera 2010, Groeneboom and Jongbloed, 2014, Baraud

and Birgé, 2016, Doss and Wellner, 2016, Han and Wellner, 2016, Robeva et al., 2018, Carpenter et al., 2018, Dagan and Kur, 2019).

A density f is log-concave if log f is concave.

• Univariate examples: normal, logistic, Gumbel densities, as well as Weibull,
Gamma, Beta densities for certain parameter values.

• The class is closed under marginalisation, conditioning, convolution and
linear transformations.
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Unbounded likelihood!

Consider maximising the likelihood L(f) :=
∏n
i=1 f(Xi) over all densities f .
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Log-concave projections (Dümbgen, S. and Schuhmacher, 2011)

Let Pd be the set of probability distributions P on Rd with
∫
Rd ‖x‖ dP (x) <∞

and P (H) < 1 for all hyperplanes H .

Let Fd be the set of upper semi-continuous log-concave densities on Rd.

There exists a well-defined projection ψ∗ : Pd → Fd given by

ψ∗(P ) := argmax
f∈Fd

∫
Rd

log f dP.
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The log-concave MLE
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Theoretical properties (Cule and S., 2010; Dümbgen, S. and Schuhmacher, 2011)

The log-concave projection is continuous with respect to the Wasserstein
(Mallows-1) distance.

In particular, let X1, . . . , Xn
iid∼ P0 ∈ Pd, and let f∗ := ψ∗(P0). Taking a0 > 0

and b0 ∈ R such that f∗(x) ≤ e−a0‖x‖+b0 , we have for any a < a0 that∫
Rd

ea‖x‖|f̂n(x)− f∗(x)| dx a.s.→ 0.

Moreover, if f∗ is continuous, then

sup
x∈Rd

ea‖x‖|f̂n(x)− f∗(x)| a.s.→ 0.
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Minimax lower bounds (Kim and S., 2016)

Let d2
H(f, g) :=

∫
Rd(f1/2 − g1/2)2 denote the squared Hellinger distance

between f and g. There exist positive constants c1, c2, . . . such that

inf
f̃n

sup
f0∈Fd

Ed2
H(f̃n, f0) ≥

{
c1n
−4/5 if d = 1

cdn
−2/(d+1) if d ≥ 2.

Thus, when d ≥ 3, the problem is fundamentally harder than estimating a
density of smoothness 2.

In fact, Dagan and Kur (2019) recently showed that cd may be chosen
independent of d.
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MLE supremum risk (Kim and S., 2016)

Let d2
X(f̂n, f0) := n−1

∑n
i=1 log f̂n(Xi)

f0(Xi)
. Then

d2
H(f̂n, f0) ≤ d2

KL(f̂n, f0) ≤ d2
X(f̂n, f0).

Moreover, the log-concave MLE f̂n satisfies

sup
f0∈Fd

Ed2
X(f̂n, f0) =


O(n−4/5) if d = 1

O(n−2/3 log n) if d = 2

O(n−1/2 log n) if d = 3.

Dagan and Kur (2019) showed that

sup
f0∈Fd

Ed2
H(f̂n, f0) = O(n−2/(d+1) log n) if d ≥ 4.
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High dimensions

Joint work with Min Xu
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Minkowski functionals

Let K be the set of closed, convex subsets K of Rd with 0 ∈ int(K).

For K ∈ K, the Minkowski functional ‖ · ‖K : Rd → [0,∞) is given by

‖x‖K := inf{t ∈ [0,∞) : x ∈ tK}.

Let K ∈ K and x, y ∈ Rd. Then

(i) ‖x‖K <∞;

(ii) x ∈ K i� ‖x‖K ≤ 1;

(iii) x ∈ ∂K i� ‖x‖K = 1, where ∂K := K \ int(K);

(iv) ‖x+ y‖K ≤ ‖x‖K + ‖y‖K and, if α ≥ 0, then ‖αx‖K = α‖x‖K .
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K-homothetic log-concave densities

Say that a density f on Rd is homothetic if there exist a decreasing function
r : (0, ‖f‖∞)→ [0,∞), a set A ∈ B(Rd) with 0 ∈ int(A) and µ ∈ Rd such that
{x : f(x) ≥ t} = r(t)A+ µ for every t ∈ (0, ‖f‖∞).

Let Φ be the set of all upper semi-continuous, concave, decreasing functions
φ : [0,∞)→ [−∞,∞).

Let f be a u.s.c. density on Rd. Then f is homothetic and log-concave i� there
exist K ∈ K, µ ∈ Rd and φ ∈ Φ such that f(·) = eφ(‖·−µ‖K).

If also f(·) = eφ̃(‖·−µ̃‖K̃), then there exist σ, σ′ > 0 such that φ̃(·) = φ(σ·) and
K̃ = σK + σ′(µ− µ̃); moreover, if f is not a uniform density, then µ̃ = µ.
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K-homothetic log-concave projections

Let Pd be the set of probability distributions P on Rd with finite mean and with
P ({0}) < 1. Let FKd be the set of usc, K-homothetic, log-concave densities
with centering vector 0.

There exists a well-defined projection f∗ : Pd → FKd given by

f∗(P ) := argmax
f∈FK

d

∫
Rd

log f(x) dP (x).

Now let Q denote the set of probability measures Q on [0,∞) with finite mean
and Q({0}) < 1. Then we can also define φ∗ : Q → Φ by

φ∗(Q) := argmax
φ∈Φ

∫
Rd

φdQ.
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Risk bounds when K is known

Let f0(·) = eφ0(‖·‖K) ∈ FKd , and suppose that X1, . . . , Xn
iid∼ f0 with empirical

distribution Pn. Let f̂n := f∗(Pn)∗

There exists a universal constant C > 0 such that for n ≥ 8,

Ed2
X(f̂n, f0) ≤ C

n4/5
.

Thus, the risk bound does not depend on d.

∗This may be computed by se�ing Zi = ‖Xi‖K for i ∈ [n] and then, writing Qn for the
empirical distribution of Z1, . . . , Zn, computing f̂n(·) := eφ

∗(Qn)(‖·‖K).
Richard J. Samworth 14/22



Adaptive bounds

Let φ(k) be the set of φ ∈ Φ such that there exist r0 > 0 and intervals I1, . . . , Ik
with Ij = [aj−1, aj ] for which φ is a�ine on each Ij , and φ(r) = −∞ for
r > r0 = ak .

LetH denote the set of densities of the form r 7→ dλd(K)rd−1eφ(r) for φ ∈ Φ,
and letH(k) be the set of h ∈ H for which the corresponding φ belongs to Φ(k).

Define h0 ∈ H by h0(r) := dλd(K)rd−1eφ0(r). Then, writing
νk := 21/2 ∧ infh∈H(k) dKL(h0, h), there exists a universal constant C > 0 such
that for n ≥ 8,

Ed2
X(f̂n, f0) ≤ min

k∈[n]

(
ν2
k + C

k

n
log5/4 en

k

)
.

Richard J. Samworth 15/22



Estimating K when partially known

Let K0 ∈ K be balanced and in isotropic position, so that
∫
K0

xx>

λd(K0) dx = Id.

Let r1, r2 > 0 be such that r1Bd(0, 1) ⊆ K0 ⊆ r2Bd(0, 1) and let r0 := r2/r1.

Let Σ0 � 0, K = Σ
1/2
0 K0, and let f0 ∈ FK,µd be such that f0(·) = eφ0(‖·−µ‖K).

Assume that K0 is known but that Σ0 is unknown.

Assume that X1, . . . , X2n
iid∼ f0, and denote the sample covariance matrix by

Σ̂ := n−1
∑2n
i=n+1(Xi − µ̂)(Xi − µ̂)>, where µ̂ := n−1

∑2n
i=n+1Xi. We let

K̂ := Σ̂1/2K0 and f̂n := f∗
K̂,µ̂

(Pn), where Pn is based on X1, . . . , Xn.

Richard J. Samworth 16/22



Risk bounds when K partially known

We have

Ed2
H(f̂n, f0) . r0

d3/2

n1/2
log3(en).

Moreover, if φ0 is such that φ′0 is absolutely continuous and that
infr∈[0,∞) φ

′′
0(r) ≥ −D0 for some D0 > 0, then

Ed2
H(f̂n, f0) .

1

n4/5
+ r2

0(D2
0 + 1)

d3

n
log6(en).

Finally, if f0(·) = e−a‖·−µ‖K+b for some a > 0 and b ∈ R, then

Ed2
H(f̂n, f0) .

1

n
log5/4(en) + r2

0

d3

n
log6(en).

Remark: In this se�ing r0 ≤ d1/2.
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Estimating K nonparametrically

Data: M ∈ N and X1, . . . , Xn, Xn+1, . . . , Xn+M ∈ Rd.
Result: K̂ ∈ K.
Set k ← blog nc;
For m ∈ [M ], let θm = Xn+m/‖Xn+m‖2;
form ∈ [M ] do
Ikm ←

{
i ∈ [n] : X>i θm ≥ k-th max{X>i θm′ : m′ ∈ [M ]}

}
;

tm ← |Ikm|−1
∑
i∈Ikm

‖Xi‖2;

end
Set K̂ ← conv{t1θ1, . . . , tmθm}.

Richard J. Samworth 18/22



Algorithm in action
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Risk bounds

Let µ = 0. Let K̂ be the output of the algorithm with M := dn
d−1
d+1 e, and let

f̂n := f∗
K̂

(Pn). If r2
0n
− 1

d+1 log3(en) ≤ 1/64, then

Ed2
H(f̂n, f0) .d,r0 n

− 1
d+1 log3(en).

Moreover, if in addition, φ′0 is absolutely continuous and
infr∈[0,∞) φ

′′
0(r) ≥ −D0 for some D0 > 0, then

Ed2
H(f̂n, f0) .d,r0 n

− 2
d+1 log6(en).

Remark: In this general se�ing, r0 ≤ d.
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Summary

I In low dimensions, the log-concave MLE provides an a�ractive, fully
automatic nonparametric approach to density estimation.

I In higher dimensions, the incorporation of additional symmetry constraints
facilitates feasible algorithms that may mitigate the curse of
dimensionality.

Main reference:

I Xu, M. and Samworth, R. J. (2019) High-dimensional nonparametric density
estimation via symmetry and shape constraints. Preprint.
https://arxiv.org/abs/1903.06092.
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