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Component-based Shape Modeling
Bring components from different objects to create new object

[Sung et al., 2017]



Large-scale 3D Shape Repositories

CAD parts Semantic segmentation [Yi et al., 2016]



Previous work

Modeling by Example 
[Funkhouser et al., 2004]

[Chaudhuri et al., 2011]

[Kalogerakis et al., 2012]



Challenges

• CAD model segments are inconsistent and unlabeled

• Part annotation is expensive; may be unavailable at test time 

• Hard to define proper names and boundaries of parts

[Chaudhuri et al., 2011]

Name?

Boundary?
[Funkhouser et al., 2004]



This Talk

Retrieval

Query

Shape Completion
From dateset with unlabeled 
and inconsistent components 

Composite modeling
Using unsegmented shapes 
via latent space factorization 

Back
Seat

Legs



Learning Fuzzy Set Representations of Partial 
Shapes on Dual Embedding Spaces 

joint work with Minhyuk Sung, Vladimir G. Kim and Leonidas Guibas. SGP 2018.



Problem definition
Learn relations among partial shapes, so that we can

• Complete an object with a single retrieval


• Discover group-to-group relations

RetrievalQuery

Interchangeable

Sung, Dubrovina, et al., SGP 2018



Relations Among Partial Shapes
Learn relations among partial shapes


• Complementarity


• Interchangeability
Interchangeable

Interchangeable
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Relations Among Partial Shapes
Complementarity 
: Two partial shapes can be 
combined into a complete and 
plausible object
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Relations Among Partial Shapes
Interchangeability 
: Replacing one with the 
other still produces a 
plausible object

Interchangeable

Interchangeable



Our Approach
Jointly encode complementary and interchangeable relations 
in dual embedding spaces

g

f
Complementary

Interchangeable

Interchangeable
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Complementarity
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Graph Illustration
• Consider a graph of complementary relations

• Infer unseen relations

Observed

Unseen



Dual Embedding Space
Create two embedding spaces

• All partial shapes present in both spaces

• Naïve idea: One space mirrors complements from the other 

space

g
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Dual Embedding Space
Problem: Embedding collapse
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Dual Embedding Space
Problem: Embedding collapse
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Dual Embedding Space
Problem: Embedding collapse

g

p q

sr

f

Not complementary!

f(q) = g(r) f(r) = g(q)

𝑔(𝑟) = 𝒈(𝒔) 𝑔(𝑝) = 𝒈(𝒒)

𝑓(𝑝) = 𝒇(𝒒) 𝑓(𝑟) = 𝒇(𝒔)



Complementarity as Set Inclusion
• Represent shapes by sets in embedding spaces, and

• Encode 1-to-N mapping as set inclusion

⋯⋯ ⋯
Complementary



Complementarity as Set Inclusion
Encode 1-to-N mapping as set inclusion
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Complementarity as Set Inclusion
Encode 1-to-N mapping as set inclusion

p q

sr

𝑓(𝑝) 𝑓(𝑞) 𝑓(𝑟) 𝑓(𝑠)
Complement 

space

Query 
space

𝑔(𝑟) 𝒈(𝒔) 𝒈(𝒑) 𝑔(𝑞)



Fuzzy Sets
Fuzzy set theory [Zadeh, 1965]
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Fuzzy Set Inclusion
Inclusion indication operator

𝑥

𝑦

𝑥 ⊆ 𝑦 ⟺
𝐷

⋀
𝑖=1

𝑥𝑖 ≤ 𝑦𝑖

[Vendrov et al., 2016]

(𝑥 ⊆ 𝑦)𝑖 = (𝑥𝑖 ≤ 𝑦𝑖)



Embedding as Set Inclusion
Inclusion representation in the dual embedding space
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Embedding as Set Inclusion
Inclusion representation in the dual embedding space
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Complementarity Energy Function
• Inclusion Energy Function

ReLU

E( f(x) ⊆ g(y)) = ∑
i

max (0, f(x)i − g(y)i)2

f(𝑥)

g(𝑦)
( f(𝑥) ⊆ g(𝑦))𝑖 = ( f(𝑥)𝑖 ≤ g(𝑦)𝑖)



Complementarity Energy Function
• Inclusion Energy Function


• Complementarity Energy Function

ReLU

E( f(x) ⊆ g(y)) = ∑
i

max (0, f(x)i − g(y)i)2

Ec(x, y) = E (f(x) ⊆ g(y)) + E (f(y) ⊆ g(x))



Interchangeability
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Our Training Data
• Complementary pairs are created by splitting objects 
•No supervision for interchangeability is given


• Learn interchangeability from complementarity



Interchangeability
Similar embedding fuzzy sets (of x and y)

• Have large intersection in the query space ( g )

• Have a small union in the complement space ( f )

max(𝐸(𝑓(𝑥) ⊆ 𝑔(𝑧)), 𝐸(𝑓(𝑦) ⊆ 𝑔(𝑧))) ≤ 𝐸(𝒇(𝒙) ∨ 𝒇(𝒚) ⊆ 𝑔(𝑧))

max(𝐸(𝑓(𝑧) ⊆ 𝑔(𝑥)), 𝐸(𝑓(𝑧) ⊆ 𝑔(𝑦))) ≤ 𝐸(𝑓(𝑧) ⊆ 𝒈(𝒙) ∧ 𝒈(𝒚))



Interchangeability
Similar embedding fuzzy sets (of x and y)

• Have large intersection in the query space ( g )

• Have a small union in the complement space ( f )

Er(x, y) = ∥f(x) ∨ f(y)∥2
2 − ∥g(x) ∧ g(y)∥2

2
large intersectionsmall union

(𝑥 ∧ 𝑦)𝑖 = min(𝑥𝑖, 𝑦𝑖) (𝑥 ∨ 𝑦)𝑖 = max(𝑥𝑖, 𝑦𝑖)



Neural Network Architecture
Dual siamese structure for a pair of complementary shapes

𝒙

𝒚 𝒇
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𝑬𝒄(𝒚 → 𝒙)

𝑬𝒄(𝒙 → 𝒚)
𝑬𝒄(𝒙, 𝒚)



Neural Network Training Details
• PointNet [Qi et al., 2017] for f and g 

Convert a mesh to 1K point samples 

• Ranking Loss [Socher et al., 2014] 
Randomly split shapes into pairs of connected component sets

MLP (64,64,64,128,1024)

MLP (512,256,D)

(N3) (N)

()
Max 
pool

Shared (D)

Query X
Positive 
Complement 

Ec(X, Y)

Negative 
Complement 

Ec(X, Z)+ 𝛼 ≤



Evaluation



Complementary Shape Retrievals

Query (pink) Top-ranked Retrievals (green)



Interchangeable Shape Retrievals

Query Top-ranked Retrievals



Comparison and Quantitative Evaluation

ComplementMe [Sung et al., 2017] 
• Assemble components iteratively 
• Learn a relation from a partial shape to a single component



Complementarity Evaluation
Evaluation metrics using ranks of ground truth complements

Recall@N = the percentage of the ground truth complements in the top-N rank retrievals

Percentile Rank = percentage of partial shapes having ranks equal or greater than the rank 
of the ground truth complements 



Limitations
• Can complete only at the level of components


• May not be able to handle small and thin parts 



Summary
• Proposed to jointly learn complementarity and 

interchangeability relations in dual embedding spaces


• Encoded complementarity and interchangeability as inter- 
and intra-space relations


• Introduced a fuzzy set representation for an one-to-N 
mapping




Questions?



Composite Shape Generation via 
Latent Space Factorization

joint work with Fei Xia, Panos Achlioptas, Mira Shalah and Leonidas Guibas



Standard DL Generation Pipeline

Learning a Probabilistic Latent Space of Object Shapes  
via 3D Generative-Adversarial Modeling 

[Wu et al., NIPS 2016]

Learning Representations and Generative 
Models for 3D Point Clouds 
[Achlioptas et al., ICML 2018]

GRASS: Generative Recursive Autoencoders for Shape Structures 
[Li et al., SIGGRAPH 2017]

Global-to-Local Generative Model for 3D Shapes 
[Wang et al., SIGGRAPH Asia 2018]



Motivation from 2D Image Synthesis

Neural Face Editing with Intrinsic Image Disentangling 
[Shu et al., SVPR 2017]

Latent space disentangling in 2D

 

InfoGAN [Chen et al., NIPS 2016]

Image composition

ST-GAN: Spatial Transformer Generative 
Adversarial Networks for Image Compositing

[Lin et al. CVPR 2018]

LR-GAN: Layered Recursive GAN for Image Generation
[Yang et al. ICLR 2017]

+ =



Our goals

• Construct a factorized latent space which 
encodes both shape geometry and its 
semantic structure; 

• Operate on unsegmented data;


• Perform shape composition and 
decomposition in latent space.



Decomposer-Composer Network

Decomposer

Semantic-part-aware latent 
space with simple shape 

composition operator
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• Decomposer maps 
unlabeled shapes into a 
factorized latent space

Composer



Decomposer-Composer Network

Decomposer

Semantic-part-aware latent 
space with simple shape 

composition operator

Binary 
volumes

• Decomposer maps 
unlabeled shapes into a 
factorized latent space

Composer

• Composer reconstructs 
shapes with semantic part 
labels from latent part 
representations

Labeled 
volumes

RECONSTRUCTION
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Decomposer-Composer Network

Binary 
volumes

Decomposer
Labeled 
volumes

Composer

• Decomposer maps 
unlabeled shapes into a 
factorized latent space

• Composer reconstructs 
shapes with semantic part 
labels from latent part 
representations

PART EXCHANGE
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Simple Decomposer Network
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Simple Decomposer Network
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Decomposer Network

Binary
volume

(A) Binary
Shape

Encoder

n-D
encoding

Projection
P0

Projection
P1

Projection
PK

…

Decomposer

n-D part
encodings

(B) Projection 
matrices

Learned projection 
matrices
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Partition of the Identity
• Embedding decomposition is unique and reversible if  P1, … , Pk  

form a partition of the identity


• Then,              divide         into K subspaces                such that 
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CVPR 2019 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Transform networks Angjoo,Riza,Ersin

Deep latent space factorization

Projection networks Mention networks with projection
layers.

3. Our model
Overview Short overview (one-two paragraphs) - TODO.
Mention ulabeled input and output labeled with K part la-
bels.

A schematic representation of the proposed model is
shown in Figure 2.

(Re-position and re-write: We opted to have different
parts embedded into different subspaces of V , as vs. hav-
ing separate embedding spaces for each semantic part, in
order to be able to re-use the same shared part decoder in
the Composer network.)

From ”Deep Visual-Semantic Alignments for Generating
Image Descriptions”: ”Overview. The ultimate goal of our
model is to generate descriptions of image regions. Dur-
ing training, the input to our model is a set of images and
their corresponding sentence descriptions (Figure 2). We
first present a model that aligns sentence snippets to the
visual regions that they describe through a multimodal em-
bedding. We then treat these correspondences as training
data for a second, multimodal Recurrent Neural Network
model that learns to generate the snippets.”

3.1. Decomposer network
The Decomposer network is trained to embed unlabeled

shapes, constructed of a set of semantic parts, into a factor-
ized embedding space, reflecting the shared semantic struc-
ture of the shape collection. To allow for it to be used
for composite shape synthesis, two properties of such an
embedding space are factorization consistency across input
shapes, and existence of a simple shape composition op-
erator to combine different semantic factors. Specifically,
we propose to model this embedding space V as a direct
sum of subspaces {Vi}Ki=1, where K is the semantic part
number, and each subspace {Vi} corresponds to a semantic
part i, thus satisfying the factorization consistency property.
The second property is ensured by the fact that every vec-
tor v 2 V is given by a sum of (unique) vi 2 Vi, so that
part composition may be performed by part embedding co-
ordinate summation. This also implies that the decomposi-
tion and composition operations in the embedding space are
fully reversible.

A simplest approach for such a factorization is to split
the dimensions in the n-dimensional embedding space into
K coordinate groups, each group representing a certain se-
mantic part embedding. Put differently, this means that

a full shape embedding is a concatenation of part embed-
dings, which was utilized in [3]. This, however, poses a
hard constraint on the size, and therefore - the representa-
tion capacity of each part embedding subspace. Given that
different semantic parts may have different geometric com-
plexity, this organization may be sub-optimal.

Instead, to produce data driven factorization, we propose
to learn the division of the embedding space into semantic
subspaces. To achieve that, we model the factorization into
different subspaces by part-specific projection matrices, de-
noted by {Pi}Ki=1 2 Rn⇥n. To ensure that the above two
factorization properties hold, and the V if factorized into
{Vi}Ki=1 such that V = V1 � ...� Vk (direct sum property),
these projection matrices must form a partition of the iden-
tity. Namely, {Pi}Ki=1 must satisfy three following proper-
ties

(1) P 2
i = Pi, 8i,

(2) PiPj = 0 whenever i 6= j,

(3) P1 + ...+ PK = I, (1)

where 0 and I are all-zeros and an identity matrices of size
n⇥ n.

In practice, we implement these projection operators by
fully connected projection layers without added biases, with
total of K ⇤ n2 variables, constrained as in Equation 1.
This stands in contrast to implementing K subnetworks to
produce these projection matrices, which would require far
greater number of parametes. For the encoder, we used
a standard architecture with several 3D convolution lay-
ers with batch normalization and ReLU non-linearities, fol-
lowed by a fully connected layer. See supplemental material
for more detail. The parameters of the shape encoder and
the projection layers are learned simultaneously. The re-
sulting architecture of the Decomposer network is schemat-
ically described in Figure 2.

3.2. Composer network
The composer network is trained to reconstruct shapes

from sets of semantic part embedding coordinates. We as-
sume these part embedding sets are valid, in the sense that
each set includes at most one embedding coordinated per
semantic part type. The composer produces an output shape
labeled with semantic part labels.

The simplest approach is to model the composer as a sin-
gle decoder mirroring the full shape encoder, described in
the previous section. Such an approach was used in [3], for
instance. However, the drawback of this nave approach is its
inability to reconstruct thin shape parts, like thin chair legs,
or fine shape details, as we will illustrate in Section ???. To
address this concern, we utilize a different approach, where
we first reconstruct shape parts separately, and then deform
them to assemble the full reconstructed shape. In our model,

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#****

CVPR
#****

CVPR 2019 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Transform networks Angjoo,Riza,Ersin

Deep latent space factorization

Projection networks Mention networks with projection
layers.

3. Our model
Overview Short overview (one-two paragraphs) - TODO.
Mention ulabeled input and output labeled with K part la-
bels.

A schematic representation of the proposed model is
shown in Figure 2.

(Re-position and re-write: We opted to have different
parts embedded into different subspaces of V , as vs. hav-
ing separate embedding spaces for each semantic part, in
order to be able to re-use the same shared part decoder in
the Composer network.)

From ”Deep Visual-Semantic Alignments for Generating
Image Descriptions”: ”Overview. The ultimate goal of our
model is to generate descriptions of image regions. Dur-
ing training, the input to our model is a set of images and
their corresponding sentence descriptions (Figure 2). We
first present a model that aligns sentence snippets to the
visual regions that they describe through a multimodal em-
bedding. We then treat these correspondences as training
data for a second, multimodal Recurrent Neural Network
model that learns to generate the snippets.”

3.1. Decomposer network
The Decomposer network is trained to embed unlabeled

shapes, constructed of a set of semantic parts, into a factor-
ized embedding space, reflecting the shared semantic struc-
ture of the shape collection. To allow for it to be used
for composite shape synthesis, two properties of such an
embedding space are factorization consistency across input
shapes, and existence of a simple shape composition op-
erator to combine different semantic factors. Specifically,
we propose to model this embedding space V as a direct
sum of subspaces {Vi}Ki=1, where K is the semantic part
number, and each subspace {Vi} corresponds to a semantic
part i, thus satisfying the factorization consistency property.
The second property is ensured by the fact that every vec-
tor v 2 V is given by a sum of (unique) vi 2 Vi, so that
part composition may be performed by part embedding co-
ordinate summation. This also implies that the decomposi-
tion and composition operations in the embedding space are
fully reversible.

A simplest approach for such a factorization is to split
the dimensions in the n-dimensional embedding space into
K coordinate groups, each group representing a certain se-
mantic part embedding. Put differently, this means that

a full shape embedding is a concatenation of part embed-
dings, which was utilized in [3]. This, however, poses a
hard constraint on the size, and therefore - the representa-
tion capacity of each part embedding subspace. Given that
different semantic parts may have different geometric com-
plexity, this organization may be sub-optimal.

Instead, to produce data driven factorization, we propose
to learn the division of the embedding space into semantic
subspaces. To achieve that, we model the factorization into
different subspaces by part-specific projection matrices, de-
noted by {Pi}Ki=1 2 Rn⇥n. To ensure that the above two
factorization properties hold, and the V if factorized into
{Vi}Ki=1 such that V = V1 � ...� Vk (direct sum property),
these projection matrices must form a partition of the iden-
tity. Namely, {Pi}Ki=1 must satisfy three following proper-
ties

(1) P 2
i = Pi, 8i,

(2) PiPj = 0 whenever i 6= j,

(3) P1 + ...+ PK = I, (1)
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fully connected projection layers without added biases, with
total of K ⇤ n2 variables, constrained as in Equation 1.
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produce these projection matrices, which would require far
greater number of parametes. For the encoder, we used
a standard architecture with several 3D convolution lay-
ers with batch normalization and ReLU non-linearities, fol-
lowed by a fully connected layer. See supplemental material
for more detail. The parameters of the shape encoder and
the projection layers are learned simultaneously. The re-
sulting architecture of the Decomposer network is schemat-
ically described in Figure 2.

3.2. Composer network
The composer network is trained to reconstruct shapes

from sets of semantic part embedding coordinates. We as-
sume these part embedding sets are valid, in the sense that
each set includes at most one embedding coordinated per
semantic part type. The composer produces an output shape
labeled with semantic part labels.

The simplest approach is to model the composer as a sin-
gle decoder mirroring the full shape encoder, described in
the previous section. Such an approach was used in [3], for
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shapes, and existence of a simple shape composition op-
erator to combine different semantic factors. Specifically,
we propose to model this embedding space V as a direct
sum of subspaces {Vi}Ki=1, where K is the semantic part
number, and each subspace {Vi} corresponds to a semantic
part i, thus satisfying the factorization consistency property.
The second property is ensured by the fact that every vec-
tor v 2 V is given by a sum of (unique) vi 2 Vi, so that
part composition may be performed by part embedding co-
ordinate summation. This also implies that the decomposi-
tion and composition operations in the embedding space are
fully reversible.

A simplest approach for such a factorization is to split
the dimensions in the n-dimensional embedding space into
K coordinate groups, each group representing a certain se-
mantic part embedding. Put differently, this means that

a full shape embedding is a concatenation of part embed-
dings, which was utilized in [3]. This, however, poses a
hard constraint on the size, and therefore - the representa-
tion capacity of each part embedding subspace. Given that
different semantic parts may have different geometric com-
plexity, this organization may be sub-optimal.

Instead, to produce data driven factorization, we propose
to learn the division of the embedding space into semantic
subspaces. To achieve that, we model the factorization into
different subspaces by part-specific projection matrices, de-
noted by {Pi}Ki=1 2 Rn⇥n. To ensure that the above two
factorization properties hold, and the V if factorized into
{Vi}Ki=1 such that V = V1 � ...� Vk (direct sum property),
these projection matrices must form a partition of the iden-
tity. Namely, {Pi}Ki=1 must satisfy three following proper-
ties

(1) P 2
i = Pi, 8i,

(2) PiPj = 0 whenever i 6= j,

(3) P1 + ...+ PK = I, (1)

where 0 and I are all-zeros and an identity matrices of size
n⇥ n.

In practice, we implement these projection operators by
fully connected projection layers without added biases, with
total of K ⇤ n2 variables, constrained as in Equation 1.
This stands in contrast to implementing K subnetworks to
produce these projection matrices, which would require far
greater number of parametes. For the encoder, we used
a standard architecture with several 3D convolution lay-
ers with batch normalization and ReLU non-linearities, fol-
lowed by a fully connected layer. See supplemental material
for more detail. The parameters of the shape encoder and
the projection layers are learned simultaneously. The re-
sulting architecture of the Decomposer network is schemat-
ically described in Figure 2.

3.2. Composer network
The composer network is trained to reconstruct shapes

from sets of semantic part embedding coordinates. We as-
sume these part embedding sets are valid, in the sense that
each set includes at most one embedding coordinated per
semantic part type. The composer produces an output shape
labeled with semantic part labels.

The simplest approach is to model the composer as a sin-
gle decoder mirroring the full shape encoder, described in
the previous section. Such an approach was used in [3], for
instance. However, the drawback of this nave approach is its
inability to reconstruct thin shape parts, like thin chair legs,
or fine shape details, as we will illustrate in Section ???. To
address this concern, we utilize a different approach, where
we first reconstruct shape parts separately, and then deform
them to assemble the full reconstructed shape. In our model,
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hard constraint on the size, and therefore - the representa-
tion capacity of each part embedding subspace. Given that
different semantic parts may have different geometric com-
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Instead, to produce data driven factorization, we propose
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tity. Namely, {Pi}Ki=1 must satisfy three following proper-
ties
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(2) PiPj = 0 whenever i 6= j,

(3) P1 + ...+ PK = I, (1)

where 0 and I are all-zeros and an identity matrices of size
n⇥ n.

In practice, we implement these projection operators by
fully connected projection layers without added biases, with
total of K ⇤ n2 variables, constrained as in Equation 1.
This stands in contrast to implementing K subnetworks to
produce these projection matrices, which would require far
greater number of parametes. For the encoder, we used
a standard architecture with several 3D convolution lay-
ers with batch normalization and ReLU non-linearities, fol-
lowed by a fully connected layer. See supplemental material
for more detail. The parameters of the shape encoder and
the projection layers are learned simultaneously. The re-
sulting architecture of the Decomposer network is schemat-
ically described in Figure 2.

3.2. Composer network
The composer network is trained to reconstruct shapes

from sets of semantic part embedding coordinates. We as-
sume these part embedding sets are valid, in the sense that
each set includes at most one embedding coordinated per
semantic part type. The composer produces an output shape
labeled with semantic part labels.

The simplest approach is to model the composer as a sin-
gle decoder mirroring the full shape encoder, described in
the previous section. Such an approach was used in [3], for
instance. However, the drawback of this nave approach is its
inability to reconstruct thin shape parts, like thin chair legs,
or fine shape details, as we will illustrate in Section ???. To
address this concern, we utilize a different approach, where
we first reconstruct shape parts separately, and then deform
them to assemble the full reconstructed shape. In our model,

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

CVPR
#****

CVPR
#****

CVPR 2019 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Transform networks Angjoo,Riza,Ersin

Deep latent space factorization

Projection networks Mention networks with projection
layers.

3. Our model
Overview Short overview (one-two paragraphs) - TODO.
Mention ulabeled input and output labeled with K part la-
bels.

A schematic representation of the proposed model is
shown in Figure 2.

(Re-position and re-write: We opted to have different
parts embedded into different subspaces of V , as vs. hav-
ing separate embedding spaces for each semantic part, in
order to be able to re-use the same shared part decoder in
the Composer network.)

From ”Deep Visual-Semantic Alignments for Generating
Image Descriptions”: ”Overview. The ultimate goal of our
model is to generate descriptions of image regions. Dur-
ing training, the input to our model is a set of images and
their corresponding sentence descriptions (Figure 2). We
first present a model that aligns sentence snippets to the
visual regions that they describe through a multimodal em-
bedding. We then treat these correspondences as training
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shapes, constructed of a set of semantic parts, into a factor-
ized embedding space, reflecting the shared semantic struc-
ture of the shape collection. To allow for it to be used
for composite shape synthesis, two properties of such an
embedding space are factorization consistency across input
shapes, and existence of a simple shape composition op-
erator to combine different semantic factors. Specifically,
we propose to model this embedding space V as a direct
sum of subspaces {Vi}Ki=1, where K is the semantic part
number, and each subspace {Vi} corresponds to a semantic
part i, thus satisfying the factorization consistency property.
The second property is ensured by the fact that every vec-
tor v 2 V is given by a sum of (unique) vi 2 Vi, so that
part composition may be performed by part embedding co-
ordinate summation. This also implies that the decomposi-
tion and composition operations in the embedding space are
fully reversible.

A simplest approach for such a factorization is to split
the dimensions in the n-dimensional embedding space into
K coordinate groups, each group representing a certain se-
mantic part embedding. Put differently, this means that

a full shape embedding is a concatenation of part embed-
dings, which was utilized in [3]. This, however, poses a
hard constraint on the size, and therefore - the representa-
tion capacity of each part embedding subspace. Given that
different semantic parts may have different geometric com-
plexity, this organization may be sub-optimal.

Instead, to produce data driven factorization, we propose
to learn the division of the embedding space into semantic
subspaces. To achieve that, we model the factorization into
different subspaces by part-specific projection matrices, de-
noted by {Pi}Ki=1 2 Rn⇥n. To ensure that the above two
factorization properties hold, and the V if factorized into
{Vi}Ki=1 such that V = V1 � ...� Vk (direct sum property),
these projection matrices must form a partition of the iden-
tity. Namely, {Pi}Ki=1 must satisfy three following proper-
ties

(1) P 2
i = Pi, 8i,

(2) PiPj = 0 whenever i 6= j,
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where 0 and I are all-zeros and an identity matrices of size
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In practice, we implement these projection operators by
fully connected projection layers without added biases, with
total of K ⇤ n2 variables, constrained as in Equation 1.
This stands in contrast to implementing K subnetworks to
produce these projection matrices, which would require far
greater number of parametes. For the encoder, we used
a standard architecture with several 3D convolution lay-
ers with batch normalization and ReLU non-linearities, fol-
lowed by a fully connected layer. See supplemental material
for more detail. The parameters of the shape encoder and
the projection layers are learned simultaneously. The re-
sulting architecture of the Decomposer network is schemat-
ically described in Figure 2.

3.2. Composer network
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from sets of semantic part embedding coordinates. We as-
sume these part embedding sets are valid, in the sense that
each set includes at most one embedding coordinated per
semantic part type. The composer produces an output shape
labeled with semantic part labels.

The simplest approach is to model the composer as a sin-
gle decoder mirroring the full shape encoder, described in
the previous section. Such an approach was used in [3], for
instance. However, the drawback of this nave approach is its
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or fine shape details, as we will illustrate in Section ???. To
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Shape Decomposition and Composition
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Cycle Consistency Constraint 

• Different approach: GAN-type loss (constraints results to training 
shapes’ manifold) 
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Loss Function

L = wPILPI + wpartLpart + wtransLtrans + wwholeLwhole + wcycleLcycle

L2 loss for 12-D affine 
transformation parameters

LPI(P1, . . . , Pk) =
K

∑
i=1

∥P2
i − Pi∥2

F +
K

∑
i, j = 1,

i ≠ j

∥PiPj∥2
F + ∥P1 + . . . PK − I∥2

F

“Partition of the identity” Cycle consistency loss

Whole-model cross entropy 
reconstruction loss

Per-part cross entropy 
reconstruction loss



Evaluation



Projection matrices

PSeat PBack PLegs PArmrests ∑ Pi

Projection matrix singular values



Latent space visualization (t-SNE)



Shape reconstruction



Part exchange

GT1 GT2Reconstructed1 Reconstructed2Swapped1 Swapped2



Random part composition



Full and Partial Shape Interpolation



Ablation study

Evaluation metrics: mean Intersection over Union (mIoU), per-part mean IoU (mIoU (parts)), 
shape connectivity measure, binary shape classifier accuracy, and shape symmetry score.




Limitations and future work
• Low resolution

• Use point cloud / memory-efficient voxel representation / mesh


• No measure of part compatibility

• Model statistical dependence between parts


• Separate part reconstruction and placement may fail to produce 
plausible result

• Part connectivity constrains / in-network assessment                         

of composition quality / iterative placement



Future Directions
• Relation to other disentangled representations in machine learning

• Unsupervised learning of factors of variation


• NIPS 2017 Workshop on Learning Disentangled Representations. https://sites.google.com/
view/disentanglenips2017

ß-VAE [Higgins et al., ICLR 2017] Factor-VAE [Kim and Mnih., NIPS 2017 Workshop]

“Having a representation that is well suited to the particular task and data 
domain can significantly improve the learning success and robustness of 

the chosen model (Bengio et al., 2013).” [Higgins et al., ß-VAE]

InfoGAN [Chen et al., NIPS 2016]

https://sites.google.com/view/disentanglenips2017
https://sites.google.com/view/disentanglenips2017


THANK YOU

https://anastasiadk.github.io/


