
PDE Approaches for Deep Learning

Stan Osher
Department of Mathematics, UCLA

1/69

Deep Learning Advances
Science, Technology, Engineering, and Mathematics

2/69

While Deep Learning is Not Perfect!

3/69

Adversarial Vulnerability of Deep Neural Nets
Deep neural nets are vulnerable to the following attacks:

I Physical Attack (Attack during data acquisition)

I Poisoning Attack (Attack during training)
Add poisoning data will change the decision boundary!

I Inference Attack (Attack during testing)

4/69

Break Privacy of the Face Recognition System

Figure: An image recovered using model inversion attack (left) and a
training set image of the victim (right).

We can recover the sensitive training data by using the model-inversion

attack on the released deep learning based systems!

Fredrikson et al., Proc. CCS, 2016
5/69

Our Goal

We leverage ideas from PDEs to improve deep neural nets from
the following aspects:

I Adversarial Robustness

I Data Privacy

I Generalizability

I Nonconvex Optimization

6/69

Laplacian Smoothing (Stochastic) Gradient Descent

7/69

Pros of SGD

I Use training data efficiently.

Figure: Training Logistic regression model on RCV1 data. Courtesy
of Bottou, Curtis, and Nocedal.

I Make training deep neural nets possible.

I Computational efficiency.

8/69

Cons of SGD

I Weaker theoretical guarantee mainly dues to the variance of
SGD.

I Cannot protect the privacy of the training data, at least not a
good trade-off between privacy and utility.

9/69

Laplacian Smoothing Stochastic Gradient Descent

For any differentiable function F (w), consider

wk+1 = wk − γ(I − σL)−1∇F (wk).

Laplacian Smoothing Gradient Descent (LS-GD)

Note the condition number of (I − σL)−1 is 1 + 4σ.

High order schemes

wk+1 = wk − γ(I + (−1)nσLn)−1∇F (wk).

Osher, Wang, Yin, Luo, Barekat, Pham, and Lin, arXiv:1806.06317, 2018

Code: https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

10/69

https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

Implementation

Discrete form of (I − σL)−1 with periodic boundary condition

inv

1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
.
−σ 0 0 . . . −σ 1 + 2σ

I Thomas algorithm + Sherman Morrison formula.

I FFT: Given a vector a, a smoothed vector b can be obtained
by solving (I − σL)−1a = b. This is equivalent to
a = b− σL · b, or a = b− σv ∗ b, where
v = (−2, 1, 0, · · · , 0, 1) and ∗ is the convolutional operator.
Hence, we have

b = ifft

(
fft(a)

1− σ · fft(v)

)
,

11/69

LS(S)GD Allows to Take a Larger Step Size

I LSGD wk+1 = wk − γA−1
σ ∇F (wk), is equivalent to

vk+1 = vk − ηkH1/2
σ ∇F (H1/2

σ vk),

where vk = H−1/2
σ wk and Hσ = A−1

σ .

I Let v be uniformly distributed in the unit ball of the m dimensional `2

space. Then for any α >
√
β

1− π√
m

, we have

P
(
‖H1/2
σ v‖ ≥ α‖v‖

)
≤ 2 exp

− 2

π2
m

α− α π√
m
−
√
β

α + 1

2,
where β = 1

m

∑m
j=1

1
1+2σ−σzj−σz̄j

= 1+γm

(1−γm)
√

4σ+1
, zj being the j-th root of

unity, and γ = 2σ+1−
√

4σ+1
2σ

.

I Suppose F is L-Lipschitz, the largest step size for GD is 1/L. While, as m
is large enough, the largest step size for LSGD is 1√

βL
with high prob.

12/69

LSSGD Reduces Variance of the Stochastic Gradient

Assume the noise in SGD is Gaussian, n ∼ N (0,Σ), then we have
Proposition Let κ denote the condition number of the covariance matrix Σ.
Then, for m dimensional Gaussian random vector n ∼ N (0,Σ), we have∑m

i=1 Var[
(
(An

σ)−1n
)
i
]∑m

i=1 Var[(n)i]
≤ 1− 1

κ
+

1

κm

m∑
j=0

1

[1 + 4nσ sin2n(πj/m)]2
.

Table: Theoretical upper bound of
∑m

i=1 Var[((An
σ)−1n)

i
]∑m

i=1 Var[(n)i]
where n is

the order of smoothing (1: Laplacian smoothing; 2: biharmonic
smoothing, etc.), and n is an m-dimensional standard normal
vector with m ≥ 10000.

σ 1 2 3 4 5

n = 1 0.268 0.185 0.149 0.129 0.114
n = 2 0.279 0.231 0.207 0.192 0.181
n = 3 0.290 0.256 0.238 0.226 0.218

In practice, LS can reduce variance without Gaussian noise assumption.

We will show numerical results on variance reduction later!

13/69

Maximum/Minimum Principle and Preserving the Sum

Proposition For any g ∈ Rm, let d = (I + (−1)nσLn)−1 g, we have

‖d‖2
2 = ‖g‖2

2 − 2σ‖Dn
+d‖2

2 − σ2‖Lnd‖2
2

Proposition For any vector g ∈ Rm, d = A−1
σ g, let jmax = arg maxi di and

jmin = arg mini di . We have maxi di = djmax ≤ gjmax ≤ maxi gi and
mini di = djmin ≥ gjmin ≥ mini gi .

Proposition The operator A−1
σ preserves the sum of components. For any

g ∈ Rm and d = A−1
σ g, we have

∑
j dj =

∑
j gj , or equivalently, 1>d = 1>g.

Proposition Given vectors g and d = A−1
σ g, for any p ∈ N, it holds that

‖Dpd‖1 ≤ ‖Dpg‖1. The inequality is strict unless Dpg is a constant vector.

14/69

SGD for Convex Optimization
Consider quadratic function:

f (x1, x2, · · · x10) =
∑10

i=1

x2
i

a2
i
, ai = 1 if i is odd; 10 otherwise.

Add Gaussian noise to gradient to simulate SGD, i.e., ∇nf = ∇f + εN(0, I).

Figure: Solve quadratic function with different stochastic gradient descent

methods. (x0 = −(1, 1, · · · , 1), ε = 1, step size: 1e-3 (GD), 1.8e-3 (LSGD).)

LS helps to converge faster with/without Nesterov momentum and
reduces the optimality gap!
It is not real SGD! Next, we show the results of real SGD.

15/69

Minibatch LS-SGD v.s. SGD
We consider the following finite-sum optimization problem

min
x∈R50

1

N

N∑
i=1

(x− di)
T · (x− di)

where N = 20000, and we use batch size 20 for both SGD and
LS-SGD to find the center x1.

Figure: Left: trajectories of SGD and LS-SGD (2D cross section). Right:
Iteration v.s. Loss for SGD and LS-SGD. Step size: 1e-3 (SGD), 1.2e-3
(LS-SGD)

1
Due to professor Adam Oberman

16/69

Different Batch Size

Batch Size 2 Batch Size 5

Batch Size 10 Batch Size 20

17/69

Softmax Regression – Variance Reduction (Stochastic Gradient)

We apply LS-GD and LS-SGD with different σ and batch sizes to
compute the full batch gradient ∇L and stochastic gradient ∇̃L
along the descent paths. And then compute the maximum of the
coordinate-wise variance among 100 independent experiments.

Table: The maximum variance of the stochastic gradient
generated by LS-SGD with different σ and batch size.

Batch Size 2 5 10 20 50

σ = 0 1.50E-1 5.49E-2 2.37E-2 1.01E-2 4.40E-3
σ = 1 3.40E-3 1.30E-3 5.45E-4 2.32E-4 9.02E-5
σ = 2 2.00E-3 7.17E-4 3.46E-4 1.57E-4 5.46E-5
σ = 3 1.40E-3 4.98E-4 2.56E-4 1.17E-4 3.97E-5

The numerical result is much better than theoretical upper bound!

18/69

SGD v.s. LS-SGD - Softmax Regression (Generalization)

Consider the MNIST hand written digits recognition by using the
Softmax regression. The models are trained by running 100 epochs
of SGD and LS-SGD respectively on the 60000 training instances
with batch size 100 and learning rate 0.05.

σ = 0 σ = 0.2 σ = 0.5 σ = 0.8

Figure: The histogram of generalization accuracies of the softmax
regression model trained with LS-SGD over 100 independent experiments
by using different σ.

19/69

Training LeNet with Small Batch Size

Figure: Architecture of LeNet5.

LeCun et al., Proc. IEEE,
1998

Figure: Generalization accuracy of
LeNet5 trained with different batch
sizes by SGD and LS-SGD.

20/69

Nonconvex Optimization – Rosenbrock Function

f (x) = f (x1, x2, · · · , xn) =

n/2∑
i=1

[100(x2
2i−1 − x2i)

2 + (x2i−1 − 1)2]

10D 100D 1000D

21/69

Circumvent Local Minima - An Illustration
Consider

f (x, y, z) = −4e
−
(

(x−π)2+(y−π)2+(z−π)2
)
− 4

∑
i/2

cos(x) cos(y)e
−β

(
(x−r sin(i/2)−π)2+(y−r cos(i/2)−π)2

)

(1)

summation over {i ∈ N|0 ≤ i < 4π}, r = 1, β = 1√
500

.

(a) (b)

Figure: Demo of gradient descent with raw and Laplacian smoothed gradients. Panel (a) depicts a slice of the
function given by Eq.(1); panel (b) shows the paths by using two different gradients, where red and black dots are
the points on the paths with raw and smoothed gradients, respectively. The learn rate in the gradient descent is set
to be 0.02 and the smooth parameter σ = 1.0.

22/69

Related Work and Future Directions

I Related Work: LS-SGD is much simpler than the other
variance reduction methods, e.g., SAGA, SDCA, SVRG. And
LS-SGD is applicable to train deep neural nets with negligible
extra cost.

I LS-SGD is a purely-stochastic method.
I The others are semi-stochastic methods, which require to

compute the full batch gradient or similar stuff.

I Future Direction: Analyze the convergence rate of LS-SGD
for strongly convex, convex, and smoothing functions.

23/69

DP-LSSGD: A Stochastic Optimization Method to Lift the
Utility in Privacy-Preserving ERM

Joint work with Bao Wang, Quanquan Gu, March Boedihardjo, and Farzin Barekat
24/69

Machine Learning and Data Privacy

I Machine learning should keep the privacy of the training data.
Individuals are not generally willing to allow their personal
data to be used without control on how it will be used and
how much privacy loss they will incur.

I However, the privacy principle is often violated in machine
learning.

25/69

Recap

Figure: An image recovered using a model inversion attack (left) and a

training set image of the victim (right). The attacker is given only the persons

name and access to a deep learning based facial recognition system that returns

a class confidence score.

Deep neural nets memorise their training data as part of the
standard training.

Fredrikson et al., Proc. CCS, 2016
26/69

Netflix Challenge

I Netflix released anonymized movie rating data for its Netflix
challenge, with data and value of movie ratings.

I Knowing 6-8 approximate movie ratings and dates is able to
uniquely identify a record with over 90% probability. A simple
way to achieve this is by correlating Netflix releases with
IMDB database (public).

I Netflix cancels recommendation contest after privacy lawsuit.

Anonymization cannot Guarantee Privacy!

A. Narayanan and V. Shmatikov, How to break anonymity of the Netflix Prize Dataset, arXiv:cs/0610105,
2006.

27/69

Differential privacy (DP) is a successful countermeasure to
adversaries that try to break the privacy of machine learning.

F. McSherry and I. Mironov, Differentially Private Recommender
Systems: Building Privacy into the Netflix Prize Contenders, KDD,
2009.

M. Fredrikson, S. Jha, T. Ristenpart, Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures, CCS,
2015.

28/69

Differential Privacy – Definition

A randomized algorithm A is (ε, δ)-differentially private if for any
two neighboring datasets D, D ′ that differ in only one entry and
for all events S in the output space of A, we have

Pr(A(D) ∈ S) ≤ eεPr(A(D ′) ∈ S) + δ,

when δ = 0 and A is ε-differentially private .

C. Dwork and A. Roth, The Algorithmic Foundation of Differential Privacy, 2014.
29/69

What DP Guarantees?
DP promises to protect individuals from any additional harm that
they might face due to their data being in the private database x
that they would not have faced had their data not been part of x .

Participation of a person does
not change the outcome much!
We cannot infer whether the boy
or the girl is participated in the
dataset or not based on the
outcome. Therefore the privacy
of the participant is guaranteed.

For all D, D ′ that differ in one
person, if A is (ε, δ)-DP, then:

max
S,Pr(A(D)∈S)>δ

{
log

Pr(A(D) ∈ S)− δ
Pr(A(D ′)) ∈ S

}
≤ ε.

Figures courtesy of K. Chaudhuri
30/69

Other Notions of Privacy

I Local DP
J. Duchi, M. Jordan, and M. Wainwright. Privacy aware learning. JACM,

61(6), 2014

I Concentrated DP
C. Dwork and G. Rothblum. Concentrated diffentially privacy.

arXiv:1603.01887, 2016

I Zero-concentrated DP
M. Bun and T. Steinke. Concentrated differential privacy:

Simplifications, extensions, and lower bounds. arXiv:1605.02065, 2016.

I Rényi DP
I. Mironov. Renyi differential privacy. In Computer Security Foundations

Symposium (CSF), IEEE 30th, pp. 263275. IEEE, 2017.

31/69

Laplace Mechanism

Definition (`1-Sensitivity) For any given function f (x), the `1-sensitivity of f is:

∆1(f) = max
‖x−x′‖1=1

‖f (x)− f (x′))‖1,

where ‖x− x′‖1 means the data sets {x} and {x′} differ in only one entry.

Remark The privacy of a model f that has a larger sensitivity is easier to break.

Theorem (Laplace Mechanism) Given any function f : x→ y, the following
Laplace mechanism guarantees (ε, 0)-differential privacy.

ML(x, f (x), ε) = f (x) + Y,

where Y is the Laplace noise with the same dimension as y and each

coordinate is sampled i.i.d. from Lap(∆1(f)
ε

) ∼ 1
∆1(f)/ε

exp
(
− |x|

∆1(f)/ε

)
.

32/69

Laplace Mechanism – A Simple Example

Suppose we want to study average weight µ of a group of 25
students whose weights are in the interval [30, 60]kg. Assume
student A wants to keep his weight private.

I Privacy Mechanism I: Allow release only for averages of more
than 20 people.
We only need two queries to break the privacy! Average with
and without student A.

I Privacy Mechanism II: Apply the Laplace Mechanism.
The `1-sensitivity of the mean over N students,
f (D) = 1

N

∑N
i=1 xi , is ∆1(f) = max ‖f (D)− f (D′)‖1 = 30

N kg.
Suppose the exact mean is 43.78, and we want to get the
privacy with ε = 1.0, the five possible private means:

43.62, 44.19, 44.57, 45.77, 44.52

33/69

Gaussian Mechanism

Definition (`2-Sensitivity) For any given function f (x), the
`2-sensitivity of f is:

∆2(f) = max
‖x−x′‖1=1

‖f (x)− f (x′))‖2,

where ‖x− x′‖1 means the data sets {x} and {x′} differ in only
one entry.
Theorem (Gaussian Mechanism) Given any function f : x→ y,
the following Gaussian mechanism guarantees (ε, δ)-differential
privacy (0 < ε < 1).

MG (x, f (x), ε) = f (x) + Y,

where Y is the Gaussian noise with the same dimension as y and
each coordinate is sampled i.i.d. from N (0, σ2) with σ ≥ c∆2(f)

ε
for ∀ c2 > 2 ln

(
1.25
δ

)
.

34/69

Privacy-Preserving ERM
To obtain the DP solution of the empirical risk minimization,

minL(w, {xi , yi}Ni=1) :=
1

N

N∑
i=1

L(w, {xi , yi}),

we can do:

I Output Perturbation:

wpriv = argminL(w, {xi , yi}ni=1) + nαpriv.

I Objective Perturbation:

Lpriv(w, {xi , yi}ni=1) = L(w, {xi , yi}ni=1) +
1

n
< nβpriv,w > .

I Gradient Perturbation:

∇Lpriv(wk , {xi , yi}ni=1) = ∇L(wk , {xi , yi}ni=1) + nγpriv.

Laplace Mechanism: the noise npriv is sampled from Laplace distribution,
which typically guarantees ε-DP.

Gaussian Mechanism: the noise npriv is sampled from the Gaussian

distribution, which typically guarantees (ε, δ)-DP.
35/69

DP-SGD

We consider (ε, δ)-DP guarantee for SGD:

wk+1 = wk − η
(
∇L(wk , {xik , yik}) + n

)
,

where n ∼ N(0, ν2I).

How to quantify the noise n?
Composition theorem: if the i-th step is (εi , δi)-DP, then the
model trained by using T steps of SGD is (

∑T
i=1 εi ,

∑T
i=1 δi)-DP.

However, composition does not give the optimal DP-bound.
Instead, we use the notion of Rényi differential privacy to quantify
the noise n.

36/69

DP-SGD
Definition (RDP) For α > 1, ρ > 0, a randomized mechanismM : Sn → R satisfies (α, ρ)-Rényi differential
privacy, i.e., (α, ρ)-RDP, if for all adjacent datasets S, S′ ∈ Sn differing by one element, we have

Dα
(
M(S)||M(S′)

)
:=

1

α− 1
log E

(M(S)

M(S′)

)α
≤ ρ,

where the expectation is taken overM(S′).

Lemma Given a function q : Sn → R, the Gaussian MechanismM = q(S) + n, where n ∼ N(0, ν2I), satisfies

(α, α∆2(q)/(2ν2))-RDP. In addition, if we apply the mechanismM to a subset of samples using uniform

sampling without replacement,M satisfies (α, τ2∆2
2(q)α/ν2)-RDP given ν2 ≥ 1/1.25, where τ is the

subsample rate.

Lemma If k randomized mechanismsMi : Sn → R for i ∈ [k], satisfy (α, ρi)-RDP, then their composition(
M1(S), . . . ,Mk (S)

)
satisfies (α,

∑k
i=1 ρi)-RDP. Moreover, the input of the i-th mechanism can base on the

outputs of previous (i − 1) mechanisms.

Lemma If a randomized mechanismM : Sn → R satisfies (α, ρ)-RDP, thenM satisfies
(ρ + log(1/δ)/(α− 1), δ)-DP for all δ ∈ (0, 1).

Theorem (Privacy Guarantee for DPSGD) Suppose L is G -Lipschitz. Given the total number of iterations T , for

any δ > 0 and the privacy budget ε2 ≤ 20T log(1/δ)G2/n2, DP-SGD with injected Gaussian noise N (0, ν2) for

each coordinate satisfies (ε, δ)-differential privacy with ν2 = 8TαG2/(n2ε), where α = 2 log(1/δ)/ε + 1.

Y. Wang, B. Balle, and S. Kasiviswanathan. arXiv:1808.00087, 2018

I. Mironov. CSF, 2017.
37/69

SGD v.s. DP-SGD

Logistic Regression (Training) Logistic Regression (Testing) ResNet20 (Testing Accuracy)

DP-SGD reduces the utility of the trained model severely.
Question: Can we improve DP-SGD with negligible extra
computational and memory costs to improve utility of the trained
model without loss of privacy guarantee?

38/69

Laplacian Smoothing SGD
For any differentiable function L(w), consider

wk+1 = wk − γ(I − σL)−1∇L(wk).

Discrete form of (I − σL)−1 with periodic boundary condition

inv

1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0
0 −σ 1 + 2σ . . . 0 0
.
−σ 0 0 . . . −σ 1 + 2σ

I FFT: Given a vector a, a smoothed vector b can be obtained by
solving (I − σL)−1a = b. This is equivalent to a = b− σL · b, or
a = b− σv ∗ b, where v = (−2, 1, 0, · · · , 0, 1) and ∗ is the
convolutional operator. Hence, we have

b = ifft

(
fft(a)

1− σ · fft(v)

)
.

Code: https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent
39/69

https://github.com/BaoWangMath/LaplacianSmoothing-GradientDescent

DP-LSSGD – Recap

wk+1 = wk − ηA−1
σ

(
∇L(wk) + n

)
,

where Aσ := (I− σL).

40/69

DP-LSSGD – Privacy Guarantee

Proposition (Post-processing) Let M : N|X | → R be a randomized
algorithm that is (ε, δ)-DP. Let f : R → R ′ be an arbitrary
mapping. Then f ◦M : N|X | → R ′ is (ε, δ)-DP.

For any fixed pair of neighboring databases x, y with ‖x− y‖1 ≤ 1, and fix any
event S ⊂ R ′. Let T = {r ∈ R : f (r) ∈ S}. We then have:

P[f (M(x)) ∈ S] = Pr [M(x) ∈ T] ≤ eεP[M(y) ∈ T]+δ = eεP[f (M(y)) ∈ S]+δ

41/69

DP-LSSGD – Privacy Guarantee
Alternatively, we can consider the privacy loss!
Definition (Privacy Loss) For any given randomize mechanism M, we call the
following quantity

L(ξ)
M(S)||M(S′) = ln

(
P[M(S) = ξ]

P[M(S ′) = ξ]

)
(2)

the privacy loss incurred by observing ξ ⊂ Range(M) for any two adjacent
databases S and S ′.
Remark If the randomized algorithm M is (ε, δ)-DP, then we have

P[L(ξ)
M(S)||M(S′) ≥ ε] = P[ln

(
P[M(S) = ξ]

P[M(S ′) = ξ]

)
≥ ε] ≤ δ, (3)

for any ξ ⊂ Range(M) and any two adjacent databases S and S ′.
Lemma At any iteration i , the privacy loss of DP-LSSGD is no more than that
of DP-SGD.

From privacy loss point of view, it is easy to show that DP-LSSGD is at least
(ε1, δ1)-DP. Note that

P[ln

(
A−1
σ (∇f (S) + n) = ξ

A−1
σ (∇f (S ′) + n) = ξ

)
≥ εi] = P[ln

(
(∇f (S) + n) = Aσξ

(∇f (S ′) + n) = Aσξ

)
≥ εi] ≤ δi .

42/69

DP-LSSGD – Utility Guarantee (Convex)
Theorem (Utility Guarantee for convex optimization)
Suppose L is convex and each component function Li is G -Lipschitz. Given
any ε2 ≤ 20T log(1/δ)G 2/n2, δ > 0, if we choose ηk = 1/

√
T and

T = (D + G 2)n2ε2/
(
24mG 2 log(1/δ)

)
, where D = ‖wk − w∗‖2

Aσ and w∗ is the

global minimizer of L, the DP-LSSGD output w̃ =
∑T−1

k=0 ηk/
(∑T−1

i=0 ηi
)
wk

satisfies the following utility

E
(
F (w̃)− F (w∗)

)
≤

2G
√

6γ(D + G 2)d log(1/δ)

nε
,

where γ = 1/m
∑m

i=1 1/[1 + 2σ − 2σ cos(2πi/m)] = 1+αm

(1−αm)
√

4σ+1
, m is the

dimension of w and α = 2σ+1−
√

4σ+1
2σ

.

Note, DP-LSSGD has a strictly better utility than DP-SGD by a factor of γ.
To prove the above result, we need to observe that

Lemma
Let n ∈ Rd be the standard Gaussian random vector. Then

E‖n‖2

A−1
σ

=
m∑
i=1

1

1 + 2σ − 2σ cos(2πi/d)
= γ,

where ‖n‖2

A−1
σ

.
= 〈n,A−1

σ n〉 is the square of the induced norm of n by A−1
σ .

43/69

DP-LSSGD – Utility Guarantee (Nonconvex)

Theorem (Utility Guarantee for nonconvex optimization)
Suppose L is nonconvex and each component function Li is G -Lipschitz and
has L-Lispchitz continuous gradient. Given any ε2 ≤ 20T log(1/δ)G 2/n2, δ > 0,
if we choose η = 1/

√
T and T = (DF + Lν2)n2ε2/

(
12mLG 2 log(1/δ)

)
, where

DF = F (w0)− F (w∗) and F (w∗) is the global minimum of F , the DP-LSSGD
output w̃ =

∑T−1
k=0 wk/T satisfies the following utility

E‖∇F (w̃)‖2
2 ≤ 4ζ

G
√

6mL(2DF + LG 2) log(1/δ)

nε

where ζ =
√

1
m

∑m
i=1

(1+4σ)2

(1+2σ−2σ cos(2πi/d))2 > 1.

The utility of DP-SGD is when ζ = 1, DP-LSSGD seems to have a worse utility
bound than DP-SGD measured by the gradient norm.

Is Gradient Norm the Right Metric for Measuring Utility?

44/69

DP-LSSGD – Utility Guarantee (Nonconvex)

Consider the following simple nonconvex function

f (x , y) =

{
x2

4 + y2, for x2

4 + y2 ≤ 1

sin
(
π
2

(
x2

4 + y2
))

, for x2

4 + y2 > 1

For the two points a1 = (2, 0) and a2 = (1,
√

3
2): the distance to

the local minima a∗ = (0, 0) are 2 and
√

7
2 , while ‖∇f (a1)‖2 = 1

and ‖∇f (a2)‖2 =
√

13
2 . Therefore, a2 is closer to the local minima

a∗ than a1 while its gradient has a larger `2-norm.

45/69

Logistic Regression DP-SGD v.s. DP-LSSGD (MNIST)

min
w
L(w, {xi , yi}

n
i=1) = min

w

 1

n

n∑
i=1

− log

(
exp 〈w, xi 〉yi∑
j exp 〈w, xi 〉j

)
+ λ‖w‖2

 .

(a) (b) (c) (d)

Figure: Training and testing losses of the softmax regression model trained by SGD with different noise

injection. (a) and (b): training and testing curves with Gaussian noise injection (ν = 0.1); (c) and (d): training

and testing curves with Gaussian noise injection (ν = 0.2).

DP-LSSGD makes training much more stable than DP-SGD and
gives better validation loss.

46/69

Support Vector Machine DP-SGD v.s. DP-LSSGD (MNIST)

min
w
L(w, {xi , yi}

n
i=1) = min

w

 1

n

n∑
i=1

∑
j 6=yi

max
(

0, 〈w, xi 〉j − 〈w, xi 〉yi + 1
)

+ λ‖w‖2

 . (4)

(a) (b) (c) (d)

Figure: Training and testing losses of SVM trained by SGD with different noise injection. (a) and (b): training

and testing curves with Gaussian noise injection (ν = 0.1); (c) and (d): training and testing curves with Gaussian

noise injection (ν = 0.2).

DP-LSSGD makes training much more stable than DP-SGD and
gives better validation loss.

47/69

Deep Learning DP-SGD v.s. DP-LSSGD (CIFAR10)

(a) (Validation Accuracy) (b) (Testing Accuracy)

Figure: (a): epoch v.s. validation of the ResNet20 trained by DP-LSSGD
with Gaussian noise of standard deviation ν = 0.1 and different Laplacian
smoothing parameter σ. (b): Testing accuracy of ResNet20 trained by
DP-LSSGD with different Gaussian noise injection.

48/69

Deep Learning (Gradient norm is not a good measure for utility!)

(a) (b)

(c) (d)

Figure: DP-SGD v.s. DP-LSSGD with σ = 1 on ResNet20 with Gaussian noise injection (ν = 0.1). (a): epoch

v.s. ‖∇F (wk)‖2. (b): epoch v.s. validation accuracy. (c): epoch v.s. training loss. (d): epoch v.s. validation loss.

DP-SGD has smaller gradient norm, but larger training and validation loss and worse validation accuracy! The loss

and validation accuracy are better measures for nonconvex optimization.
49/69

Some High Probability Estimates on Laplacian Operator

Theorem
For the random vector x ∈ Rn that is uniformly distributed in a unit ball, we
have the following estimates for ∀ α1 > 0 and α2 > 0:

I

P
(
‖A−1

σ x‖1 ≤ α1‖x‖1

)
> 1− δ1,

I

P
(
‖A−1

σ x‖2 ≤ α2‖x‖2

)
> 1− δ2,

δ1 = 2e
− 4
π3 n2

(
α1−
√
β

1+α1

)2

, δ2 = 2e
− 2
π2 n

α2−α2
π√
n
−
√
β

1+α2 ,

with

β =
1

n

n∑
i=1

1

|1 + 2σ − σzi − σzi |2
→ 1 + 2σ

(1 + 4σ)3/2
,

as d →∞, where z1, . . . , zn are the nth roots of unity.

I We can prove better privacy guarantee of DP-LSSGD by using the above
estimate.

I Another algorithm: wk+1 = wk − ηA−1
σ ∇L(wk) + n

50/69

Ref: Bao Wang, Quanquan Gu, March Boedihardjo, Farzin
Barekat, and Stanley Osher, Privacy-Preserving ERM by Laplacian

Smoothing Stochastic Gradient Descent, UCLA-Computational
and Applied Mathematics Reports (19-24), April 2019

51/69

ResNet and Transport Equation

52/69

ResNet

Plain Net: xl+1 = G(xl)
ResNet: xl+1 = xl + F(xl)

Learning F is much easier than learning G.
He et al., CVPR, 2016.

53/69

ResNet and Transport Equation
For ∀x̂ ∈ T with label y , the forward propagation of ResNet is

x0 = x̂ ,

xk+1 = xk + F(xk ,Wk), k = 0, 1, . . . , L− 1,

ŷ
.

= f (xL),

(5)

where ŷ is the predicted label, f is the output activation, e.g.,

f (x) = softmax(WFC · x).

Let tk = k
L , for k = 0, 1, · · · , L with ∆t = 1

L . Heuristically, without
considering the dimensional consistency, we can regard xk in
Eq. (5) as x(tk), then Eq. (5) can be rewritten as

x(0) = x̂ ,

x(tk+1) = x(tk) + ∆t · F (x(tk),W (tk)), k = 0, 1, . . . , L− 1,

ŷ
.

= f (x(1)),

(6)

where F
.

= 1
∆tF .

54/69

ResNet and Transport Equation

From the numerical discretization point view, Eq. (6) is just the
forward-Euler discretization of the following ODE

dx(t)

dt
= F (x(t),W (t)), x(0) = x̂ . (7)

For ∀x ∈ T , in the continuum limit ResNet can be viewed as

dx(t)
dt = F (x(t),W (t)),

x(0) = x̂ ,

ŷ = f (x(1)).

(8)

55/69

ResNet and Transport Equation

Furthermore, Eq. (7) defines the characteristic curves of the
following transport equation

∂u

∂t
(x , t) + F (x ,W (t)) · ∇u(x , t) = 0, x ∈ Rd . (9)

Along the characteristic curve determined by Eq. (7), we have

du(x(t), t)

dt
=
∂u

∂t
(x(t), t) + F (x(t),W (t)) · ∇u(x(t), t) = 0,

therefore,
u(x̂ , 0) = u(x(0), 0) = u(x(1), 1). (10)

If we enforce the terminal condition at t = 1 for Eq. (9) to be

u(x , 1) = f (x).

According to Eq. (10), we have u(x̂ , 0) = u(x(1), 1) = f (x(1)).

56/69

ResNet and Transport Equation

The forward propagation of ResNet can be modeled as computing
u(x̂ , 0) along the characteristics of the following transport equation{

∂u
∂t (x , t) + F (x ,W (t)) · ∇u(x , t) = 0, x ∈ Rd ,

u(x , 1) = f (x).
(11)

Meanwhile, the backpropagation in training ResNet can be
modeled as finding the velocity field W (t) with a given form of
F (x(t),W (t)), for the following control problem

∂u
∂t (x , t) + F (x ,W (t)) · ∇u(x , t) = 0, x ∈ Rd ,

u(x , 1) = f (x),

u(xi , 0) = yi , xi ∈ T ,

(12)

where u(xi , 0) = yi , xi ∈ T with yi be the label of xi , enforces the
initial condition on the training data.

57/69

Improving Adversarial Robustness of Deep Neural Nets

Joint work with Bao Wang, Binjie Yuan, and Zuoqiang Shi
58/69

Controlling the Smoothness of Decision Boundary

In the transport equation model, u(x , 0) serves as the decision
function to classify data, which might be singular and not robust
to adversarial attack. We add a viscosity term to smooth this
decision function{

∂u
∂t + F (x ,W (t)) · ∇u + 1

2σ
2∆u = 0, x ∈ Rd , t ∈ [0, 1),

u(x , 1) = f (x).

The decision function u(x̂ , 0) can be obtained by using the
Feynman-Kac formula, which gives

u(x̂ , 0) = E [f (x(1))|x(0) = x̂] ,

where x(t) is an Itô process,

dx(t) = F (x(t),W (t))dt + σdBt ,

and u(x̂ , 0) is the conditional expectation of f (x(1)).

59/69

ResNet Approximation of the Feynman-Kac Formula

Add Gaussian noise to
residual mapping.

Average over multiple jointly
trained ResNet

Wang, Yuan, Shi, and Osher, arXiv:1811:10745, 2018.

60/69

Adversarial Robustness
For the given training data D .

= {(x , y)} and loss function L(θ, x , y), we can
train an adversarially resistant model f (x , θ) by solving the following min-max
formalism

min
θ
ρ(θ) = min

θ
E(x,y)∼D

[
max
δ∈S
L(θ, x + δ, y)

]
, (13)

where δ is the admissible adversarial perturbation. We solve the inner

maximization by PGD adversarial attack.

Table: Robust testing accuracy of ResNet20 and En2ResNet20 on the
CIFAR10 benchmark under both white-box PGD and C&W attacks.

Model Under Attack Attack Distance Accuracy

ResNet20 White-Box PGD 0.031 (`∞) 46.70%
ResNet110 White-Box PGD 0.031 (`∞) 50.28%

En1ResNet20 White-Box PGD 0.031 (`∞) 49.28%
En2ResNet20 White-Box PGD 0.031 (`∞) 52.10%
En5ResNet20 White-Box PGD 0.031 (`∞) 54.89%

ResNet20 White-Box C&W 0.031 (`∞) 57.78%
ResNet110 White-Box C&W 0.031 (`∞) 62.92%

En1ResNet20 White-Box C&W 0.031 (`∞) 64.97%
En2ResNet20 White-Box C&W 0.031 (`∞) 66.41%
En5ResNet20 White-Box C&W 0.031 (`∞) 68.67%

61/69

Improving Generalization of Deep Neural Nets

Joint work with Bao Wang, Xiyang Luo, Wei Zhu, Zhen Li, and Zuoqiang Shi
62/69

Training and Testing for DNNs with Softmax Activation

(a) (b)

Figure: Training (a) and testing (b) of DNNs with softmax as output layer.

Forward propagation: Transform X into deep features by DNN block (ensemble of conv layers, nonlinearities and

others), and then activated by softmax function to obtain the predicted labels Ỹ:

Ỹ = Softmax(DNN(X,Θk−1),Wk−1).

Then compute loss (e.g., cross entropy) between Y and Ỹ: L = Loss(Y, Ỹ).

Backpropagation: Update weights (Θk−1, Wk−1) by gradient descent (learning rate γ):

Wk = Wk−1 − γ
∂L
∂Ỹ
·
∂Ỹ

∂W
, Θk = Θk−1 − γ

∂L
∂Ỹ
·
∂Ỹ

∂X̃
·
∂X̃

∂Θ
.

63/69

Data-Dependent Activation Function

We replace Softmax function, which is training data agnostic, to a high
dimensional interpolating function by minimizing the Dirichlet energy:

E(u) =
1

2

∑
x,y∈X

w(x, y) (u(x)− u(y))2 , (14)

with the boundary condition:

u(x) = g(x), x ∈ Xte,

where w(x, y) = exp(− ||x−y||2
σ2) is the weight function. And

X = {x1, x2, · · · , xn} be a set of points in a high dimensional manifold M⊂ Rd

and Xte = {xte
1 , x

te
2 , · · · , xte

m } be a labeled subset of X with label g(x).
Moreover, to resolve the issue of only tiny amount of data been labeled, we add
a balance factor to the variational derivative to Eq. (14), which gives:

∑
y∈X (w(x, y) + w(y, x)) (u(x)− u(y)) +(
|X|
|Xte| − 1

)∑
y∈Xte w(y, x) (u(x)− u(y)) = 0 x ∈ X/Xte

u(x) = g(x) x ∈ Xte.

(15)

We call Eq. (15) weighted nonlocal Laplacian (WNLL).

64/69

Training and Testing for WNLL Activated DNNs

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = WNLL(X̃, X̃te,Yte)

Loss(Y, Ỹ)

(X,Y), (Xte,Yte)

(X̃, X̃te) = DNN(X,Xte,Θ)

Ỹ = Linear(X̂,WL) Ŷ = WNLL(X̂, X̂te,Yte)

Loss(Ỹ,Y)

(X̂, X̂te) = Buffer(X̃, X̃te,WB)

Loss(Ŷ,Y)

(a) (b) (c)

Figure: Training and testing procedure of the deep neural nets with
WNLL as the last activation layer.(a): Direct replacement of the softmax
by WNLL, (b): An alternating training procedure. (c): Testing.

Direct replacement of softmax to WNLL has the issue of
backprop, instead we apply the training strategy in panel (b).

Wk
B = Wk−1

B −γ ∂L
WNLL

∂Ŷ
·∂Ŷ

∂X̂
· ∂X̂

∂WB
≈Wk−1

B −γ ∂L
Linear

∂Ỹ
·∂Ỹ

∂X̂
· ∂X̂

∂WB
.

65/69

Performance on Cifar-10

Table: Generalization error rates over the test set of vanilla DNNs, SVM and WNLL activated ones trained over
the entire, the first 10000, and the first 1000 instances of training set of CIFAR10. (Median of 5 independent trials)

Network Whole 10000 1000

Vanilla WNLL SVM Vanilla WNLL Vanilla WNLL

ResNet32 7.99% 5.95% 8.73% 11.18% 8.15% 33.41% 28.78%

ResNet44 7.31% 5.70% 8.67% 10.66% 7.96% 34.58% 27.94%

ResNet56 7.24% 5.61% 8.58% 9.83% 7.61% 37.83% 28.18%

ResNet110 6.41% 4.98% 8.06% 8.91% 7.13% 42.94% 28.29%

ResNet18 6.16% 4.65% 6.00% 8.26% 6.29% 27.02% 22.48%

ResNet34 5.93% 4.26% 6.32% 8.31% 6.11% 26.47% 20.27%

ResNet50 6.24% 4.17% 6.63% 9.64% 6.49% 29.69% 20.19%

PreActResNet18 6.21% 4.74% 6.38% 8.20% 6.61% 27.36% 21.88%

PreActResNet34 6.08% 4.40% 5.88% 8.52% 6.34% 23.56% 19.02%

PreActResNet50 6.05% 4.27% 5.91% 9.18% 6.05% 25.05% 18.61%

Wang, Luo, Li, Zhu, Shi, and Osher, NIPS, 2018
66/69

Feature’s Geometry

(a) (b)

(c) (d)
Figure: Visualization of the features learned by DNNs with softmax ((a), (b)) and WNLL ((c), (d)) activation
functions. (a) and (b) plot the 2D features and the first two principle components of the 64D. (c) and (d) are the
first two principle components of the 64D features for the training and testing images, respectively.

67/69

Summary

WNLL activated DNNs can improve generalization remarkably,
especially when we do not have a large number of training data.

Code: https://github.com/BaoWangMath/DNN-DataDependentActivation

68/69

https://github.com/BaoWangMath/DNN-DataDependentActivation

Thank you!

Special Thanks to professor Adam Oberman for stimulating discussions over the entire project!
69/69

