# Structured Embedding Spaces for 3D Shape Completion and Synthesis

Anastasia Dubrovina

Lyft (previously Stanford)

Joint work with: Minhyuk Sung, Fei Xia, Panos Achlioptas, Leonidas Guibas (Stanford), Vladimir Kim (Adobe)

# **Component-based Shape Modeling**



Bring components from different objects to create new object

<sup>[</sup>Sung et al., 2017]





# Large-scale 3D Shape Repositories



airplanes



### Previous work



<del>\_\_\_\_\_\_</del>



### Modeling by Example [Funkhouser et al., 2004]



[Chaudhuri et al., 2011]

[Kalogerakis et al., 2012]





- CAD model segments are inconsistent and unlabeled  $\bullet$
- Part annotation is expensive; may be unavailable at test time
- Hard to define proper names and boundaries of parts

### Challenges



[Chaudhuri et al., 2011]





### **Shape Completion**

### From dateset with *unlabeled* and *inconsistent* components



### This Talk

### **Composite modeling**

### Using *unsegmented* shapes via latent space factorization



### Learning Fuzzy Set Representations of Partial Shapes on Dual Embedding Spaces

joint work with Minhyuk Sung, Vladimir G. Kim and Leonidas Guibas. SGP 2018.



# **Problem definition**

Learn relations among partial shapes, so that we can

- Complete an object with a single retrieval
- Discover group-to-group relations



Query

Retrieval



Sung, Dubrovina, et al., SGP 2018



# **Relations Among Partial Shapes**

Learn relations among partial shapes

- Complementarity
- Interchangeability



### **Relations Among Partial Shapes**

### Complementarity

: Two partial shapes can be combined into a complete and plausible object





# **Relations Among Partial Shapes**

### Interchangeability

: Replacing one with the other still produces a plausible object





# Our Approach

### Jointly encode complementary and interchangeable relations in dual embedding spaces



### Complement space

Query space

### Complementarity



Complementary

# Graph Illustration

- Consider a graph of complementary relations
- Infer *unseen* relations



Create two embedding spaces

g

=g()

- All partial shapes present in both spaces
- <u>Naïve idea</u>: One space *mirrors* complements from the other space



### Problem: Embedding collapse





### Problem: Embedding collapse





### Problem: Embedding collapse



### Not complementary!



# **Complementarity as Set Inclusion**

- Represent shapes by sets in embedding spaces, and • Encode 1-to-N mapping as set inclusion



Complementary



### **Complementarity as Set Inclusion**

### Encode 1-to-N mapping as set inclusion







### **Complementarity as Set Inclusion**



# **FUZZY SET**

# Fuzzy Sets Fuzzy set theory [Zadeh, 1965] **CRISP SET**





# **Fuzzy Set Inclusion**

### Inclusion indication operator





[Vendrov et al., 2016]







# **Embedding as Set Inclusion**

### Inclusion representation in the dual embedding space



# Embedding as Set Inclusion

### Inclusion representation in the dual embedding space



# **Complementarity Energy Function**

Inclusion Energy Function

# $E(f(x) \subseteq g(y)) = \sum_{i}^{i}$



$$\int \max \left( 0, f(x)_i - g(y)_i \right)^2$$

### ReLU

### $(f(x) \subseteq g(y))_i = (f(x)_i \leq g(y)_i)$

# **Complementarity Energy Function**

Inclusion Energy Function

 $E(f(x) \subseteq g(y)) = \sum_{x \in Y} f(x) = \sum_{x$ 

Complementarity Energy Function

$$E_c(x, y) = E\left(f(x) \subseteq \right)$$

$$\int \max \left( 0, f(x)_i - g(y)_i \right)^2$$

### **ReLU**

 $g(y)) + E\left(f(y) \subseteq g(x)\right)$ 





# Our Training Data

- Complementary pairs are created by splitting objects No supervision for interchangeability is given Learn interchangeability from complementarity



# Interchangeability

- Similar embedding fuzzy sets (of x and y) • Have large intersection in the query space (g)• Have a small union in the complement space (f)

$$\max\left(E\big(f(x) \subseteq g(z)\big), E\big(f(y) \subseteq g(z)\big)\right) \le E\big(\underline{f(x)} \lor \underline{f(y)} \subseteq g(z)\big)$$
$$\max\left(E\big(f(z) \subseteq g(x)\big), E\big(f(z) \subseteq g(y)\big)\right) \le E\big(f(z) \subseteq \underline{g(x)} \land \underline{g(y)}\big)$$

# Interchangeability

Similar embedding fuzzy sets (of x and y)

- Have large intersection in the query space (g)• Have a small union in the complement space (f)

$$E_r(x, y) = \|f(x) \lor f(x)\|$$
small unit



 $(y)\|_{2}^{2} - \|g(x) \wedge g(y)\|_{2}^{2}$ large intersection on

$$(x \lor y)_i = \max(x_i, y_i)$$

### **Neural Network Architecture**



Dual siamese structure for a pair of complementary shapes

# Neural Network Training Details

- PointNet [Qi et al., 2017] for f and gConvert a mesh to 1K point samples
- Ranking Loss [Socher et al., 2014]





Randomly split shapes into pairs of connected component sets

### $E_c(X, Y) + \alpha \leq E_c(X, Z)$

Positive Complement



Negative Complement

### Evaluation

# **Complementary Shape Retrievals**



# Interchangeable Shape Retrievals



### **Comparison and Quantitative Evaluation**

- ComplementMe [Sung et al., 2017]
  - Assemble components *iteratively*
  - Learn a relation from a partial shape to a single component



# **Complementarity Evaluation**

### Evaluation metrics using ranks of ground truth complements

| Category<br>(# Partial Shapes) |      | Airplane (4140) | Car<br>(5770) | Chair<br>(8374) | Guitar<br>(198) | Lamp<br>(1778) | Rifle<br>(1184) | Sofa<br>(4452) | Table<br>(4594) | Watercraft (1028) | Mean        |
|--------------------------------|------|-----------------|---------------|-----------------|-----------------|----------------|-----------------|----------------|-----------------|-------------------|-------------|
| Recall@1                       | CM   | 9.9             | 2.4           | 4.9             | 19.2            | 1.7            | 1.9             | 3.9            | 2.7             | 0.7               | 4.3         |
|                                | Ours | 17.5            | <b>5.8</b>    | <b>8.0</b>      | <b>23.7</b>     | <b>5.1</b>     | <b>7.3</b>      | <b>6.7</b>     | <b>4.1</b>      | <b>3.2</b>        | <b>7.8</b>  |
| Recall@10                      | CM   | 48.6            | 15.5          | 27.2            | 67.7            | 11.1           | 17.1            | 20.0           | 15.5            | 7.3               | 23.5        |
|                                | Ours | <b>61.3</b>     | <b>30.5</b>   | <b>35.0</b>     | <b>72.2</b>     | <b>19.7</b>    | <b>23.5</b>     | <b>30.1</b>    | <b>19.2</b>     | <b>14.3</b>       | <b>32.9</b> |
| Median                         | CM   | 99.8            | 98.8          | 99.6            | 97.0            | 89.6           | 94.3            | 98.5           | 98.3            | 87.0              | 97.9        |
| Percentile Rank                | Ours | <b>99.9</b>     | <b>99.5</b>   | <b>99.7</b>     | <b>98.5</b>     | <b>90.4</b>    | <b>95.8</b>     | <b>99.2</b>    | <b>98.5</b>     | <b>88.7</b>       | <b>98.4</b> |
| Mean                           | CM   | 98.4            | 96.4          | 98.3            | <b>94.5</b>     | <b>81.4</b>    | 88.2            | 94.0           | 94.9            | 77.6              | 94.8        |
| Percentile Rank                | Ours | <b>98.5</b>     | <b>97.2</b>   | <b>98.5</b>     | 93.8            | 79.9           | <b>89.0</b>     | <b>94.9</b>    | <b>95.0</b>     | <b>78.7</b>       | <b>95.2</b> |

Recall@N = the percentage of the ground truth complements in the top-N rank retrievals Percentile Rank = percentage of partial shapes having ranks equal or greater than the rank of the ground truth complements

### Limitations

- Can complete only at the level of components
- May not be able to handle small and thin parts



### Summary

- Proposed to jointly learn complementarity and interchangeability relations in dual embedding spaces
- Encoded complementarity and interchangeability as *inter*and *intra*-space relations
- Introduced a *fuzzy* set representation for an one-to-N mapping



### Composite Shape Generation via Latent Space Factorization

joint work with Fei Xia, Panos Achlioptas, Mira Shalah and Leonidas Guibas

### **Standard DL Generation Pipeline**



### Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

[Wu et al., NIPS 2016]



GRASS: Generative Recursive Autoencoders for Shape Structures [Li et al., SIGGRAPH 2017]



Learning Representations and Generative Models for 3D Point Clouds [Achlioptas et al., ICML 2018]



Global-to-Local Generative Model for 3D Shapes [Wang et al., SIGGRAPH Asia 2018]

# Motivation from 2D Image Synthesis

### Latent space disentangling in 2D



Neural Face Editing with Intrinsic Image Disentangling [Shu et al., SVPR 2017]



(c) Varying  $c_2$  from -2 to 2 on InfoGAN (Rotation)

InfoGAN [Chen et al., NIPS 2016]

### Image composition



ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing [Lin et al. CVPR 2018]



LR-GAN: Layered Recursive GAN for Image Generation [Yang et al. ICLR 2017]

# Our goals

- Construct a factorized latent space which encodes both shape geometry and its semantic structure;
- Operate on *unsegmented data*;
- Perform shape composition and decomposition in latent space.



### Decomposer-Composer Network



Semantic-part-aware latent space with simple shape composition operator

 Decomposer maps unlabeled shapes into a factorized latent space

- armrests
- seats
- backs
- legs

### Decomposer-Composer Network



**Decomposer** maps **unlabeled** shapes into a factorized latent space

### space with simple shape composition operator

- armrests
- seats
- backs
- legs

**Composer** reconstructs shapes with semantic part labels from latent part representations

### Decomposer-Composer Network



**Decomposer** maps **unlabeled** shapes into a factorized latent space

### space with simple shape composition operator

- armrests
- seats
- backs
- legs

**Composer** reconstructs shapes with semantic part labels from latent part representations

### Simple Decomposer Network



Decomposer







### Simple Decomposer Network



Decomposer







### Decomposer Network



Learned projection matrices







# Partition of the Identity

• Embedding decomposition is unique and reversible if  $P_1, \ldots, P_k$ form a partition of the identity

(1)  $P_i^2 = P_i, \forall i,$ 

- (3)  $P_1 + ... + P_K = I$ ,
- Then,  $\{P_i\}_{i=1}^K$  divide  $\mathbb{R}^n$  into K subspaces  $\{V_i\}_{i=1}^K$  such that

- (2)  $P_i P_j = 0$  whenever  $i \neq j$ ,

 $\mathbb{R}^n = V_1 \oplus \ldots \oplus V_k$ 

### Decomposer Network









# Simple Composer Network



Decomposer

Composer



# Proposed Composer Network



Decomposer

### **Proposed approach**

• Reconstruct scaled parts separately

 Use a 3D Spatial Transformer Net to compose shape from parts

• Assumption: *affine* transformations suffice to compose plausible shape



# Proposed Composer Network



Decomposer



### Shape Decomposition and Composition



### Training shapes provide supervision for shape reconstruction

legs

### Shape Decomposition and Composition



### No supervision for shape composition from random parts

legs

# Cycle Consistency Constraint



Different approach: GAN-type lo shapes' manifold)

### Different approach: GAN-type loss (constraints results to training

### Per-part cross entropy reconstruction loss

$$L = w_{PI}L_{PI} + w_{part}L_{part} + w_{tra}$$
Partition of the identity"
$$L_{PI}(P_1, \dots, P_k) = \sum_{i=1}^{K} ||P_i^2 - P_i||_F^2 + \sum_{\substack{i,j=1, \ i \neq j}}^{K} ||P_iP_j||_F^2 + ||P_i^2|_F^2$$

"

L<sub>2</sub> loss for 12-D affine transformation parameters



### Whole-model cross entropy reconstruction loss

 $ans^{L}trans + w_{whole}L_{whole} + w_{cycle}L_{cycle}$ Cycle consistency loss  $||P_1 + \dots |P_K - I||_F^2$ 



### Evaluation

# **Projection matrices**



*P*<sub>Seat</sub>



P<sub>Back</sub>



![](_page_61_Figure_6.jpeg)

![](_page_61_Figure_7.jpeg)

P<sub>Legs</sub>

**P**<sub>Armrests</sub>

# Latent space visualization (t-SNE)

- Seat
- Back
- Legs
- Armrests
- Empty seat
- Empty back
- Empty legs
- Empty armrests

### Shape reconstruction

![](_page_63_Picture_1.jpeg)

![](_page_63_Picture_2.jpeg)

![](_page_63_Picture_3.jpeg)

### Part exchange

![](_page_64_Picture_1.jpeg)

 $GT_1$ 

Reconstructed<sub>1</sub>

Swapped<sub>1</sub> Swapped<sub>2</sub>

Reconstructed<sub>2</sub>

 $GT_2$ 

### Random part composition

![](_page_65_Picture_1.jpeg)

![](_page_65_Picture_2.jpeg)

![](_page_65_Picture_3.jpeg)

![](_page_65_Picture_4.jpeg)

![](_page_65_Picture_5.jpeg)

![](_page_65_Picture_6.jpeg)

![](_page_65_Picture_7.jpeg)

![](_page_65_Picture_8.jpeg)

![](_page_65_Picture_9.jpeg)

![](_page_65_Picture_10.jpeg)

![](_page_65_Picture_11.jpeg)

# **Full and Partial Shape Interpolation** legs Model and a second seco Legs and an and an an and an and and $\operatorname{GT}_1$ $\operatorname{REC}_1$ $\alpha = \frac{1}{9}$ $\alpha = \frac{2}{9}$ $\alpha = \frac{3}{9}$ $\alpha = \frac{4}{9}$ $\alpha = \frac{5}{9}$ $\alpha = \frac{6}{9}$ $\alpha = \frac{7}{9}$ $\alpha = \frac{8}{9}$ $\operatorname{REC}_2$

![](_page_66_Picture_1.jpeg)

![](_page_66_Picture_2.jpeg)

![](_page_66_Picture_3.jpeg)

# Ablation study

| Metric           | mIoU | mIoU    | Connectivity |      |      | Classifier |      |      | Symmetry |      |      |
|------------------|------|---------|--------------|------|------|------------|------|------|----------|------|------|
| Method           |      | (parts) |              |      |      | accuracy   |      |      | score    |      |      |
|                  | Rec. | Rec.    | Rec.         | Swap | Mix  | Rec.       | Swap | Mix  | Rec.     | Swap | Mix  |
| Our method       | 0.64 | 0.65    | 0.82         | 0.71 | 0.65 | 0.95       | 0.89 | 0.83 | 0.95     | 0.95 | 0.95 |
| W/o cycle loss   | 0.63 | 0.66    | 0.74         | 0.62 | 0.54 | 0.93       | 0.84 | 0.80 | 0.96     | 0.96 | 0.95 |
| Fixed projection | 0.63 | 0.65    | 0.72         | 0.61 | 0.58 | 0.94       | 0.86 | 0.77 | 0.94     | 0.95 | 0.95 |
| Composer w/o STN | 0.75 | 0.8     | 0.69         | 0.48 | 0.23 | 0.95       | 0.9  | 0.71 | 0.95     | 0.91 | 0.85 |
| Naive placement  | -    | -       | -            | 0.68 | 0.62 | 0.61       | 0.47 | 0.21 | -        | 0.96 | 0.96 |
| ComplementMe     | -    | -       | -            | 0.71 | 0.47 | -          | 0.66 | 0.43 | -        | 0.66 | 0.43 |
| Segmentation+STN | -    | -       | -            | 0.41 | 0.64 | -          | 0.64 | 0.36 | -        | 0.77 | 0.77 |

Evaluation metrics: mean Intersection over Union (*mIoU*), per-part mean IoU (*mIoU* (*parts*)), shape connectivity measure, binary shape classifier accuracy, and shape symmetry score.

![](_page_67_Figure_3.jpeg)

# Limitations and future work

- Low resolution
  - Use point cloud / memory-efficient voxel representation / mesh
- No measure of part compatibility
  - Model statistical dependence between parts
- Separate part reconstruction and placement may fail to produce plausible result
  - Part connectivity constrains / in-network assessment of composition quality / iterative placement

![](_page_68_Picture_7.jpeg)

![](_page_68_Picture_8.jpeg)

- Unsupervised learning of factors of variation

![](_page_69_Picture_3.jpeg)

(c) Varying  $c_2$  from -2 to 2 on InfoGAN (Rotation)

![](_page_69_Picture_5.jpeg)

**InfoGAN** [Chen et al., NIPS 2016]

**B-VAE** [Higgins et al., ICLR 2017]

"Having a representation that is well suited to the particular task and data domain can significantly improve the learning success and robustness of the chosen model (Bengio et al., 2013)." [Higgins et al., B-VAE]

### **Future Directions**

# Relation to other disentangled representations in machine learning

![](_page_69_Picture_11.jpeg)

background brightness hair colour azimuth 🌈 skin tone

**Factor-VAE** [Kim and Mnih., NIPS 2017 Workshop]

![](_page_69_Picture_14.jpeg)

![](_page_70_Picture_0.jpeg)

### https://anastasiadk.github.io/