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Component-based Shape Modeling

Bring components from different objects to create new object
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Large-scale 3D Shape Repositories
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Modeling by Example
[Funkhouser et al., 2004]

Previous work
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Challenges

Name?

Boundary?

[Funkhouser et al., 2004] [Chaudhuri et al., 2011]

 CAD model segments are inconsistent and unlabeled
* Part annotation is expensive; may be unavailable at test time

 Hard to define proper names and boundaries of parts



This Talk

Shape Completion Composite modeling
From dateset with unlabeled Using unsegmented shapes
and Inconsistent components via latent space factorization

Retrieval




Learning Fuzzy Set Representations of Partial
Shapes on Dual Embedding Spaces

joint work with Minhyuk Sung, Vladimir G. Kim and Leonidas Guibas. SGP 2018.




Problem definition

Learn relations among partial shapes, so that we can
 Complete an object with a single retrieval

* Discover group-to-group relations
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Sung, Dubrovina, et al., SGP 2018




Relations Among Partial Shapes

Learn relations among partial shapes
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Relations Among Partial Shapes

Complementarity

. Two partial shapes can be
combined into a complete and
plausible object
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Relations Among Partial Shapes

Interchangeability

. Replacing one with the
other still produces a
plausible object
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Our Approach

Jointly encode complementary and interchangeable relations
IN dual embedding spaces
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Graph lllustration

» Consider a graph of complementary relations

e |nfer unseen relations

Observed

Unseen




Dual Embedding Space

Create two embedding spaces
* All partial shapes present in both spaces

* Naive idea: One space mirrors complements from the other
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Dual Embedding Space

Problem: Embedding collapse

fp) @ fr) f(s)
® ® ® ®

g(

g(s)

g(p)| &)
@



Dual Embedding Space

Problem: Embedding collapse

p) = f(q)
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Dual Embedding Space

Problem: Embedding collapse

Not complementary!

Sp)=f@ )= f(s)

' f(q) = g(r) Jf(r) = g(q)

g(r)=g(s) |g(p) =g
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Complementarity as Set Inclusion

* Represent shapes by sets In embedding spaces, and

 Encode 7-to-N mapping as set inclusion
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Complementarity as Set Inclusion

Encode 7-to-N mapping as set inclusion
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Complementarity as Set Inclusion

Encode 7-to-N mapping as set inclusion
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Fuzzy Sets

Fuzzy set theory [Zadeh, 1965]
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Fuzzy Set Inclusion

D
x§y<=>/\xi§y,-

Inclusion indication operator -

(xCy). = <y)

[Vendrov et al., 2016]
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Embedding as Set Inclusion

Inclusion representation in the dual embedding space
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Embedding as Set Inclusion

Inclusion representation in the dual embedding space
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Complementarity Energy Function

* Inclusion Energy Function

E(f(x) € g(y)) = Z max (0, (x); — g();)

RelLU

g(y)

. (f(x) € g(y), = (f(x); < g(y))



Complementarity Energy Function

* Inclusion Energy Function

E(f(x) € g(y)) = Z max (0, (x); — g();)

RelLU

 Complementarity Energy Function

E.(x,y) = E (f(x) Cg(y) + E (fy) C g(x))



Interchangeability
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Our Training Data

 Complementary pairs are created by splitting objects

* No supervision for interchangeability is given
* Learn interchangeability from complementarity
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Interchangeability

Similar embedding fuzzy sets (of x and y)
 Have large intersection in the query space ( g)

* Have a small union in the complement space (/)

max( E(f(x) € g(2)), E(f») € g(2)) ) < E(f0) v f(y) € g(2))

max( E(f(z) € g(x)), E(f(2) € ) ) < E((2) € g(x) A 8W)



Interchangeability

Similar embedding fuzzy sets (of x and y)
 Have large intersection in the query space ( g)

* Have a small union in the complement space (/)

E(x,y) = lfx) VOII5 = llg@) A g5

small union large intersection

(x A )7)1- = min(x;, y;) (x V J’),- = max(x;, y;)



Neural Network Architecture

Dual siamese structure for a pair of complementary shapes
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Neural Network Training Details

* PointNet [Qi et al., 2017] for fand g 5 ‘|.L <N>
shhred a) () MLP (512,256,D) (D)
Convert a mesh to 1K point samples I; I> — —=

* Ranking Loss [Socher et al., 2014]
Randomly split shapes into pairs of connected component sets
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Evaluation



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)




Interchangeable Shape Retrievals

Query Top-ranked Retrievals
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Comparison and Quantitative Evaluation

ComplementMe [Sung et al., 2017]

* Assemble components iteratively
 Learn a relation from a partial shape to a single component




Complementarity Evaluation

Evaluation metrics using ranks of ground truth complements

Category Airplane Car Chair Guitar Lamp Rifle Sofa Table Watercraft

(# Partial Shapes) (4140)  (5770) (8374) (198) (1778) (1184) (4452) (4594) (1028) Mean

Recall @1 CM 9.9 2.4 4.9 19.2 1.7 1.9 3.9 2.7 0.7 4.3

Ours 17.5 5.8 8.0 23.7 5.1 7.3 6.7 4.1 3.2 7.8

Recall @10 CM 48.6 15.5 27.2 67.7 11.1 17.1 20.0 15.5 7.3 23.5
Ours 61.3 30.5 35.0 72.2 19.7 23.5 30.1 19.2 14.3 32.9

Median CM 99.8 08.8 99.6 97.0 89.6 94.3 98.5 98.3 87.0 97.9
Percentile Rank | Qyrg 99.9 99.5 99.7 98.5 90.4 95.8 99.2 98.5 88.7 98.4
Mean CM 98.4 96.4 98.3 94.5 81.4 88.2 94.0) 94.9 77.6 94.8
Percentile Rank | Oyrg 98.5 97.2 98.5 93.8 79.9 89.0 94.9 95.0 78.7 95.2

Recall@N = the percentage of the ground truth complements in the top-N rank retrievals
Percentile Rank = percentage of partial shapes having ranks equal or greater than the rank

of the ground truth complements



Limitations

 Can complete only at the level of components

 May not be able to handle small and thin parts




Summary

* Proposed to jointly learn complementarity and
Interchangeabillity relations in dual embedding spaces

 Encoded complementarity and interchangeabillity as inter-
and /ntra-space relations

* Introduced a fuzzy set representation for an one-to-N
mapping



Questions?



Composite Shape Generation via
Latent Space Factorization

joint work with Fei Xia, Panos Achlioptas, Mira Shalah and Leonidas Guibas



Standard DL Generat
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Learning a Probabilistic Latent Space of Object Shapes
via 3D Generative-Adversarial Modeling
[Wu et al., NIPS 2016]
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GRASS: Generative Recursive Autoencoders for Shape Structures
[Li et al., SIGGRAPH 2017]

lon Pipeline

Learning Representations and Generative
Models for 3D Point Clouds
[Achlioptas et al., ICML 2018]
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Motivation from 2D Image Synthesis

Latent space disentangling in 2D Image composition

L.' ‘/'

ST-GAN: Spatial Transformer Generative
Neural Face Editing with Intrinsic Image Disentangling Adversarial Networks for Image Compositing

[Shu et al., SVPR 2017] [Lin et al. CVPR 2018]

(c) Varying c2 from —2 to 2 on InfoGAN (Rotation)

InNfoGAN [Chen et al., NIPS 2016] LR-GAN: Layered Recursive GAN for Image Generation
[Yang et al. ICLR 2017]



Our goals

* Construct a factorized latent space which
encodes both shape geometry and its
semantic structure;

* Operate on unsegmented data;

* Perform shape composition and
decomposition in latent space.



Decomposer-Composer Network
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Decomposer-Composer Network

Binary
volumes

Decomposer maps
unlabeled shapes into a
factorized latent space

Decomposer

!

Semantic-part-aware latent
space with simple shape
composition operator

armrests
® seats
® backs
legs

Composer

RECONSTRUCTION

Labeled
volumes

Composer reconstructs
shapes with semantic part
labels from latent part
representations



Decomposer-Composer Network

Binary
volumes

* Decomposer maps
unlabeled shapes into a
factorized latent space

Decomposer

!

Semantic-part-aware latent
space with simple shape
composition operator

armrests
® seats
® backs
legs

Composer

PART EXCHANGE

Labeled
volumes

Composer reconstructs
shapes with semantic part
labels from latent part
representations



Simple Decomposer Network

Binary
volume
Semantic-part-aware latent
space with simple shape
composition operator

armrests
® seats
® backs
legs

Decomposer



(A) Binary
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Decomposer Network

(B) Projection
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Partition of the ldentity

 Embedding decomposition is unique and reversible if Py, ..., Pk
form a partition of the identity

(1) P? = P;,Vi,

(/

(2) P;P; = 0 whenever 1 # j,
(3) Pr+..+ Pg =1,

e Then, {P}X, divide R" into K subspaces {V;}X, such that




Decomposer Network

(B) Projection
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Simple Composer Network

(B) Projection

matrices g Volumetric decoder mirroring
Projection i the full shape encoder
Po :
(A) Binary Projection
Shape P1
Encoder
Binary n-D Labeled
volume encoding volume
Projection
Pk
GT Reconstructed GT Reconstructed
n-D p_art : .
eneodings ; No control over part transformations

Fails to reconstruct thin parts and fine details



Proposed Composer Network

Proposed approach

* Reconstruct scaled parts separately

o Use a 3D Spatial Transformer Net to
compose shape from parts

 Assumption: affine transformations
suffice to compose plausible shape



Proposed Composer Network
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Shape Decomposition and Composition

RECONSTRUCTION

_ Decomposer Composer
Binary Labeled
volumes armrests volumes

® seats
® backs
legs

Training shapes provide supervision for shape reconstruction



Shape Decomposition and Composition

PART EXCHANGE

Decomposer Composer

Binary Labeled
volumes armrests volumes

® seats
® backs
legs

No supervision for shape composition from random parts



Cycle Consistency Constraint

l Decomposer Mix p_art Composer
encodings
Cycle Loss
T _________ Volumes with

mixed parts

E AN N S

Labeled Composer De-mixpart  pocomposer
(or binary) encodinas
volume

* Different approach: GAN-type loss (constraints results to training
shapes’ manifold)



Loss Function

Per-part cross entropy Whole-model cross entropy
reconstruction loss reconstruction loss
L= WPILPI T W partLpart T thnsLtmns T tholeLwhole T chcleLcycle

A A A

“Partition of the identity” Cycle consistency loss

Lo(P;, .. .. Pk)—ZHPz P12 + 2 IPPI7+ 1Py + ... P —1lI7
i, =1,

LF]

Lo loss for 12-D affine
transformation parameters



Evaluation



Projection matrices
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Projection matrix singular values



Latent space visualization (t-SNE)

*Legs

Armrests
BEmpty seat
BEmpty back
OEmpty legs
OEmpty armrests







Legs
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Part exchange
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Random part composition




Full and Partial Shape Interpolation
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Ablation study

Metric mloU .. Classifier Symmetry
m mloU (parts) Connectivity accuracy score

Rec. Rec. | Rec. | Swap | Mix | Rec. | Swap | Mix | Rec. | Swap | Mix
Our method 0.64 065 | 082 | 071 | 0.65 | 095 | 0.89 | 0.83 | 095 | 0.95 | 0.95
W/o cycle loss 0.63 066 | 074 | 0.62 | 054 | 093 | 084 | 0.80 | 0.96 | 0.96 | 0.95
Fixed projection 0.63 065 | 0.72 | 0.61 | 058 | 094 | 086 | 0.77 | 094 | 0.95 | 0.95
Composer w/o STN 0.75 0.8 069 | 048 [ 023 1095 | 09 | 071 | 095 | 091 | 0.85
Naive placement - - - 0.68 | 0.62 | 0.61 | 047 | 0.21 - 0.96 | 0.96
ComplementMe - - - 0.71 | 047 - 0.66 | 043 - 0.66 | 0.43
Segmentation+STN - - : 0.41 | 0.64 - 0.64 | 0.36 : 0.77 | 0.77

Evaluation metrics: mean Intersection over Union (mlolU), per-part mean loU (mloU (parts)),
shape connectivity measure, binary shape classifier accuracy, and shape symmetry score.




Limitations and future work

e Low resolution

 Use point cloud / memory-efficient voxel representation / mesh

* No measure of part compatibility

* Model statistical dependence between parts

* Separate part reconstruction and placement may fail to produce
plausible result

 Part connectivity constrains / in-network assessment
of composition quality / iterative placement




Future Directions

* Relation to other disentangled representations in machine learning
 Unsupervised learning of factors of variation

background brightness nuﬂaﬂﬂaa‘
hair colour nﬂaaaaddd

azimuth aa“..aﬂa

skin tone ...aaﬂﬂﬂﬂ

InfoGAN [Chen et al., NIPS 2016] B-VAE [Higgins et al., ICLR 2017] Factor-VAE [Kim and Mnih., NIPS 2017 Workshop]

(c) Varying c2 from —2 to 2 on InfoGAN (Rotation)

“Having a representation that is well suited to the particular task and data

domain can significantly improve the learning success and robustness of
the chosen model (Bengio et al., 2013).” [Higgins et al., B-VAE]



https://sites.google.com/view/disentanglenips2017
https://sites.google.com/view/disentanglenips2017
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https://anastasiadk.github.io/



