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Graphical Models

"' Graphical Models are families of multivariate distributions with compact representations
scaling to very large numbers of variables!

" Why do we need compact representations? !

even for binary random variables, specibcation of a general multivariate distribution over
p variables requires O(2r) values !

In general, parametrizing higher-order dependencies among random variables scales
poorly (typically exponentially) with number of variables!

"' Graphical models only require OlocalO specibcations based on graph neighborhoods
(associating variables to graph nodes), and hence scale well to large number of variables!

Undirected graphical models, also called Markov networks, or Markov random Pelds: family
represented by an undirected graph !

Directed graphical models, also called Bayesian networks: family represented by a directed
acyclic graph (DAG)



Directed Graphical Models

X =(X1,...,Xp) ! directed graphical model with DAG G = (V, E) If:

1P
P(X;G) = P(lexpaj)’
j=1

¥ pa is the set of parents of nodg " V

¥ associating variablesX;, for ] " [p], with nodes] " V

Only requires local specibcations of conditional distributions of variables
given its OparentO variables



Directed Graphical Models

The DAG G encodes the conditional independence assumptions satisbdy
resulting distributions simply as:

X] ” )(ndJ |Xpaj,"J #V
¥ py Is set of parents of nodg # V

¥ nd; is set of non-descendants of nodg # V

Edges connote Odirect dependenceO that is more meaningful
than high correlation; underlying DAG G an object of interest
even when the full multivariate distribution is not!

Applications across biology (Sachs et al., 2005), genetics (Zhang
et al., 2013), causal inference (Spirtes et al., 2000), artipcial
Intelligence (Koller and Friedman, 2009), and many more



Learning DAGS

Graphical models: compact mode®xof, .. ., Xqg)
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Learning DAGS

" Two main classes of approaches!
"' Conditional Independence Test based!

"' test which conditional independences hold in the data, Pnd graph that best corresponds
to these!

caveats: many more conditional independences might hold in data (Olack of
faithfulnessO), sensitive to failure of individual tests + multiplicity of tests;
computationally less scalable!

"' Score based!

search for graph that optimizes some score (measuring goodness of bt of graph to data)!

" typically local search/greedy algorithms that greedily build graph !

NP-hard in general, need many model specibc heuristics to Oget it to workO



Learning DAGS

" Two main classes of approaches!

"' Conditional Independence Test based!

"' test which conditional independences hold in the data, Pnd graph that best corresponds
to these!

caveats: many more conditional independences might hold in data (Olack of
faithfulnessO), sensitive to failure of individual tests + multiplicity of tests;
computationally less scalable!

"' Score based!

'OThe disadvantage of the score-based approaches (for Bayesian networks) is
that they pose a search problem that may not have an elegant and e#cient
'solutionO E. Koller and Friedman (2009, pp. 785)

NP-hard in general, need many model specibc heuristics to Oget it to workO



Learning Bayesian Networks
vs Markov Networks

Markov!
Networks
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Learning DAGSs: Problem Setup

e Bayesian network (BN)G with d nodes:

| d

Pioint (X1, . .., Xd; G) = Pcond (X X pagj))
j=1

Structural Equation Models (SEMSs) specify the form of theseconditional dis-
tributions:

XJ - T(Xpaj 1'])

l; 1 noise distribution

We will be considering SEMs parameterized by a weighted
adjacency matrix W



Linear SEMs

e Weighted adjacency matrixv | RY' 9
| $

Wi 1 aaa Wi | aaa W1 ¢

. . . ?é)
W=# : R :
Wq" 1 é.ééWd" j é.é.éWd" d

The j-th columnw;: edge weights fronpa(j) to j.
e Linear BN:

T(Xpa(J)’ J) - x () -64:

linear Zero mean



Generalized Linear SEMs

o Weighted adjacency matrix W | R9' 9;
! $

Wir 1 aaawp j aaaw g

11 O
0

W =# . .

Wg" 1 éééij ééé%@'d

The J-th column w;: edge weights from pa(j) to j.

@ Generalized Linear BN:

(
P (X | Xpa)) = h(x) exp g(x) (x wj)" AXTw;j) |
so that:
E(X [ Xpag)) = T(3<_T*_|V_\_’,j)’
linear

for some function T (§. Examples: Logistic, Poisson, aaa



Generative Process: Linear SEMs

e Drawing one sample:
For each node In topological order ofG,

i I noise distribution
X = T (Xpagj): 1)

o Let X " R™ 9 pe collection ofn such samples:
| $

VY6 B

x=# = &
—X(n) _



Generative Process: Linear SEMs

e For|-th dimension ofi-th sample,

@ Collecting alli! [n], ! [d],

X=XW+ E

(nt d) (n! d)(d! d) (n! d)

@ Natural loss function:

1 7
(Wi X)= — "X # XW"
( ) 2N F



M-Estimation for DAGS

GivenX ! R" 9 solve
min (W X)

st. G(W)! DAG

Loss function:log-likelihood of data, with respect to SEM
model, given weighted adjacency matrix W!

"' Constraint:that W correspond to some DAG G!

" leads to di#cult combinatorial optimization problem



Smooth Characterization of
DAGS?

Smooth Characterization of DAG
Can we bnd a smooth function: R%! 9 1 R such that

h(W)=0 % G(W)$ DAG

holds?

will enable solvers based on continuous optimization,
similar to Markov networks, In contrast to solving via
constraint estimation, or local search in space of DAGs




Finite Power Series?

Consider binary adjacency matri ! {0,1}%" ¢
o |dea:

(B*)ij = num of k-step paths fromi to j
In other words,
tr(BX)=0 "# nok-cycles

e Candidate:

| vd  #
h(B) = tr B =0 % G(B)! DAG
k=1



Finite Power Series?

Consider binary adjacency matri ! {0,1}%" ¢
o ldea:

(B*)j = num of k-step paths fromi to j
In other words,
tr(BXY=0 %  nok-cycles

e Candidate:
lnd  #
h(B) = tr B =0 % G(B)! DAG
k=1
Caveat: number of k cycles increases exponentially
(il conditioned)



InPnite Power Series?

e |ldea: pushk to IinPnity

!
BX=(1! B) ?
k=0

e Candidate:

h(B)=tr(I! B 1! d=0 "% G(B)$ DAG



InPnite Power Series?

e |ldea: pushk to IinPnity

!!
BX=(1! B) ?
k=0

e Candidate:

h(B)=tr(I! B) '1 d=0 "% G(B) $ DAG

Caveat: requires invertibility of | - B !
(.e. that spectral radius of B < 1)



Matrix Exponential

e |ldea: Is there a series that always converges? Yes!

1 1
B — 2 3 L 7z 7
e —I+B+§B +§B + aaa

e Candidate:

h(B)= tr(e®)! d=0 % G(B)$ DAG



Matrix Exponential

e |ldea: Is there a series that always converges? Yes!

1 1
B — 2 3 L 7z 7
e —I+B+§B +§B + aaa

e Candidate:

h(B)= tr(e®)! d=0 % G(B)$ DAG

Caveat: requires that adjacency matrix B be binary



Matrix Exponential for
General Adjacency Matrices

e |ldea: for nonnegative matri$ ! Rﬂ! d

(Sk)ij = sum of weight products lond-step paths fromi to |
tr(SY=0 "# nok-cycles

e Real to nonnegative:
S=WS3$W
e Candidate:

hW)=tr(e¥ " W)%nd=0 "% G(W)! DAG



Smooth Characterization of
DAGS

Smooth Characterization of DAG
Can we bnd a smooth function: RY' 9 1 R such that

h(W)=0 "% G(W)$ DAG

holds?

Answer: Yed
hW)=tr(e¥""W)Ynd=0 % G(W)$ DAG
Furthermore, it has a simple gradient

&h(W)=(eV " WyT ' ow



New M-estimator for DAGS

GivenX ! R" 9 gsolve

min (W ; X)
W " Rd! d

st. h(W)=0



Optimization Algorithm:
Augmented Lagrangian

e Solve an equivalerhugmentedform

: . i
W{nIR!Q ] (W ; X) + éh (W)

st. h(W)=0
e Lagrangian
L(W,#)=(W;X)+ %hZ(W)+ #h(W)

@ Solve the dual:

smcl)oth, umﬁonstr%ifed

minmaxL(W,#) =max minL(W,#)
W ! ! W
# $| 1]
1d linear maximization




NO TEARS

Algorithm 1 Augmented Lagrangian

o Input: I',1 I''h,I h

o Fort=1,23,...
" Solve primalW;4; " argminy, L(W," ).
' Dual ascent’ 41 " "+ #1(Wi+1).

NOTEARS= Non-combinatorial Optimization via Trace Exponential anc
Augmented lagRangian for Structure learning



NO TEARS

Algorithm 1 Augmented Lagrangian

e Input: !',! 1 h,I h

o Fort =1,23,...
" Solve primalW;4; " argminy, L(W," ).
' Dual ascent’ 41 " "+ #1(Wi+1).

NOTEARS= Non-combinatorial Optimization via Trace Exponential anc
Augmented lagRangian for Structure learning

(Corollary 11.2.1, Nemirovski, 1999) (loosely)!

For " large enough, and with starting point # o near an optimum # '

+, the updates!
converge to # ! linearly.



NO TEARS

def notears simple(X, max iter=100, h tol=le-8, w_threshold=0.3):
n, d = X.shape
w_est, w new = np.zeros(d * d), np.zeros(d * d)
rho, alpha, h, h new = 1.0, 0.0, np.inf, np.inf
bnds = [(0, 0) if i == j else (None, None) for i in range(d) for j in range(d)]
for  in range(max iter):
while rho < le+20:
sol = sopt.minimize( func, w _est, method='L-BFGS-B', jac= grad, bounds=bnds)
w_new = sol.x
h new = h(w_new)
if h new > 0.25 * h:
rho *= 10
else:
break
w est, h = w new, h new
alpha += rho * h
if h <= h tol:
break
w_est[np.abs(w_est) < w_threshold] = 0
return w_est.reshape([d, d])

30 lines (function, gradient) + 20 lines (optimizel) 50 lines in total

In contrast to 1000s of lines of combinatorial optimization code $
(with model-specibc heuristics)!

Code available at: https://github.com/xunzheng/notears



Also amenable to structured
sparsity constraints on G

Prefer sparse graphs:

i L((W:X)+ " W
W!mF!Q!d (W ; X) 'WI,

st. h(W)=0
No longer smooth!

Proximal Quasi-Newton for augmented Lagrangian:

min LW, #)
=min (W;X)+ §hZ(W)+ #h(W)+" TW !,
W 2 $

smooth



Caveats with M-estimator

Constraint set Is non-convex!

Computing matrix exponential is O(d 3)!

With typical continuous optimization algorithms,
constraints are only satisbPed up to some tolerance!

"' due to which we add a post-processing thresholding
step to weighted adjacency matrix



Experiments

Random graphs: Erdos-Renyi (ER), Scale Free (SF)!
Samples n = {20, 1000}, variables d = {10, 20, 100, 200} !

Baseline: FGS (Fast Greedy Search; Ramsey et al 2016); state of art
Implementation of greedy equivalent search (GES; Chickering 2008); has
been known to outperform other local search techniques!

Metrics: !

False Discovery Rate (FDR): #false edges/#predicted edges!

"' Structural Hamming Distance (SHD): #false edges + #reversed edges
+ #missed edges$
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Heatmaps, n = 1000
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FDR, SHD, n = 1000
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n

" Graph F(W) F(Wg) F(W)

20 0 ER2 511 3.85 5.3¢
20 0.5 ER2 16.04 1281 134
1000 0 ER2 4.99 497  5.0:
1000 0.5 ER2 1593 13.32 14.0
20 0 SKF4 499 3.77 4.7(
20 0.5 SKF4 2333 16.19 17.3
1000 0 SKF4 4.96 494 5.0
1000 0.5 SF4 23.29 17.56 19.7

" W: ground truth!

Comparison to global
optimum

1 (WG’ W) IIW ! WGII 1 W ! WGII

3 -1.52 0.07 3.38
0 -0.68 0.12 3.15
> -0.05 0.02 0.40
6 -0.71 0.12 2.95
p -0.93 0.08 3.31
9 -1.12 0.15 5.08
9 -0.11 0.04 0.29
13 -2.13 0.13 4.34

" W_G: global optimum of NOTEARS M-estimator!

" 'W_hat: Aug. Lagrangian (near) limit point of NOTEARS M-estimator



Sensitivity to Initialization

Initialization: Wit ! Spherér) uniformly.
What happens if we vary the radius' [0, 20]7?

L2 distance to W _true
L2 dist to W_ti

dual ascent steps dual ascent steps

(Left) Population risk. (Right) Finite samplesn = 100.

(Surprisingly) robust to initialization.

Erdos-Renyi graph, Linear Gaussian SEM, d = 20, num edge = 20, $
n = {population, 200}, L1 regularization parameter = 0.1!

Each line plot is a random initialization with di%erent .



Real data example:
Cytometry Data

Raw measurement data from Sachs et al. (2005).

Expression levels of proteins and phospholipids in human immune sy
cells (n = 7466 d = 11, 20 edges).

consensus this work FGS

.
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.

o 2 4 6 8 10 0 2 4 6 8 10 0 2 4 o6 8 10



Summary

" We reduce learning DAGs to continuous optimization via a novel
M-estimator!

In contrast to conditional independence test based, and local
search based methods!

Bridges gap between Markov and Bayesian networks $
with respect to scalable estimation!

" Ongoing Work:!

" Analyze landscape of non-convex DAG regularization function:
conditions under which it is feasible to get to global optimum!

" Approximate fast solvers for matrix exponential



